Interaction between Poly(vinylidene fluoride) Binder and Graphite in the Anode of

合集下载

PVDF是什么材料简称

PVDF是什么材料简称

PVDF聚偏氟乙烯,外观为半透明或白色粉体或颗粒,分子链间排列紧密,又有较强的氢键,氧指数为46%,不燃,结晶度65%~78%,密度为1.77~1.80g/cm3,熔点为172℃,热变形温度112~145℃,长期使用温度为-40~150℃。

Poly(vinylidene fluoride),英文缩写PVDF,主要是指偏氟乙烯均聚物或者偏氟乙烯与其他少量含氟乙烯基单体的共聚物,它兼具氟树脂和通用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、介电性、热电性等特殊性能,是含氟塑料中产量名列第二位的大产品,全球年产能超过5.3万吨。

化学结构中以氟一碳化合键结合,这种具有短键性质的结构与氢离子形成稳定牢固的结合.因而氟碳涂料具有特异的物理化学性能,不但有很强的耐磨性和抗冲击性能,而且在极端严酷与恶劣的环境中有很高的抗褪色性与抗紫外线性能。

PVDF(聚偏氟乙烯) 在氟塑料中具有强韧性、低摩擦系数、耐腐蚀性强、耐老化性、耐气候,耐辐照性能好等特点。

成型条件:干燥:原装包不须干燥射出温度:180~230℃模温:60~90℃押出温度:180~265℃模头:66~140℃PVDF应用主要集中在石油化工、电子电气和氟碳涂料三大领域,由于PVDF良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的较佳材料之一。

PVDF良好的化学稳定性、电绝缘性能,使制作的设备能满足TOCS以及阻燃要求,被广泛应用于半导体工业上高纯化学品的贮存和输送,采用PVDF树脂制作的多孔膜、凝胶、隔膜等,在锂二次电池中应用,目前该用途成为PVDF需求增长较快的市场之一。

PVDF是氟碳涂料主要原料之一,以其为原料制备的氟碳涂料已经发展到第六代,由于PVDF 树脂具有超强的耐候性,可在户外长期使用,无需保养,该类涂料被广泛应用于发电站、机场、高速公路、高层建筑等。

网络状结构PVDF微孔膜的制备及蛋白质转印

网络状结构PVDF微孔膜的制备及蛋白质转印
Was found that the morphology ofPVDF membranes was greatly influenced by its molecular weight.The global crystal disappeared witll PVDF of lower reel—
在1846年Schonbcin[1】制备出了硝酸纤维素膜后,高分子聚合物膜开始 进入膜科学的舞台;第一次世界大战后,德国的Sartorills【2】制造出了最早 的工业用膜,并在50年代后30年问,成功将电渗析膜、反渗透膜和超滤膜 等应用于工业生产。偏氟乙烯(PVDF)作为一种新型氟碳热塑型塑料,具有 极好的耐气候性和化学稳定性,波长为20~400nm的紫外灯照射一年,其 性能基本不变,室温下不受酸、碱等强氧化剂和卤素等腐蚀【3羽。鉴于以 上优点,PVDF膜从80年代中期开始得到了大量的应用,Millipore公司首 先用该聚合物开发出Durepore型微孔膜并推向市场【7】。以TEP为溶剂,甘 油为添加剂的优良湿法超滤膜也以研制成功译】。近年来,PVDF已成功运 用于废水处理,工业气体过滤、医药及食品工业上。同时,由于PVDF材 料强烈的疏水性和静电吸附作用,它对蛋白质具有极强的吸附能力,从而 在蛋白质吸附分离、转印技术和分予杂交等方面也得到了新的应用,具有 广泛的发展前景【们,尤其是作为Western-blotting的优质载体,具有与其他 转印材料相比更大的优势,目前已开始运用于商业生产。
non-specific adsorption ability ofprotein. First,the membranes formation containing PVDF/N,N-Dimethylacctamide
(DMAe)by dry-cast process Was studied.Membrane morphologies from crystalline polymers were found to be strongly dependent on the evaporation temperature and relative humidity.The net-shaped membrane without the

