2015-16学年华师版初一数学第二学期期中试卷
2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。
华师大版七年级下学期数学《期中考试试题》含答案解析

华 东 师 大 版 七 年 级 下 学 期期 中 测 试 卷一、选择题1.方程2x -1=3x +2的解为( ) A. x =1 B. x =-1C. x =3D. x =-32.如果35x =是关于x 的方程50x m -=的解,那么m 的值为( ) A. 3 B. 13C. 3-D. 13-3.在解方程1135x x -=-时,去分母后正确的是( )A. 513(1)x x =--B. 1(31)x x =--C. 5153(1)x x =--D. 533(1)x x =--4.下列各组值中,是方程3x+5=8的解的是( )A. 21x y =-⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 05x y =⎧⎨=-⎩5.已知 11x y =-=⎧⎨⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m -n 的值是( ) A. 1B. -2C. 3D. -46.同时适合方程2x+y=5和3x+2y=8的解是( ) A. 12x y =⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 31x y =⎧⎨=⎩ D. 31x y ==-⎧⎨⎩7. 不等式﹣2x<4的解集是 【 】 A. x>﹣2B. x<﹣2C. x>2D. x<28.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. 1313x x -<⎧⎨+<⎩B. 1313x x -<⎧⎨+>⎩C. 1313x x ->⎧⎨+>⎩D. 1313x x ->⎧⎨+<⎩9.如果不等式3x-m ≤0的正整数解是1,2,3,那么m 的取值范围是( ) A. m >9B. m <12C. 912m ≤<D. 912m <≤10.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为( )A. 5210,58x y x y +=⎧⎨+=⎩B. 2,258x y x y +=⎧⎨+=⎩C. 528,2510x y x y +=⎧⎨+=⎩D. 5210,258x y x y +=⎧⎨+=⎩二、填空题11.若关于的方程ax+3x=2的解是x=1,则a 的值为________. 12.若关于x ,y 的二元一次方程组2121x y k x y k +=-⎧⎨+=+⎩的解互为相反数,则k 的值为________.13.若关于x 的不等式()2121m x m +<+的解集是x >1,则m 的取值范围是________.14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是__________.15.已知a b c 、、满足:2302340a b c a b c -+=⎧⎨-+=⎩,则a ∶b ∶c 等于_______.三、解答题16.解方程3157146x x ---= 17.解方程组:23723x y x y +=⎧⎨=-+⎩18.关于x y 、的方程组251x y ax by -=⎧⎨+=-⎩和321122x y ax by +=⎧⎨+=⎩的解相同,求a 、b 的值.19.解不等式组()41710753x x x x +≤+⎧⎪⎨--⎪⎩<并写出该不等式组的所有非负整数解. 20.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案. 22.阅读下列材料:解答“已知2,1,0x y x y -=><且,试确定x y +的取值范围”有如下解法: 解:∵2x y -=,∴x=y+2,又∵1x >,∴21y +>,即1y >- 又0y <,∴10y -<<.…① 同理得:12x <<.…② 由①+②得1102,y x -+<+<+ ∴x y +的取值范围是02x y <+<. 请按照上述方法,完成下列问题 : 已知关于x y 、的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都是正数.(1)求a的取值范围;(2)已知4,a b -=且2b <,求+a b 的取值范围; (3) 已知a b m -=(m 是大于0的常数),且11,22b a b ≤+求的最大值.(用m 含的式子表示) 23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法, 请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料 根; 方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根.(2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.答案与解析一、选择题1.方程2x -1=3x +2的解为( ) A. x =1 B. x =-1C. x =3D. x =-3【答案】D 【解析】试题分析:首先进行移项可得:2x -3x=2+1,合并同类项可得:-x=3,解得:x=-3. 考点:解一元一次方程 2.如果35x =是关于x 的方程50x m -=的解,那么m 的值为( ) A. 3B. 13C. 3-D. 13-【答案】A 【解析】试题分析:将x=35代入等式可得:5×35-m=0,解得:m=3,故选A . 3.在解方程1135x x -=-时,去分母后正确的是( )A. 513(1)x x =--B. 1(31)x x =--C. 5153(1)x x =--D. 533(1)x x =--【答案】C 【解析】 【分析】两边同乘以15去分母即可得出答案.【详解】两边同乘以15去分母,得5153(1)x x =-- 故选:C .【点睛】本题考查了解一元一次方程的步骤:去分母,掌握去分母的方法是解题关键. 4.下列各组值中,是方程3x+5=8的解的是( )A. 21x y =-⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 05x y =⎧⎨=-⎩【答案】C 【解析】 【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【详解】A,代入原方程:-2⨯3+5=-1,故此项错误;B,代入原方程:2⨯3+5=11,故此项错误;C,代入原方程:1⨯3+5=8,故此项正确;D,代入原方程:0⨯3+5=5,故此项错误;【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.5.已知11xy=-=⎧⎨⎩是二元一次方程组321x y mnx y+=⎧⎨-=⎩的解,则m-n的值是()A. 1B. -2C. 3D. -4 【答案】A【解析】【分析】将11xy=-=⎧⎨⎩代入方程组321x y mnx y+=⎧⎨-=⎩中,求出m,n的值,从而求出m-n的值.【详解】将11xy=-=⎧⎨⎩代入方程组321x y mnx y+=⎧⎨-=⎩中,得32,11,mn-+=⎧⎨--=⎩解得1,2. mn=-⎧⎨=-⎩∴m-n=1.故选A.【点睛】本题主要考查方程组的解,熟练掌握二元一次方程组的解的定义是解题的关键.6.同时适合方程2x+y=5和3x+2y=8的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.31xy=⎧⎨=⎩D.31xy==-⎧⎨⎩【答案】B【解析】【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,② ①×2-②得,x=2, 代入①得,2×2+y=5,y=1 故原方程组的解为2,1.x y =⎧⎨=⎩故选:B .【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法. 7. 不等式﹣2x<4的解集是 【 】 A. x>﹣2 B. x<﹣2C. x>2D. x<2【答案】A 【解析】【详解】解:根据不等式的基本性质解得:x>﹣2,故选A .8.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. 1313x x -<⎧⎨+<⎩B. 1313x x -<⎧⎨+>⎩C. 1313x x ->⎧⎨+>⎩D. 1313x x ->⎧⎨+<⎩【答案】B 【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可. 详解:A 、此不等式组的解集为x <2,不符合题意; B 、此不等式组解集为2<x <4,符合题意; C 、此不等式组解集为x >4,不符合题意; D 、此不等式组的无解,不符合题意; 故选B .点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.9.如果不等式3x-m ≤0的正整数解是1,2,3,那么m 的取值范围是( ) A. m >9B. m <12C. 912m ≤<D. 912m <≤【分析】解不等式得出x ≤3m ,由不等式的正整数解为1、2、3知3≤3m<4,解之可得答案. 【详解】解不等式3x−m ≤0,得:x ≤3m,∵不等式的正整数解为1,2,3, ∴3≤3m<4, 解得:9≤m <12, 故选:C .【点睛】本题主要考查一元一次不等式组的整数解,根据正整数解的情况得出关于m 的不等式组是解题的关键.10.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为( )A. 5210,58x y x y +=⎧⎨+=⎩B. 2,258x y x y +=⎧⎨+=⎩ C. 528,2510x y x y +=⎧⎨+=⎩D. 5210,258x y x y +=⎧⎨+=⎩ 【答案】D 【解析】 分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组. 