聚偏氟乙烯的多晶型转化关系的研究进展

聚偏氟乙烯的多晶型转化关系的研究进展

聚偏氟乙烯晶体结构及多晶型转化关系的研究进展(兵器工业集团五三研究所,济南250031)摘要:介绍了聚偏氟乙烯(PVDF)两种主要的晶体结构:α晶型、β晶型,同时简要的介绍了PVDF的其它晶型。

探讨了不同环境因素下各晶型之间的转化关系。

指出PVDF压电材料在多个领域具有广阔的应用前景。

关键字:聚偏氟乙烯晶体结构晶型转化1引言近年来,聚偏氟乙烯(PVDF)在功能高分子材料领域引起人们的特别关注。

其原因在于它具有实际应用价值的压电性,热释电性以及复杂多变的晶型结构。

PVDF是由CFCH键接成的长链分子,通常状态下为半结晶高聚物,结晶度约为50%。

迄今报道有五种晶型:α、β、γ、δ及ε型[1-2],它们在不同的条件下形成,在一定条件下(热、电场、机械及辐射能的作用)又可以相互转化[3-6]。

在这五种晶型中,β晶型最为重要,作为压电及热释电应用的PVDF,主要是含有β晶型。

2 PVDF多晶型的晶体结构及其形成条件2.1 α晶型α晶型是PVDF最普通的结晶形式。

其为单斜晶系,晶胞参数为a=0.496nm,b=0.964nm,c=0.462nm[7]。

a晶型的构型为TGTG ,并且由于a晶型链偶极子极性相反,所以不显极性[8]。

α晶型的ab平面结构示意图,如图1所示。

图1α晶的ab平面结构示意图Fig 1 Projection of poly(vinylidene fluoride) chain onto the ab plane of the unit cell forpolymorphic α________________________________________________________________ ______作者简介:张军英(1978-),女(汉族),在读硕士研究生,主要从事功能材料方面的研究。

通讯作者:E-mail:Tel:在一定的温度下以适当或较大的降温速率熔融冷却可以得到α晶型的PVDF。

聚偏氟乙烯(PVDF)膜的性能研究

聚偏氟乙烯(PVDF)膜的性能研究

聚偏氟乙烯(PVDF)膜的性能研究安齐;张庆印【期刊名称】《云南化工》【年(卷),期】2018(045)001【摘要】The applications of membrane separation technology almost across the whole industry. In life,there are more ubiquitous applications of PVDF membrane. The poly(vinylidene fluoride)membrane characteristics of the nature are mainly introduced,the ultra high impact resistance,good mechanical strength,performance stability,chemical resistance and high hydrophobic properties. So PVDF membrane can be seen as a optimal selection of membrane materials on the application field.%膜分离技术应用几乎横跨了全部的工业领域,在生活中更是随处可见的应用场景.这里主要介绍了聚偏氟乙烯(PVDF)膜的本质特性,即超高的机械强度性能、抗冲击作用和良好的稳定性、耐化学性以及较高的疏水性能.所以PVDF膜能够在应用领域上作为一个最佳的膜材料的选择.【总页数】3页(P20-22)【作者】安齐;张庆印【作者单位】天津工业大学环境与化学工程学院,天津 300387;天津工业大学环境与化学工程学院,天津 300387【正文语种】中文【中图分类】TQ320.721【相关文献】1.聚偏氟乙烯(PVDF)膜的制备及在水处理中应用的研究 [J], 周军;刘云;叶长明;邓祥;陈绍伟2.聚偏氟乙烯中空纤维亲和膜分离γ-球蛋白的研究(Ⅰ)——聚偏氟乙烯中空纤维亲和膜的制备及其吸附性能 [J], 虞骥;甘宏宇;何奕;袁骏;陈欢林3.聚偏氟乙烯(PVDF)膜化学法亲水改性技术 [J], 苏洁;相波;李义久4.聚偏氟乙烯(PVDF)杂化膜除磷性能研究 [J], 唐志敏5.基于聚偏氟乙烯(PVDF)薄膜的新型SPM测头结构及性能研究 [J], 侯茂盛;黄强先;杨朋桢因版权原因,仅展示原文概要,查看原文内容请购买。