【详解】解:根据题意得:5210258x y x y +=⎧⎨+=⎩,故选D .【点睛】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.二、填空题11.若关于的方程ax+3x=2的解是x=1,则a 的值为________.【分析】根据方程的解为x=1,将x=1代入方程即可求出a 的值. 【详解】解:将x=1代入方程得:a+3=2, 解得:a=-1.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 12.若关于x ,y 的二元一次方程组2121x y k x y k +=-⎧⎨+=+⎩的解互为相反数,则k 的值为________.【答案】0 【解析】 【分析】方程组两方程相加表示出x+y ,根据x+y=0求出k 的值即可.【详解】解:2121,x y k x y k +-⎧⎨++⎩=,①=②①+②,得3(x+y )=2k ,解得:x+y=23k . 由题意得:x+y=0, 可得23k=0, 解得:k=0, 故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 13.若关于x 的不等式()2121m x m +<+的解集是x >1,则m 的取值范围是________. 【答案】12m <- 【解析】 【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得m 的取值范围.【详解】解:∵不等式()2121m x m +<+的解集为x >1, ∴2m+1<0, ∴12m <-. 【点睛】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是__________.【答案】8 【解析】 【分析】根据题意首先设A 端点数为x ,B 点为y ,则C 点为:7﹣y ,D 点为:z ,得出x +y =3①,C 点为:7﹣y ,z +7﹣y =12,而得出x +z 的值.【详解】设A 端点数为x ,B 点为y ,则C 点为:7﹣y ,D 点为:z ,根据题意可得:x +y =3①,C 点为:7﹣y ,故z +7﹣y =12②,故①+②得:x +y +z +7﹣y =12+3,故x +z =8,即AD 上的数是:8. 故答案为8.【点睛】本题考查了方程组的应用,注意利用整体思想求出x +z 的值是解题的关键. 15.已知a b c 、、满足:2302340a b c a b c -+=⎧⎨-+=⎩,则a ∶b ∶c 等于_______.【答案】1∶2∶1 【解析】 【分析】把c 看成已知数,解关于a,b 的二元一次方程,从而可求a ∶b ∶c.【详解】解:2302340a b c a b c -+=⎧⎨-+=⎩,①②, 所以①×2-②,得b=2c .将b=2c 代入①,得a-4c+3c=0,∴a=c.∴a ∶b ∶c=c ∶2c ∶c=1∶2∶1.【点睛】将其中一个未知数看成已知数,解方程即可.三、解答题16.解方程3157146x x ---= 【答案】x =﹣1【解析】【分析】 首先去分母,然后移项合并系数,即可解得x .【详解】方程两边同时乘以12得:3(3x ﹣1)﹣2(5x ﹣7)=12,去括号得:9 x ﹣3﹣10x +14=12,移项得:9x ﹣10x =12﹣14+3,合并同类项得:﹣x =1,系数化为1得:x =﹣1.【点睛】本题主要考查解一元一次方程的知识点,解题时要注意,移项时要变号,本题比较基础. 17.解方程组:23723x y x y +=⎧⎨=-+⎩ 【答案】51x y =⎧⎨=-⎩【解析】【分析】直接利用代入法解二元一次方程组即可.【详解】23723x y x y +=⋯⎧⎨=-+⋯⎩①② 将②代入①,得()22337.y y -++=解得 1.y =-将 1y =- 代入②,得x =5 ,∴原方程组的解为51x y =⎧⎨=-⎩. 【点睛】本题考查了利用代入法解二元一次方程组,主要考查学生的计算能力.18.关于x y 、的方程组251x y ax by -=⎧⎨+=-⎩和321122x y ax by +=⎧⎨+=⎩的解相同,求a 、b 的值. 【答案】14a b =⎧⎨=-⎩【解析】【分析】根据两方程组的解相同,取出不含未知量的两个方程重组方程组求解代入即可.【详解】解:解方程组 253211x y x y -=⎧⎨+=⎩, 得 31x y =⎧⎨=⎩ , 上面方程组的解也是 122ax by ax by +=-⎧⎨+=⎩的解, 代入,得3162a b a b +=-⎧⎨+=⎩ , 解这个方程组,得 14a b =⎧⎨=-⎩. 【点睛】此题考查二元一次方程组的解,用已知求未知,主要是熟练掌握解方程组.19.解不等式组()41710753x x x x +≤+⎧⎪⎨--⎪⎩<并写出该不等式组的所有非负整数解. 【答案】0、1、2、3【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【详解】()41710753x x x x ⎧+≤+⎪⎨--⎪⎩①<② 解不等式①,得2x ≥-,解不等式②,得4x <,∴不等式组的解集为24x -≤< ,∴该不等式组的非负整数解为0、1、2、3.【点睛】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集. 20.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?【答案】大盒装20瓶,小盒装12瓶.【解析】【分析】设大盒每盒装x 瓶,小盒每盒装y 瓶,根据等量关系:3大盒4小盒共108瓶;2大盒3小盒共76瓶,列出方程组求解即可.【详解】解:设大盒每盒装x 瓶,小盒每盒装y 瓶.依题意得:3x 4y 1082x 3y 76+=⎧+=⎨⎩, 解此方程组,得{x 20y 12==.答:大盒每盒装20瓶,小盒每盒装12瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程组求解.21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.【答案】(1)购买一台A 型设备需要12万元,购买一台B 型设备需要10万元;(2)三种购买方案,即A型设备0台,B 型设备10台;或A 型设备1台,B 型设备9台;或A 型设备2台,B 型设备8台【解析】【分析】(1)购买A 型的价格是a 万元,购买B 型的设备b 万元,根据购买一台A 型号设备比购买一台B 型号设备多2万元,购买2台A 型设备比购买3台B 型号设备少6万元,可列方程组求解.(2)设购买A 型号设备x 台,则B 型为(10-x )台,根据使治污公司购买污水处理设备的资金不超过105万元,进而得出不等式;【详解】解:(1)设:购买一台A 型设备需要a 万元 ,购买一台B 型设备需要b 万元.根据题意列方程组得:2,263.a b a b -=⎧⎨+=⎩解方程组得:12,10.a b =⎧⎨=⎩答:购买一台A 型设备需要12万元 ,购买一台B 型设备需要10万元 ;(2) 设购买A 型设备 x 台,则购买B 型设备 (10-x )台,根据题意可得:()121010105.x x +-≤解不等式得: 2.5.x ≤因为 x 为正整数,所以 x 可以取值 0 、 1 或 2.所以根据题意可以有三种购买方案,即A 型设备 0 台,B 型设备 10 台;或A 型设备 1 台,B 型设备 9 台;或A 型设备 2 台,B 型设备 8 台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A 型号设备比购买一台B 型号设备多2万元,购买2台A 型设备比购买3台B 型号设备少6万元和根据使治污公司购买污水处理设备的资金不超过105万元,等量关系和不等量关系分别列出方程组和不等式求解.22.阅读下列材料:解答“已知2,1,0x y x y -=><且,试确定x y +的取值范围”有如下解法:解:∵2x y -=,∴x=y+2,又∵1x >,∴21y +>,即1y >-又0y <,∴10y -<<.…①同理得:12x <<.…②由①+②得1102,y x -+<+<+∴x y +的取值范围是02x y <+<.请按照上述方法,完成下列问题 :已知关于x y 、的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都是正数. (1)求a 的取值范围;(2)已知4,a b -=且2b <,求+a b 的取值范围;(3) 已知a b m -=(m 是大于0的常数),且11,22b a b ≤+求的最大值.(用m 含的式子表示) 【答案】(1)1a >;(2)28a b -<+<(3)522m + 【解析】【分析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围; (3)根据(1)的解题过程求得a 、b 取值范围;结合限制性条件得出结论即可. 【详解】解:(1)解这个方程组的解为12x a y a =-⎧⎨=+⎩由题意,得1020a a ->⎧⎨+>⎩则原不等式组的解集为a >1;(2)∵a-b=4,a >1,∴a=b+4>1,∴b >-3,∴a+b >-2,又∵a+b=2b+4,b <2,∴a+b <8.故-2<a+b <8;(3)∵a-b=m ,∴a=b+m .由∵b ≤1,11522()2222a b b m b m ∴+=+++ ∴最大值为522m +【点睛】本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法,请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料根;方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根.(2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.【答案】(1)4;(2)24;4;(3)方法①与方法③联合【解析】【分析】(1)由总数÷每份数=份数就可以直接得出结论;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此方程构成方程组求出其解即可.(3)分别设方法①裁剪m根,方法③裁剪n根6m长的钢管和设方法①裁剪a根,方法②裁剪b根6m长的钢管,建立方程组求出其解即可.【详解】(1)(6-2.5)÷0.8=4…0.3,最多裁成0.8米长的用料4根,故答案为:4;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得232, 4100, x yx y+=⎧⎨+=⎩解得:24,4. xy=⎧⎨=⎩答:用方法②剪24根,方法③裁剪4根6m长的钢管;(3)设方法①裁剪m根,方法③裁剪n根6m长的钢管,由题意,得7100, 232,m nn+=⎧⎨=⎩解得:1216 mn=⎧⎨=⎩∴m+n=2824428x y+=+=,m n x y∴+=+设方法①裁剪a根,方法②裁剪b根6m长的钢管,由题意,得74100,32,a bb+=⎧⎨=⎩解得:4,32,ab=-⎧⎨=⎩无意义,∴方法①与方法③联合,所需要6m长的钢管与(2)中根数相同.【点睛】本题考查了二元一次方程组的应用,二元一次方程组的解法的运用,解答时根据每份数×份数=总数建立方程是关键,注意分类讨论思想的运用.。
2015年华师大版七年级数学下册_期中测试及答案

2015年华师七年级数学下册期中试题(满分:100分;时间:100分钟)一、选择题(单项选择,每小题3分,共21分)1.下列方程中解是X=2 的方程是( ) .A.-2x+4=0 B.3x+6=0 C.12x=2 D.5-3x=12. 不等式2X<6的解集是 ( )A.x>3 B.3x≤ C.x<3 D.3x≥3.若a>b则下列式子正确的是()A.-4a>-4bB.12a<12b C. 4-a>4-b D.a-4>b-44.方程组102x yx y+=⎧⎨-=⎩的解是()A.31xy=⎧⎨=⎩B.64xy=⎧⎨=⎩C.75xy=⎧⎨=⎩D.19xy=⎧⎨=⎩5.一个不等式的解集为12x-<≤,那么在数轴上表示正确的是()6.不等式2(2)2xx-≤-的非负整数解的个数为()A.1个B.2个C.3个D.4个7.一个被污染的方程是112y y-=-●,此方程的解是8y=,这个常数应是()A.-1B.-2C.-3D.-4二、填空题(每小题2分,共20分)8.方程36x=的解是x=9.由21x y+=可用x表示y的式子y= 10.若1x=为方程23x a+=的解则a=11.用不等式表示“a的3倍不小于2”为12. 20x-<则x13.方程25x y+=中当1x=-时y=14.不等式组2010xx+⎧⎨-><⎩的解集为整数解为15.某商品标价1200元,打八折售出后仍盈利100元,则该商品的进价为 元。
16.如果()23230x y y x -+--=,那么x y +=17.已知关于x 的方程22x m x +=+的解是负数,则m 的取值范围为 若设代数式86m -的值为S ,则S 的取值范围为三.解答题(59分)18.(5分)解方程8212x x =+19.(5分)解不等式并把解集在数轴上表示 213x +>20.(5分)解方程214163x x--=-21.(5分)解方程组2538x y x y +=⎧⎨-=⎩22.(6分)解不等式组,并将解集在数轴上表示出来:⎪⎩⎪⎨⎧≤-+<+23132)1(3x x x x .①②①②23.(7分)在等式b kx y +=(b k ,为常数)中,当1=x 时,2-=y ;当1-=x 时,4=y .(1)求k 、b 的值. (2)问当1-=y 时, x 的值等于多少?24.(8分)学校团委组织80名新团员为学校建地理、生物科学园搬砖.女同学每人每次搬6块,男同学每人每次搬8块。
华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列各式中,是一元一次方程的是( )A .x ﹣y =2B .x =1C .2x ﹣3D .x 2+x =2 2.若12x y =⎧⎨=⎩是方程2nx ﹣y =2的解,则n 的值是( ) A .﹣1 B .1 C .2 D .03.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .x≥-1B .x>1C .-3<x≤-1D .x>-3 4.在下列方程的变形中,正确的是( )A .由3+x =5,得x =5+3B .由225=x ,得522=⨯x C .由7x =﹣4,得x =74- D .由216+-=x ,得﹣x +2=6 5.下列根据语句列出的不等式错误的是( ) A .“a 的2倍与4的差是正数”,表示为2a ﹣4>0 B .“a 与b 的差是非负数”,表示为a ﹣b ≥0. C .“b 不是正数”,表示为b ≤0.D .“a 、b 两数的和的3倍不小于这两个数的积”,表示为3a +b ≥ab . 6.如果a <b ,c <0,那么下列不等式中不成立的是( )A .a +c <b +cB .ac >bcC .11+>+a b ccD .ac 2>bc 2 7.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为y ,则列出的方程正确的是( )A .12530y y ⨯=+B .5(120)10030y y +=+C .5(120)30y y +=D .1210030y y +=+8.《孙子算经》记载:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剥余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人多少车?设有x 人、y 辆车,据题意可列方程组为( ) A .3(2)29y x y x -=⎧⎨+=⎩ B .3(2)29y x y x +=⎧⎨-=⎩ C .3229y x y x -=⎧⎨+=⎩D .3(2)29y xy x -=⎧⎨-=⎩9.定义一种运算:a ※b =ab ﹣a +b ﹣2.例如:2※5=2×5﹣2+5﹣2=11.那么不等式3※x ≤2的正整数解是( )A .1B .74C .0或1D .210.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒现有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m +n 的值可能是( )A .2018B .2019C .2020D .2021 二、填空题11.写出方程x +3y =11的一个整数解___. 12.已知关于x 的一元一次方程12021x ﹣3=2x +b 的解为x =999,那么关于y 的一元一次方程12021(y ﹣1)﹣3=2(y ﹣1)+b 的解为y =_____. 13.若关于x 的方程3k ﹣5x =﹣9的解是非负数,则k 的取值范围为_________. 14.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是______平方厘米.15.小聪和小明完成了数学实验《钟面上的数学》之后,自制了一个模拟钟面.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒25°,OB 运动速度为每秒5°,当某一根指针与起始位置重合时,转动停止.设转动的时间为t 秒,则当t =___秒时,∠AOB =20°.三、解答题 16.解方程:432.425--=x x .17.解方程组3220021530x y x y -+=⎧⎨+-=⎩18.解不等式组:2(1)4137136x x x x +<+⎧⎪--⎨-≤⎪⎩并把解集在数轴上表示出来.19.生活中除了用米或厘米作单位测量物体的长度,有时候用“拃(zhǎ)”、“步”、“庹(tuǒ)”来估测也很方便小华和小芳用“拃”作单位,测量同一个物体的长度,测量的结果是:小华用了5拃,小芳用了4拃. (1)①根据上面的数量关系,补全下面的线段图;②由线段图直接写出:小华1拃长度是小芳1拃长度的几分之几?答: . (2)小华和小芳合作用拃来量一张长度为117cm 的桌子,小华从左到右量了6拃,小芳从右到左量了3拃,刚好把桌子量完,求小华和小芳1拃各有多长?20.在学习《用二元一次方程组解决实际问题》这一课时,李老师让同学们根据已知条件探索还能求出哪些量,某船的载重为260吨,容积为1000m 3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m 3,乙种货物每吨体积为2m 3.若要充分利用这艘船的载重与容积,且装运货物时不留空隙(刚好满载一次运完).(1)小宇同学根据题意列出了一个尚不完整的方程组*82m n m n +=⎧⎪⎨+=⎪⎩,请写出小宇所列方程组中未知数m 、n 表示的意义:m 表示 ,n 表示 ,该方程组中“?”处的数应是 ,“*”处的数应是 .(2)小琼同学的思路是:设甲种货物有x 吨,乙种货物y 吨,请按照小琼的思路列出方程组,并求甲种货物和乙种货物各有多少吨?21.已知56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩,都是关于x 、y 的方程y =kx +b 的解.(1)求k 、b 的值;(2)若y 的值不大于0,求x 的取值范围; (3)若﹣1≤x <2,求y 的取值范围.22.(教材呈现)如左图是华师版七年级下册数学教材第10﹣11页的部分内容,右图是小东同学类比课堂学习完成的一道课外作业题.认真阅读教材内容,结合小东作业,完成下列问题:(1)小东解方程的结果“x=2”是不是原方程的解?请写出判断过程;(2)解方程413111--=--xx x,并判断所求“结果”是不是原方程的解,简要说明理由.(3)反思以上过程,你有什么疑问请写下来(一条即可).23.学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买3件A种文化衫和2件B种文化衫需要180元:购买2件A种文化衫和4件B种文化衫需要200元.