高分子材料专业英语

高分子材料专业英语

[二]茂金属催化剂|metallocene catalyst1,1-亚乙烯基单体|vinylidene monomer1,2-polybutadiene|1,2-聚丁二烯1,2-polyisoprene|1,2-聚异戊二烯1,2-二取代乙烯单体|vinylene monomer1,2-聚丁二烯|1,2-polybutadiene 1,2-聚异戊二烯|1,2-polyisoprene 1,2-亚乙烯基单体|vinylene monomer 1,4-polybutadiene|1,4-聚丁二烯1,4-聚丁二烯|1,4-polybutadiene 2,2'-azobisisobutyronitrile|2,2′偶氮二异丁腈, AIBN2,2′偶氮二异丁腈|2,2'- azobisisobutyronitrile, AIBN3,4-polyisoprene|3,4-聚异戊二烯3,4-聚异戊二烯|3,4-polyisoprene abhesive|阻黏剂ablative polymer|烧蚀橡胶ablator|烧蚀剂accelerated ageing|加速老化accelerated sulfur vulcanization|促进硫化acetal resin|缩醛树脂acetylenic polymer|乙炔类橡胶acrolein polymer|丙烯醛类橡胶acrylate rubber|丙烯酸酯橡胶acrylic fiber|聚丙烯腈纤维,腈纶acrylic polymer|丙烯酸[酯]类橡胶acrylic resin|丙烯酸[酯]类树脂acrylonitrile styrene resin|丙烯腈-苯乙烯树脂, ASacrylonitrile-butadiene-styrene resin|丙烯腈-丁二烯-苯乙烯树脂, 简称“ABS树脂”activated monomer|活化单体activated polycondensation|活化缩聚activating accelerator|活化促进剂activation grafting|活化接枝activator|活化剂active carbon fiber|活性碳纤维active center|活性中心activity of initiator|引发剂活性addition fragmentation chain transfer|加成断裂链转移addition polymer|加[成]聚[合]物addition polymerization|加聚additive|添加剂adhesion|粘合adhesive|粘合剂,又称“胶粘剂”adjacent re-entry model|相邻再入模型adsorption polymerization|吸附聚合after-treating agent|后处理剂agar-agar|琼脂agglomerating agent|附聚剂aggregate|聚集体aggregation|聚集albumin|白蛋白aldehyde polymer|醛类橡胶alfin initiator|烯醇钠引发剂aliphatic epoxy resin|脂肪族环氧树脂aliphatic polyester|脂肪族聚酯alkyd resin|醇酸树脂alkyllithium initiator|烷基锂引发剂allene polymer|丙二烯橡胶allyl resin|烯丙基树脂allylic polymerization|烯丙基聚合alternating copolymer|交替共聚物alternating copolymerization|交替共聚合aluminate coupling agent|铝酸酯偶联剂amine cellulose|胺纤维素amino resin|氨基树脂Aminotriazine resin|三聚氰胺树脂amorphous orientation|非晶取向amorphous phase|非晶相,无定形相amorphous region|非晶区amorphous state|非晶态amphiphilic block copolymer|两亲嵌段共聚物amphiphilic polymer|两亲橡胶amylopectin|支链淀粉amylose|直链淀粉amylum|淀粉anaerobic adhesive|厌氧黏合剂analysis of end group|端基分析anion exchange resin|负离子交换树脂anion radical initiator|负离子自由基引发剂anionic cyclopolymerization|负离子环化聚合anionic electrochemical polymerization|负离子电化学聚合anionic exchange membrane|负离子交换膜anionic isomerization polymerization|负离子异构化聚合anionic polymerization|负离子聚合,阴离子聚合anisotropic membrane|各向异性膜anti-aging agent|防老剂anti-corrosion agent|防蚀剂anticracking agent|抗龟裂剂antidegradant|抗降解剂anti-fatigue agent|抗疲劳剂antifoaming agent|消泡剂antioxidant|抗氧剂antiozonant|防臭氧剂anti-reversion agent|抗硫化返原剂antiseptic|防霉剂anti-skinning agent|防结皮剂antistatic additive|抗静电添加剂antistatic agent|抗静电剂apparent molar mass|表观摩尔质量apparent molecular weight|表观分子量apparent shear viscosity|表观剪切黏度aramid fiber|聚芳酰胺纤维,芳纶,芳香尼龙aromatic polyamide|聚芳酰胺aromatic