(1)求A、B两种文化衫的单价;(2)学校决定向该商家购买A、B两种文化衫共100件(其中A种文化衫不超过50件),恰逢商家摘促销,现有两种优惠活动,如图所示,设购买A种文化衫m件,根据以上信息解答下列问题:①试用含m的代数式分别表示按照活动一、活动二购买100件文化衫各需付款多少元(直接写出化简结果)?②请说明学校按照哪种活动方案购买更划算.参考答案1.B【分析】根据一元一次方程的定义,即含有一个未知数,未知数的最高次数为1的整式方程叫一元一次方程,逐项判断即可.【详解】解:A、有两个未知数,不是一元一次方程,故本选项错误,不符合题意;B、是一元一次方程,故本选项正确,符合题意;C、是代数式,不是方程,故本选项错误,不符合题意;D、未知数的最高次数为2,不是一元一次方程,故本选项错误,不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的定义,解题的关键是熟练掌握含有一个未知数,未知数的最高次数为1的整式方程叫一元一次方程.2.C 【分析】把方程组的解,代入方程,得到一个含有未知数n 的一元一次方程,从而可以求出n 的值. 【详解】解:∵12x y =⎧⎨=⎩是方程2nx ﹣y =2的解,∴222n -= , 解得:2n = . 故选:C . 【点睛】本题主要考查了二元一次方程的解,解一元一次方程,解题的关键是把方程的解代入原方程,使原方程转化为以系数n 为未知数的方程. 3.A 【详解】>-3 ,≥-1,大大取大,所以选A 4.B 【分析】根据等式性质移项,去分母等的方法变式即可. 【详解】解:A ,由3+x =5,得x =5-3,故此项不合题意; B ,由225x = ,得 522x =⨯,故此项符合题意; C ,由7x =﹣4,得47x -=,故此项不合题意; D ,由 216x +-=,得26x --=,故此项不合题意; 故答案选:B . 【点睛】此题考查方程的计算,涉及等式的性质,难度一般. 5.D根据题意列出对应的不等式即可判断. 【详解】解:A 、“a 的2倍与4的差是正数”,表示为2a ﹣4>0,此说法正确,不合题意; B 、“a 与b 的差是非负数”,表示为a ﹣b ≥0,此说法正确,不合题意; C 、“b 不是正数”,表示为b ≤0,此说法正确,不合题意;D 、“a 、b 两数的和的3倍不小于这两个数的积”,表示为3a +3b ≥ab ,此说法错误,符合题意; 故选D. 【点睛】本题主要考查了根据描述列出不等式,解题的关键在于能够熟练掌握相关知识进行求解. 6.D 【分析】根据不等式的性质解答即可. 【详解】解:A 、由a <b ,c <0得到:a +c <b +c ,原变形正确,故此选项不符合题意; B 、由a <b ,c <0得到:ac >bc ,原变形正确,故此选项不符合题意; C 、由a <b ,c <0得到:11+>+ab c c,原变形正确,故此选项不符合题意; D 、由a <b ,c <0得到:ac 2<bc 2,原变形错误,故此选项符合题意. 故选D . 【点睛】本题考查了不等式的性质,解题的关键是明确不等式的性质是不等式变形的主要依据.要认真弄清不等式的性质与等式的性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数是否等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变. 7.B 【分析】由给定的乘法竖式,即可得出关于y 的一元一次方程,此题得解.解:依题意得:5(120+y )=100y +30. 故选:B . 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 8.A 【分析】设有x 人,y 辆车,根据每3人共乘一车,最终剥余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,即可得出关于x ,y 的二元一次方程组. 【详解】解:设有x 人,y 辆车,根据车的辆数不变列出等量关系,每3人共乘一车,最终剩余2辆车,则车辆数为:23x y +=,每2人共乘一车,最终剩余9个人无车可乘,则车辆数为: 92x y -=, ∴整理得::()3229y x y x⎧-=⎨+=⎩ .故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程是解题的关键. 9.A 【分析】根据定义的新运算,可列出不等式,解出即可求解. 【详解】解:∵3※x =3x -3+x -2, 根据题意得:3x -3+x -2≤2, 解得:74x ≤ ,∴不等式3※x ≤2的正整数解是1.【点睛】本题主要考查了一元一次不等式的应用,理解定义一种运算:a ※b =ab ﹣a +b ﹣2,列出不等式是解题的关键. 10.C 【分析】设做竖式和横式的两种无盖纸盒分别为x 个、y 个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x 、y 的系数表示出m +n 并判断m +n 为5的倍数,然后选择答案即可. 【详解】解:设做竖式和横式的两种无盖纸盒分别为x 个、y 个, 由题意得:432x y mx y n +=⎧⎨+=⎩,两式相加得,m +n =5(x +y ), ∵x 、y 都是正整数, ∴m +n 是5的倍数,∵2018、2019、2020、2021四个数中只有2020是5的倍数, ∴m +n 的值可能是2020, 故选C . 【点睛】本题考查了二元一次方程组的应用,根据未知数系数的特点,计算出所需两种纸板的张数的和正好是5的倍数是解题的关键.11.81x y =⎧⎨=⎩(答案不唯一,x +3y =11即可)【分析】先给x 一个整数值,再确定y 的值即可. 【详解】解:当8x = 时,有8311y += , 解得:1y = ,∴81x y =⎧⎨=⎩是方程x +3y =11的一个整数解; 当5x = 时,有5311y +=,解得:2y = ,∴52=⎧⎨=⎩x y 是方程x +3y =11的一个整数解;由于二元一次方程有无数个整数解,所以答案不唯一,故答案为:81x y =⎧⎨=⎩(答案不唯一,x +3y =11即可). 【点睛】本题考查了二元一次方程的解,先给出未知数的一个整数值,再确定另一个的值是解题的关键.12.1000【分析】根据两个方程的关系:第二个方程中的y +1相当于第一个方程中的x ,据此即可求解.【详解】解:∵关于x 的一元一次方程12021x ﹣3=2x +b 的解为x =999, ∴关于y 的一元一次方程12021(y ﹣1)﹣3=2(y ﹣1)+b 中y ﹣1=999, 解得:y =1000,故答案为:1000.【点睛】此题考查解一元一次方程,利用整体思想,将第二个方程中的y +1看作第一个方程中的x 是解题的关键.13.k ≥-3【分析】把k 看作已知数表示出方程的解,根据解为非负数,确定出k 的范围即可.【详解】解:方程3k﹣5x=9,解得:x395k-=,由题意得:395k-≥0,解得:k≥3.故答案为:k≥3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.36.【分析】设小正方形的边长为x,依据小正方形的边长的表达式,可得方程1245x x++=+-,进而得出大正方形的边长及面积.【详解】解:设小正方形的边长为x,依题意得1+x+2=4+5﹣x,解得:x=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案为:36.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.8或10【分析】分两者相遇前和相遇后,列方程求解即可得到答案.【详解】解:当OA与OB相遇前,由题意可得:∠AOB=180°+∠NOB-∠AOM,∴180°+5t -25t =20°,∴t =8s ;当OA 与OB 相遇后,由题意可知:∠AOB =∠AOM -180°-∠NOB ∴25t -180°-5t =20°,∴t =10s∴当t =8s 或10s 时,∠AOB =20°,故答案为:8或10.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够根据题意找到等量关系列出方程求解.16.x =4【分析】先去分母,然后移项,然后化系数为1解一元一次方程即可.【详解】 解:432.425--=x x 去分母得:()24546x x --=,去括号得:4456x x -=,移项得: 1144x =,化系数为1得:4x =,∴方程的解为:4x =.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.17.61x y =-⎧⎨=⎩【分析】方程组适当变形后,给②×3-①×2即可消去x ,解关于y 的一元一次方程,再将y 值代入①式,即可解出y .【详解】解:由3220021530x y x y -+=⎧⎨+-=⎩可得32202153x y x y -=-⎧⎨+=⎩①②②×3-①×2得3()2(322)313(20)52x y x y --=⨯-⨯-+,即4949y =,解得y=1,将y=1代入①式得32120x -⨯=-,解得6x =-.故该方程组的解为61x y =-⎧⎨=⎩. 【点睛】本题考查解二元一次方程组.解二元一次方程主要用到“消元思想”,将二元一次方程组化为一元一次方程求解.主要方法有加减消元法和代入消元法,熟练掌握这两种方法并能灵活利用是解题关键.18.12x -≤<,见解析;【分析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【详解】2(1)4137136x x x x +<+⎧⎪⎨---≤⎪⎩①②, 解:解不等式①得2x <,解不等式②得1x ≥-,∴不等式组的解集为12x -≤<,把不等式组的解集在数轴上表示为:.【点睛】本题考查了解已于一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集,也考查了用数轴表示不等式的解集.19.(1)①见解析; ②45;(2)小华1柞长12cm ,小芳1柞长15cm【分析】(1)①根据测量同一个物体的长度,测量的结果是:小华用了5拃,小芳用了4排的数量关系,补全线段图即可;②根据比例的定义即可求解;(2)设小芳1拃长度为xcm ,则小华1拃长度为45xcm ,根据“小华和小芳合作用拃来量一张长度为117cm 的桌子,小华从左到右量了6拃,小芳从右到左量了3拃,”可列出方程,即可解答.【详解】解:(1)①如图,②∵小华5拃长度等于小芳4拃长度,∴小华1拃长度是小芳1拃长度的45 , 故答案为:45;(2)设小芳1拃长度为xcm ,则小华1拃长度为45xcm ,根据题意得: 4631175x x ⨯+= , 解得:15x = , 则44151255x =⨯=, 答:小华1柞长12cm ,小芳1柞长15cm .【点睛】本题主要考查了一元一次方程的应用,求一个数是另一个数的几分之几,明确题意,准确得到等量关系是解题的关键.20.(1)甲种货物的体积,乙种货物的体积,1000,260;(2)这艘船装甲货物80吨,装乙货物180吨【分析】(1)根据82m n +,结合题意即可知,m n 表示的意义,进而求得“?”处的数以及“*”处的数; (2)设甲种货物有x 吨,乙种货物y 吨,根据货物总重量为260吨,总体积为1000 m 3,列二元一次方程组即可解决问题.【详解】(1)根据82m n +,结合题意即可知,m n 分别表示甲、乙货物的体积, 则 “?”处的数为1000,“*”处的数为260;故答案为:甲种货物的体积,乙种货物的体积,1000,260;(2)设甲种货物有x 吨,乙种货物y 吨,根据题意,得:260821000x y x y +=⎧⎨+=⎩ 解得80180x y =⎧⎨=⎩答:甲种货物有80吨,乙种货物180吨.【点睛】本题考查了用二元一次方程组解决实际问题,根据题意找到定量关系列出二元一次方程组是解题的关键.21.(1)24k b =⎧⎨=-⎩;(2)2x ≤;(3)60y -≤< 【分析】(1)把56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩代入y =kx +b 即可求得. (2)根据k 、b 的值求得方程,由y 的值不大于0,得出2x -4≤0,解得x ≤2; (3)根据不等式的性质即可求得.【详解】(1)把56x y =⎧⎨=⎩与310x y =-⎧⎨=-⎩代入y =kx +b 得: 56310k b k b +⎧⎨-+-⎩==,解得;24k b =⎧⎨=-⎩;(2)由(1)得24y x =-,∵0y ≤,∴240x -≤,解得2x ≤;(3)∵12x -≤<,∴224x -≤<,∴6240x -≤-<,即60y -≤<.【点睛】本题考查了解二元一次方程组,解一元一次不等式(组),依据不等式的性质把不等式进行变形是解题的关键.22.(1)“x =2”是原方程的解,判断过程见解析;(2)不是原方程的解,理由见解析;(3)答案不唯--,为什么所求结果不一定是原方程的解,问题出在哪里?【分析】(1)把x =2代入原方程中,看等式两边是否相等即可;(2)直接解分式方程,然后把解得的结果代入原方程进行检验即可; (3)根据解分式方程产生的根不是方程的解得情况提出合理的问题即可.【详解】解:(1)x =2是原方程的解,理由如下:把x =2代入原方程中: 等式左边为:13223+=-,等式右边为:24221-=-, ∴等式两边相等,∴x =2是原方程的解;(2)413111--=--x x x 解:去分母得:()4113x x ---=,去括号得:4113x x --+=,移项得:4311x x -=-+,合并同类项得:33x =,系数化为1得:1x =,∵分母10x -≠,∴1x ≠,∴1x =不是方程的解;(3)为什么所求结果不一定是原方程的解,问题出在哪里?【点睛】本题主要考查了解分式方程,解题的关键在于能够熟练掌握解分式方程的方法. 23.(1)A 种文化衫的单价为40元,B 文化衫的单价为30元;(2)①若按活动一需付款:20m + 1200,若按活动二需付款:-20m +3000;②当m <45时,选择活动一购买更划算,当a =45时,选择两种活动费用相同,当45< m ≤50时,选择活动二购买更划算.【分析】(1)设A 种文化衫的单价为x 元,B 文化衫的单价为y 元,根据“购买3件A 种文化衫和2件B 种文化衫需要180元;购买2件A 种文化衫和4件B 种文化衫需要200元”列出方程组,再解即可;(2)①按活动一购买,共需付款:A 种文化衫m 件的花费+B 种文化衫(100- m )件的花费;按活动二购买:A 种文化衫m 件的花费+B 种文化衫(100- m - m )件的花费;②根据题意列出不等式,再解即可.【详解】解:(1)设A 种文化衫的单价为x 元,B 文化衫的单价为y 元,由题意可得:3218024200x y x y +⎧⎨+⎩== ,解得:4030x y ⎧⎨⎩==, 答:A 种文化衫的单价为40元,B 文化衫的单价为30元;(2)①若按活动一购买,共需付款:()40m 0.8300.4100m 20m 1200⨯+⨯⨯-=+,若按活动二购买,共需付款:40m 30(100m m)20m 3000+--=-+,②令201200203000m =m +-+,解得:45m=,当m <45时,201200203000m m ++<-,选择活动一购买更划算;当m=45时,m=m+-+,201200203000选择两种活动费用相同当m>45时,>-,++201200203000m m选择活动二购买更划算.【点睛】此题主要考查了一元一次方程和二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系求出两种文化衫的单价.。
2015~2016学年度 最新海南省华师大七年级下期中数学试卷及答案

海南省定安县2014--2015学年度第二学期期中考试七年级数学试卷(考试时间:100分钟 满分:120分)一、选择题:(满分42分,每小题3分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,A .120x += B.3648a a +=- C.227x x += D.2731x y -=+2. 方程39x y +=在正整数范围内的解的个数是( ) A .1个 B .2个 C .3个 D .有无数个3. 下列方程中,解为x =4的是( )A.2x +1=10B.-3x -8=5C.21x +3=2x -2 D.2(x -1)=64. 若a b <,则下面错误的变形是( )A .66a b <B .33a b -<-C .43a b +<+D .22a b ->- 5. 下列方程变形正确的是( )A. 由3-x=-2得x=3+2B.由3x=-5得x=-53C.由41y=0得y=4 D. 由4+x=6得x=6+46. 把方程1126x x --=去分母,正确的是( ) A.()311x x --= B.311x x --= C.316x x --=D.()316x x --=7. 方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩8. 甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为( )A.⎩⎨⎧-=-=12332y x y xB.⎩⎨⎧=-=+y x y x 21332C. ⎩⎨⎧-=+=12332y x y xD. ⎩⎨⎧=-=+12332y x y x 9. 下列不等式中,解集是x>1的不等式是( ) A .3x>-3 B.34>+x C.2x+3>5 D.-2x+3>5 10. 下图表示的不等式的解集为( )A .23x -<<B .23x -<≤C .23x -≤≤D .23x -<≤11.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A.-2≤x <2B.x ≥C.x ≥-2D.x >12. 不等式-3<x ≤ 2的所有整数解的和是()A.0B.6C.-3D.313. 若三角形中最大内角是60°,则这个三角形是( )A .不等边三角B .等腰三角形C .等边三角形D .不能确定14. 三角形的角平分线,中线及高( ). A .都是线段 B .都是直线C .都是射线D .角平分线、中线是射线、高是线段二、填空题:(满分16分,每小题4分)15. 若2x 3-2k +2=4是关于x 的一元一次方程,则k= .16. 已知x a x x a a =-+=-=112是方程的解,那么()() .学校: 班别 姓名: 座号:…………………………………………………………装………………订………………线………………………………………………得分17. 若方程组⎩⎨⎧=+=+5231y x y x 的解也是3x+ay=10的一个解,则a= .18. 不等式0145≥+x 的负整数解是____________ _. 三、解答题:(本大题满分62分)19. 解下列方程(组)或不等式(组)(每小题5分,共20分)(1))2(51)12(2--=+x x (2)2622x y x y -=⎧⎨+=-⎩①②(3) 213->x x (4)⎩⎨⎧-<+-<-5231932x x x x20. (6分)已知方程10=+ny mx ,有两个解分别是⎩⎨⎧=-=21y x 和⎩⎨⎧-==12y x ,求n m -的值.21.(6分)如图,∠B=60°,∠BAC=80°,AD ⊥BC ,AE 平分∠BAC ,求∠DAE 的度数。
华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案华师大版七年级下册数学期中考试试卷一、单选题1.下列各项中,是一元一次方程的是()A。
x-2y=4 B。
xy=4 C。
3y-1=4 D。
x-42.已知x>y,则下列不等式成立的是()C。
-x<-y3.用“加减法”将方程组x+2y=13x-4y=4中的x消去后得到的方程是()B。
7y=84.不等式组1≤x<2的解集在数轴上可表示为()B。
5.不等式组的解集是x>4,那么m的取值范围()B。
m≥46.方程组的解为,被遮盖的前后两个数分别为()D。
2、47.下列变形正确的是()C。
若m>b,bc8.不等式组的整数解的个数为()C。
3个9.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元。