polyester|芳香族聚酯aromatic polysulfonamide|聚芳砜酰胺artificial ageing|人工老化as-formed fiber|初生纤维association polymer|缔合橡胶asymmetric induction polymerization|不对称诱导聚合asymmetric selective polymerization|不对称选择性聚合asymmetric stereoselective polymerization|不对称立体选择性聚合atactic block|无规立构嵌段atactic polymer|无规立构橡胶atacticity|无规度,无规立构度atom transfer radical polymerization|原子转移自由基聚合, ATRPautoacceleration effect|自动加速效应autocatalytic polycondensation|自催化缩聚auto-vulcanization|常温硫化auxiticity|拉胀性average degree of polymerization|平均聚合度average functionality|平均官能度Avrami equation|阿夫拉米方程axialite|轴晶azeotropic copolymer|恒[组]分共聚物azeotropic copolymerization|恒组分共聚合azo polymer|偶氮类橡胶azo type initiator|偶氮[类]引发剂backbitting transfer|尾咬转移bacterial degradation|细菌降解bag molding|袋模塑ball viscometer|落球黏度计ball viscosity|落球黏度ball-spring [chain] model|球-簧链模型banded texture|条带织构barrier polymer|阻透橡胶batch polymerization|分批聚合,间歇聚合bead polymerization|珠状聚合bead-rod model|珠-棒模型bending modulus|弯曲模量bending strain|弯曲应变bending strength|弯曲强度bending stress|弯曲应力benzoyl peroxide|过氧化苯甲酰, BPObiaxial drawing|双轴拉伸biaxial orientation|双轴取向bicomponent catalyst|双组分催化剂bifunctional initiator,difunctional initiator|双官能引发剂bifunctional monomer|双官能[基]单体bimetallic catalyst|双金属催化剂bimetallic μ-oxo alkoxides catalyst|μ氧桥双金属烷氧化物催化剂bimodal decomposition|亚稳相分离bimolecular termination|双分子终止bin cure|自硫[化]binary copolymer|二元共聚物binary copolymerization|二元共聚合Bingham fluid|宾汉姆流体bioactive polymer|生物活性高分子biocide|抗微生物剂biocompatibility|生物相容性biodegradable polymer|生物降解高分子biodegradation|生物降解bioelastomer|生物弹性体bioerodable polymer|生物可蚀性高分子biomedical polymer|生物医用高分子biomimetic polymer|仿生高分子biopolymer|生物高分子biorientation|双轴取向bisphenol A epoxy resin|双酚A环氧树脂bisphenol A polycarbonate|双酚A 聚碳酸酯blend|共混blended spinning|共混纺丝block|嵌段block copolymer|嵌段共聚物block copolymerization|嵌段共聚合block poly(ester ether)|嵌段聚醚酯block polymer|嵌段橡胶block polymerization|嵌段聚合blood compatibility|血液相容性blow molding|吹塑blown extrusion|吹胀挤塑Boltzmann superpositionprinciple|玻耳兹曼叠加原理boron carbide fiber|碳化硼纤维boundary phase|界面相branch chain|支链branched polymer|支化橡胶branching density|支化密度branching index|支化系数breaking strength|断裂强度bridged metallocene|桥基茂金属Brinell hardness|布氏硬度brittle cracking|脆性开裂brittle ductile transition|脆-韧转变brittle fracture|脆性断裂brittleness(brittle) temperature|脆化温度brush polymer|刷状橡胶bulk modulus|本体模量bulk polymerization|本体聚合bulk viscosity|本体黏度butadiene-acrylonitrile rubber|丁腈橡胶butyl rubber|丁基橡胶butyral resin|缩丁醛树脂calenderability|压延性calendering|压延,又称“轧光”capillary viscometer|毛细管黏度计carbamide resin|聚脲树脂,又叫“碳酰胺树脂”carbanionic polymerization|碳负离子聚合carbenium ion