若设这件羽绒服的成本是x元,根据题意,可得到的方程是B。
x(1+50%)×80%=x+250二、填空题11.把二元一次方程2x+y-3=0化成用x表示y的形式,则y=3-2x。
12.x的3倍与5的和大于8,用不等式表示为3x+5>8.13.不等式1-2x<6的负整数解是-4.14.若是方程2x+y=0的解,则6a+3b+2=-4a。
15.如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是1.三、解答题16.解下列方程:1)2(x+3)=5(x-3)2x+6=5x-153x=21x=7A选项中的解法有误,应该是将不等式两边乘以7,得到2-7x≤2+7x,化简后得到14x≥0,再除以14得到x≥0,所以应该选C;B选项中的解法有误,应该是将不等式两边乘以3,得到6-x≤6+3x,化简后得到-4x≤0,再除以-4得到x≥0,所以应该选C;C选项中的解法有误,应该是将不等式两边乘以3,得到9(x-2)≥3(x-4),化简后得到6x≥15,再除以6得到x≥2.5,所以应该选A;D选项中的解法有误,应该是将不等式两边乘以3,得到6x+3>3x-3,化简后得到3x。
华师大版七年级下学期数学《期中考试题》附答案

华 东 师 大 版 七 年 级 下 学 期期 中 测 试 卷一、选择题(每小题3分,共24分)1. 下列方程中,是一元一次方程的是( ) A. ()232x x x x +-=+ B. ()40x x +-=C. 1x y +=D.10x y+= 2. 方程3221x x +=-的解为( ) A. 3x =- B. 1x =- C. 1x =D. 3x =3. 不等式12x ->的解集是( )A. 1x >B. 2x >C. 3x >D. 3x <4. 下列三条线段不能构成三角形的是( ) A. 4cm 、2cm 、5cm B. 3cm 、3cm 、5cm C. 2cm 、4cm 、3cmD. 2cm 、2cm 、6cm5. 下列图形具有稳定性的是( ) A. 正方形B. 矩形C. 平行四边形D. 直角三角形6. 已知24{328a b a b +=+=,则a+b 等于( )A. 2B.83C. 3D. 17. 正多边形的一个内角等于144°,则该多边形的边数是( ) A. 10B. 9C. 12D. 88. 如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A 4种B. 5种C. 6种D. 7种二、填空题(每小题3分,共18分)9. 已知410x y --=,用含x 的代数式来表示y 为____________. 10. 将一副三角板,按如图方式叠放,那么α∠的度数是______.11. 如图,ABC 是等边三角形,点P 是ABC 内一点.APC △按顺时针方向旋转后与AP B '△重合,则旋转中心是_____,最小旋转角等于___°12. 一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为_________.13. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是_______.14. 如图,A 、B 、C 分别是线段111A B B C C A 、、的中点,若111A B C △的面积是14,那么△ABC 的面积是________.三、解答题(共10小题,共78分)15. 解方程:()()552120x x ---= 16. 解方程:211011412x x x ++-=-. 17. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,求k 和b 的值. 18. 已知三角形两边a=3,b=7,第三边是c .(1)第三边c的取值范围是.(2)若第三边c的长为偶数,则c的值为.(3)若a<b<c,则c的取值范围是.19. 如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF 的面积之和为________. 20. 为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如表所示:(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?21. 一个正多边形中,一个内角的度数是它相邻的一个外角的度数的3倍.(1)求这个多边形的每一个外角的度数;(2)求这个多边形的边数.22. 如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)23. 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知小红在同一商场累计购物x 元,其中200.x >(1)当300x =时,小红在甲商场需花费_______元,在乙商场需花费________元; (2)分别用含x 的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少. 24. 如图1,∠MON=90°,点A 、B 分别OM 、ON 上运动(不与点O 重合).(1)若BC 是∠ABN 的平分线,BC 的反向延长线与∠BAO 的平分线交于点D , ①若∠BAO=60°,则∠D=______°;②猜想:∠D 的度数是否随A 、B 的移动发生变化?并说明理由; (2)若∠ABC=13∠ABN ,∠BAD=13∠BAO ,则∠D=________°; (3)若将“∠MON=90°”改为“∠MON=()0180αα︒︒<<”,1ABC ABN n∠=∠, 1BAD BAO n∠=∠,其余条件不变,则∠D=________°(用含n 、α的代数式表示).答案与解析一、选择题(每小题3分,共24分)1. 下列方程中,是一元一次方程的是( ) A. ()232x x x x +-=+ B. ()40x x +-=C. 1x y +=D.10x y+= 【答案】A 【解析】 【分析】根据一元一次方程的定义逐个分析即可得出结论.【详解】A 、()232x x x x +-=+化简后为x-3=2x ,是一元一次方程;B 、化简后是4=0,不是方程;C 、不是一元一次方程;D 、不是一元一次方程; 故选A .2. 方程3221x x +=-的解为( ) A. 3x =- B. 1x =-C. 1x =D. 3x =【答案】A 【解析】 【分析】方程移项合并,把x 系数化为1,即可求出解. 【详解】方程移项合并得:x=-3, 故选A .【点睛】考查了解一元一次方程,解方程移项时注意要变号. 3. 不等式12x ->的解集是( ) A. 1x > B. 2x >C. 3x >D. 3x <【答案】C 【解析】 分析:先求出题中所给不等式的解集,再把所得结果与各选项对比即可得出结论. 详解:解不等式:12x ->, 移项得:21x >+,即3x >. 故选C.点睛:知道“解一元一次不等式的一般步骤”是解答本题的关键. 4. 下列三条线段不能构成三角形的是( ) A. 4cm 、2cm 、5cm B. 3cm 、3cm 、5cm C. 2cm 、4cm 、3cm D. 2cm 、2cm 、6cm【答案】D 【解析】 【分析】根据三角形的三边关系定理:两条较小的边的和大于最大的边,即可判断.【详解】A 、2+4>5,能构成三角形;B 、3+3>5,能构成三角形;C 、2+3>4,能构成三角形;D 、2+2<6,不能构成三角形. 故选D .考点:三角形的三边关系定理 5. 下列图形具有稳定性的是( ) A. 正方形 B. 矩形C. 平行四边形D. 直角三角形【答案】D 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.6. 已知24{328a b a b +=+=,则a+b 等于( ) A. 2 B.83C. 3D. 1【答案】C 【解析】 【分析】 详解】24,{328,a b a b +=+=①②由①+②得4a+4b=12,∴a+b=3,故选C.7. 正多边形的一个内角等于144°,则该多边形的边数是()A. 10B. 9C. 12D. 8【答案】A【解析】【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】设正多边形是n边形,由题意得(n-2)×180°=144°n,解得n=10,故选A.【点睛】本题考查了多边形的内角与外角,熟练掌握正多边形的内角相等以及多边形的内角和公式是解题的关键.8. 如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有()A. 4种B. 5种C. 6种D. 7种【答案】B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B.二、填空题(每小题3分,共18分)9. 已知410x y --=,用含x 的代数式来表示y 为____________. 【答案】41y x =- 【解析】 【分析】把y 当作未知数,解关于y 的方程即可. 【详解】解:410x y --=, ∴-y=-4x+1, ∴41y x =-.故答案为:41y x =-.【点睛】本题考查了解一元一次方程的应用,关键是理解题意,含x 的代数式表示y 可理解为把x 当作已知数,把y 当作未知数,求出关于y 的方程的解,题型较好,但是一道比较容易出错的题目. 10. 将一副三角板,按如图方式叠放,那么α∠的度数是______.【答案】105° 【解析】 【分析】在Rt ABC 中90ACB ∠=,60A ∠=,而在Rt DCB △中,45DCB =∠,所以可以求出45ACD ∠=,利用三角形的外角性质可以得到AOD A ACD ∠=∠+∠,即可求解; 【详解】在Rt ABC 中90ACB ∠=,60A ∠=在Rt DCB △中,45DCB =∠∴ 45ACD ∠=∴ 6045105AOD A ACD ∠=∠+∠=+=即105α∠=故答案是:105.【点睛】本题主要考查角度的和差计算以及三角形的外角性质,熟练掌握三角形的外角性质是求解本题的关键.11. 