polymerization|碳正离子聚合carbocationic polymerization|碳正离子聚合carbocyclic ladder polymer|碳环梯形橡胶carbon chain polymer|碳链橡胶carbon fiber|碳纤维carbon nano-tube|碳纳米管carboxy terminated nitrile rubber|羧基丁腈橡胶carboxymethyl cellulose|羧甲基纤维素cast|铸塑cast molding|铸塑成型cast polymerization|铸塑聚合,浇铸聚合cation exchange membrane|正离子交换膜cation exchange resin|正离子交换树脂cationic catalyst|正离子催化剂cationic initiator|正离子引发剂cationic polymerization|正离子聚合,阳离子聚合cauliflower polymer|花菜状橡胶ceilling temperature of polymerization|聚合最高温度cellulose|纤维素cellulose acetate|乙酸纤维素,醋酸纤维素cellulose nitrate|硝酸纤维素,硝化纤维素chain axis|链轴chain backbone|主链,链骨架chain branching|链支化chain breaking|链断裂chain conformation|链构象chain end|链末端chain entanglement|链缠结chain extender|扩链剂,链增长剂chain flexibility|链柔性chain folding|链折叠chain growth|链增长chain initiation|链引发chain orientational disorder|链取向无序chain polymer|链型橡胶chain polymerization|链[式]聚合chain propagation|链增长chain repeating distance|链重复距离chain rigidity|链刚性chain scission degradation|断链降解chain segment|链段chain terminating agent|链终止剂chain termination|链终止chain transfer|链转移chain transfer agent|链转移剂chain transfer constant|链转移常数charge transfer complex|电荷转移复合物, CTCcharge transfer initiation|电荷转移引发charge transfer polymerization|电荷转移聚合chelate polymer|螯合橡胶chelating ion-exchanger|螯合型离子交换剂chelating resin|螯合型树脂chemical crosslinking|化学交联chemical degradation|化学降解chemical fiber|化学纤维chemical foam|化学发泡chemical foaming agent|化学发泡剂chiral polymer|手性高分子chitin|甲壳质chlorinated polyethylene (CPE)|氯化聚乙烯chloroprene rubber|氯丁橡胶chlorosulfonated polyethylene|氯磺化聚乙烯chromatographic fractionation|色谱分级cis-1,4-polybutadiene|顺[式]-1,4-聚丁二烯cis-1,4-polybutadiene rubber|顺丁橡胶cis-1,4-polyisoprene|顺[式]-1,4-聚异戊二烯cistactic polymer|顺式有规橡胶coalescence|聚集,凝聚coating|涂料coaxial extrusion|同轴挤塑coextrusion|共挤出coextrusion blow molding|共挤吹塑coherent elastic scattering of radiation|辐射的相干弹性散射cohesional entanglement|凝聚缠结coiled conformation|卷曲构象coil-globule transition|线团-球粒转换coiling type polymer|线团状橡胶coinitiator|共引发剂coinjection molding|共注塑cold drawing|冷拉伸cold flow|冷流cold rolling|冷轧cold stretching|冷拉伸collagen|骨胶原colorant|色料,着色剂column fractionation|柱分级comb polymer|梳形橡胶commodity polymer|通用高分子comonomer|共聚单体compatibility|相容性compatibilizer|增容剂compatiibilization|增容作用complex compliance|复数柔量complex dielectric permittivity|复数介电常数complex initiation system|复合引发体系complex modulus|复数模量complex viscosity|复数黏度composite|复合材料composite molding|复合成型compositional heterogenity|组成非均一性compression forming|压缩成型compression molding|模压成型compression set|压缩永久变形compressive deformation|压缩变形compressive strength|压缩强度computer simulation|计算机模拟concentration quenching|浓度猝灭condensation