如图,ABC 是等边三角形,点P 是ABC 内一点.APC △按顺时针方向旋转后与AP B △重合,则旋转中心是_____,最小旋转角等于___°【答案】 (1). A (2). 300° 【解析】 【分析】【详解】试题分析:关键是分清旋转中心,旋转方向,根据图形的特征求旋转角. 试题解析:根据旋转的性质可知,△APC 沿逆时针方向旋转后与△AP′B 重合, 则旋转中心是A ,最小旋转角等于360°-60°=300°.考点:1.旋转的性质;2.等边三角形的性质.12. 一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为_________. 【答案】48 【解析】 【分析】设原来的两位数的十位数字是a ,个位数字是b ,根据等量关系“个位数字与十位数字之和为12 ”、“交换个位与十位数字,则所得新数比原数大36”列出方程组并求解即可得. 【详解】设原来的两位数的十位数字是a ,个位数字是b ,由题意得a+b=1210a+b 36=10b+a ⎧⎨+⎩, 解得:48a b =⎧⎨=⎩,则原两位数为48, 故答案为48.【点睛】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是_______.【答案】-π 【解析】 【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点即可解答. 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA 之间的距离为圆的周长=π,A 点在原点的左边. ∴A 点对应的数是-π. ∴点B 表示的数是-π 故答案为-π.【点睛】此题考查了数轴,关键是熟悉数轴的特点及圆的周长公式.14. 如图,A 、B 、C 分别是线段111A B B C C A 、、的中点,若111A B C △的面积是14,那么△ABC 的面积是________.【答案】2【解析】【分析】连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,根据等底等高的三角形的面积相等求出△ABB 1,△A 1AB 1的面积,从而求出△A 1BB 1的面积为2S ,同理可求△B 1CC 1的面积,△A 1AC 1的面积,然后相加即可得到111A B C △的面积,再根据111A B C △的面积为14即可求得答案.【详解】如图,连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴1ABB ABC SS S ==,111A AB ABB S S S ==, ∴111112A BB A AB ABB S SS S S S =+=+=, 同理:11112S 2S B CC A AC S S ==,,∴111111111 7A B C A BB B CC A AC ABC SS S S S S =+++=, ∵111 14A B C S =,∴S=2,即△ABC 的面积为2,故答案为2.【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.三、解答题(共10小题,共78分)15. 解方程:()()552120x x ---=【答案】x=7.【解析】【分析】按去括号、移项、合并同类项、系数化为1的步骤进行求解即可.【详解】去括号,得5x-25-24+2x=0,移项,得5x+2x=25+24,合并同类项,得7x=49,系数化为1,得x=7.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键. 16. 解方程:211011412x x x ++-=-. 【答案】2x =【解析】试题分析:先去分母,再去括号,最后移项合并同类项,化系数为1,从而得到方程的解.试题解析:6x +3-12=12x -10x -1,4x =8,x =2.17. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,求k 和b 的值.【答案】k=6,b=-2【解析】分析:把已知,x y 的值代入y kx b =+得到关于k b ,的方程组,解得k b ,的值.详解:当1x =时,4y =,当2x =时,10y =4.210k b k b +=⎧⎨+=⎩ 解得:62.k b =⎧⎨=-⎩点睛:考查待定系数法求一次函数解析式,是一种常见的方法,将,x y 的值代入,建立二元一次方程组,解方程即可.18. 已知三角形的两边a=3,b=7,第三边是c .(1)第三边c 的取值范围是 .(2)若第三边c 的长为偶数,则c 的值为 .(3)若a <b <c ,则c 的取值范围是 .【答案】(1)4<c <10;(2)c 取6或8;(3)7<c <10【解析】【分析】(1)根据第三边的取值范围是大于两边之差,而小于两边之和求解;(2)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,再根据c为偶数解答即可;(3)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b<c即可得c的取值范围.【详解】解:(1)根据三角形三边关系可得4<c<10,(2)根据三角形三边关系可得4<c<10,因为第三边c的长为偶数,所以c取6或8;(3)根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.,故答案为4<c<10;6或8;7<c<10.【点睛】此题考查了三角形的三边关系,注意第三边的条件.19. 如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为________.【答案】(1)图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)6. 【解析】【分析】(1)由题意可知∠EDF=90°,则图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)由∠EDF=90°,可得∠ADE+∠FDB=90°,则有∠A′DB=90°,继而根据三角形面积公式进行计算即可. 【详解】(1)∵∠C=90°,∠DEF=90°,∠DFC=90°,∴四边形CEDF是矩形,∴∠EDF=90°,观察图形的变换可知DE=DF,∴图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)∵图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F,∴A′D=AD=3,∠A′DF=∠ADE,∵∠EDF=90°,∴∠ADE+∠FDB=90°,∴∠A′DF+∠FDB=90°,即∠A′DB=90°,∴△ADE与△BDF的面积之和S=S△A′DB =12×3×4=6,故答案为6.【点睛】本题考查了旋转的性质,三角形的面积等,熟练掌握旋转的性质“对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角等于旋转角”是解题的关键.20. 为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如表所示:(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?【答案】(1)商场购进甲种节能灯40只,购进乙种节能灯60只;(2)商场共计获利1300元.【解析】【分析】(1)仔细审题,找到等量关系:甲、乙两种节能灯共100只,购进两种节能灯共计3300元,设出未知数,列方程组求解即可;(2)然后根据利润=售价-进价,可求解.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:30x35y3300x y100+=⎧+=⎨⎩,解得:{x 40y 60==, 答:商场购进甲种节能灯40只,购进乙种节能灯60只;(2)40×(40-30)+60×(50-35)=1300(元),答:商场共计获利1300元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组求解.21. 一个正多边形中,一个内角的度数是它相邻的一个外角的度数的3倍.(1)求这个多边形的每一个外角的度数;(2)求这个多边形的边数.【答案】(1)45°;(2)8.【解析】【分析】(1)根据相邻的内角和外角互补结合已知条件即可求得答案;(2)根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】(1)180×131+=45°, 答:这个多边形的每一个外角的度数为45°;(2)360°÷45°=8,答:这个多边形的边数为8.【点睛】本题考查了多边形的内角与外角.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.22. 如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )【答案】(1)见解析;(2)见解析;(3)4.【解析】【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23. 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知x>小红在同一商场累计购物x元,其中200.x 时,小红在甲商场需花费_______元,在乙商场需花费________元;(1)当300(2)分别用含x的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【答案】(1)280,270;(2)在甲商场所花费用为(0.8x+40)元;在乙商场所花费用为(0.85x+15)元;(3)见解析. 【解析】【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300-200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300-100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【详解】(1)当x=300时,小红在甲商场所花费用为200+(300-200)×80%=280(元);在乙商场所花费用为100+(300-100)×85%=270(元),故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x-200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x-100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点睛】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.24. 如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反向延长线与∠BAO的平分线交于点D,①若∠BAO=60°,则∠D=______°;②猜想:∠D 的度数是否随A 、B 的移动发生变化?并说明理由;(2)若∠ABC=13∠ABN ,∠BAD=13∠BAO ,则∠D=________°; (3)若将“∠MON=90°”改为“∠MON=()0180αα︒︒<<”,1ABC ABN n∠=∠, 1BAD BAO n∠=∠,其余条件不变,则∠D=________°(用含n 、α的代数式表示).【答案】(1)①45;②∠D 的度数不变,理由见解析;(2)30;(3)n α. 【解析】【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30°,最后由外角性质可得∠D 度数; ②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD 可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD 可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=n α+β,由∠D=∠ABC-∠BAD 得出答案.【详解】(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC 平分∠ABN 、AD 平分∠BAO ,∴∠CBA=12∠ABN=75°,∠BAD=12∠BAO=30°, ∴∠D=∠CBA-∠BAD=45°,故答案为45;②∠D 的度数不变.理由是:设∠BAD=α,∵AD 平分∠BAO ,∴∠BAO =2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC 平分∠ABN ,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,∵∠BAD=13∠BAO , ∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=13∠ABN , ∴∠ABC=30°+α,∴∠D=∠ABC-∠BAD=30°+α-α=30°,故答案为30;(3)设∠BAD=β,∵∠BAD=1n∠BAO , ∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=1n ∠ABN , ∴∠ABC=nα+β, ∴∠D=∠ABC-∠BAD=n α+β-β=n α, 故答案为nα.【点睛】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
华师大版七年级数学下册—第二学期期中检测试卷

2015—2016学年度第二学期期中检测试卷七年级数学一、选择题(每小题3分,共30分)( )1.方程7x+4=8x 的解A.x=-4B.x=4C.x=3D.x=-3( )2. 某不等式ax ≥b 的解集可以如图表示在数轴上,那么下列哪一个值不是这个不等式的解A.X=1B.x=0.5C.x=0D.x=-1( )3. 若方程x ax 35+=的解为x =5,则a 等于:A.8B.4C.16D.2( )4. 下列解方程错误的是A.由5x =10得x =2B.由7x =6x -1得7x -6x =-1C.由-31x =9得x =-3 D.由3x =6-x 得3x+x =6 ( )5. 在等式y=ax+b 中,当x=1时y=2;当x=2时y=4,那么a 、b 的值分别是A.2和0B.0和2C.6和-4D.-4和6( )6. 二元一次方程组⎩⎨⎧==+xy y x 2,102的解是A.⎩⎨⎧==;3,4y xB.⎩⎨⎧==;6,3y x C.⎩⎨⎧==;4,2y x D.⎩⎨⎧==.2,4y x( )7.下列等式变形正确的是A.如果ab s =,那么as b = B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0 D.如果m x =m y ,那么x =y题号一 二 三 总分 得分( )8.如图,大长方形ABCD 是由7个形状大小完全相同的小长方形组成的,大长方形的周长为34cm ,则小长方形的两边长分别为。
A.3、4B.2、5C.3、6D.4、5( )9. 下列各题解答步骤中正确的是A.由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x xD.由7)1(2+=+x x 移项、合并同类项得x =5( )10. 某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为A .80元B .85元C .90元D .95元二、填空题(每小题3分,共计30分)11.方程2x-1=2-x 的解为12. 已知2x -3y =1,用含x 的代数式表示y ,则y =13.已知 “某数的3倍与7的差是非正数” ,设这个数为x ,根据文字叙述列出适当的不等式14. 当x =_________时,代数式x-2与3+2x 的值相等.15. 用加减消元法解方程组 时由①×2—②得16. 若方程3x -4=0与方程6x+4k=12的解相同,则k=17. 若2(5212)3260x y x y +-++-=,则4x+2y= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-16学年华师版初一数学第二学期期中试卷 姓名 得分
一、选择题(每小题3分,共21分)
1、在2x-3y=5, x+
y
3
=6, 3x-y+2z=0, 2x+4y, 5x-y>0 中是二元一次方程的有( )个。
A.1
B.2
C.3
D.4
2. 已知a >b ,则下列不等式中不正确的是( )
A. 4a >4b
B. -a +4>-b +4
C. -4a <-4b
D. a -4>b -4 3、不等式组⎩⎨⎧<-<3
2x x 的解集是( )
A.x<3
B.x<-2
C.-2<x<3
D.无解 4、.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )
A
B
C D
5.如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),
A B
C D
6若方程组 中的x 是y 的2倍,则
a 等于( )
A .-9
B .8
C .-7
D .-6
7.如果不等式1>ax 的解集是a
x 1
<,则( )
A 、0≥a
B 、0≤a
C 、0>a
D 、0<a
二、填空题(每小题3分,共33 分) 8, 已知方程(a -2)x
1
-a +4=0是关于x 的一元一次方程。
则a 的值为______;
9.根据x 的2倍与5的和比x 的
1
2
小10,可列方程为________________. 10. 6与x 的2倍的和是负数,用不等式表示为 11.若关于x 的方程2x=x+a+1的解为x=7,则a= .
12,方程73=+y x ,用含x 的代数式表示y ,那么 .
13.写出一个解为 x=2 的二元一次方程组是_____________
14.已知方程组1x y m x y n +=⎧⎨-=+⎩的解是32x y =⎧⎨=⎩,则m n +的值为________. 15. 满足不等式3x -12 < 0 的正整数解为 __ . 16,对于有理数x 、y ,规定新运算x*y=ax -by,其中a,b 是常数,等式右边是通常的加减法和乘法运算,已知2*3=6,5*(-3)=8,则a=__________,b=___________;
17,甲队有37人,乙队有23人,现在从乙队抽调x 人到甲队,使甲队人数正好是乙队人数的2倍,根据题意,列出方程是__________
18、已知不等式523x a <+的解集是3
2
x <,则a 的值是________.
三.解答题
18.计算题:(5+5+5+6分)
(1)解方程:y+12=23
y
- (2)解方程组
甲 乙40kg 丙50kg 甲
⎩⎨⎧=-=+a y x y x 2243131632x y x y -=-⎧⎨
+=⎩y=3
(3)解不等式:103(6)2(1)x x -+≤- (4)解不等式组2151
232
513(1)
x x x x -+⎧-≤⎪⎨⎪-<+⎩ 并把解集表示在数轴上.
四、(6
分)甲、乙两人同时解方程组 mx+y=5 ① 甲解题看错了① 2x -ny=13 ②
中的m ,解得 x=2
7
n ,解得 x=3 试求m ,n y=-2 y= -7
五,(6分) 一个工程队原定在10天内至少要挖掘600m 3的土方,在前
两天共完成了120m 3后,又要求提前2天完成挖掘任务,问以后几天内,平均每天至少要挖掘多少土方?
张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?
七.(7分)某校七年级学生参加社会实践活动,原计划租用48座客车若
干辆,但还有24人无座位 (1)设原计划租用48座客车x 辆,试用含x 的代数式表示该校七年级学生的总数;
(2)现决定租用60座客车,则可比原计划租48座少2辆,且所租的60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位,请你求出该校七年级学生的总人数。