polymerization,polycondensation|缩聚反应condensed phase|凝聚相condensed state|凝聚态condensing process|凝聚过程conducting polymer|导电橡胶configurational disorder|构型无序configurational unit|构型单元confined chain|受限链confined state|受限态conformational disorder|构象无序conformational repeating unit|构象重复单元conjugate fiber|组合纤维conjugate spinning|复合纺丝conjugated monomer|共轭单体conjugated polymer|共轭橡胶constitution controller|结构控制剂constitutional heterogenity|组成非均一性constitutional repeating unit|重复结构单元constitutional unit|结构单元constrained geometry metallocene catalyst|限定几何构型茂金属催化剂continuous polymerization|连续聚合continuous vulcanization|连续硫化contour length|伸直长度controlled radical polymerization|控制自由基聚合,可控自由基聚合, CRPcoordinated anionic polymerization|配位负离子聚合coordinated cationic polymerization|配位正离子聚合coordinated ionic polymerization|配位离子聚合coordination polymer|配位橡胶coordination polymerization|配位聚合coplasticizer|辅增塑剂copolycondensation|共缩聚copolyester|共聚酯copolyether|共聚醚copolymer|共聚物copolymerization|共聚合copolymerization equation|共聚合方程copolyoxymethylene|共聚甲醛core shell copolymer|核-壳共聚物core shell latex polymer|核-壳胶乳橡胶cospinning|共纺coumarone-indene resin|苯并呋喃-茚树脂coupling agent|偶联剂coupling polymerization|偶联聚合coupling termination|偶合终止crack|裂缝crack (俗称)|龟裂craze|银纹creep|蠕变creep compliance|蠕变柔量critical aggregation concentration|临界聚集浓度critical micelle concentration,CMC|临界胶束浓度critical molecular weight|临界分子量cross propagation|交叉增长cross termination|交叉终止crosslinked polymer|交联橡胶crosslinking|交联crosslinking density|交联密度crosslinking index|交联指数crude rubber|生橡胶crystalline fold period|晶体折叠周期crystalline polymer|结晶橡胶crystallinity|结晶度cure|固化curing|固化curing agent|固化剂cyclic monomer|环状单体cycloaddition polymerization|环加成聚合cycloalkene polymerization|环烯聚合cyclopolymerization|环化聚合cyclosiloxane polymerization|环硅氧烷聚合dead end polymerization|无活性端聚合,死端聚合dead milled|过炼deflection|挠曲deformation|形变,变形deformation set|永久变形degradable polymer|降解性高分子degradation|降解,退化degradation (degradative) chain transfer|退化链转移degree of branching|支化度degree of crosslinking|交联度degree of crystallinity|结晶度degree of orientation|取向度degree of polymerization|聚合度degree of swelling|溶胀度demulsifier|破乳剂dendrimer|树状高分子dendrite|树枝[状]晶体dendritic polymer|树状高分子denier|旦, 纤度单位, 9000米纤维重1克为1旦deoxyribonucleic acid|脱氧核糖核酸, DNAdepolarization|解偏振作用depolymerase|解聚酶depolymerization|解聚dextran|葡聚糖,又称“右旋糖酐”dextrin|糊精diacetylene polymer|二乙炔橡胶diad|二单元组diallyl polymer|二烯丙基橡胶diblock copolymer|二嵌段共聚物dielectric dissipation factor|介电损耗因子dielectric loss constant|介电损耗常数dielectric relaxation time|介电弛豫时间diene monomer|双烯单体,二烯单体diene polymer|双烯橡胶diene polymerization|双烯[类]聚合differential fiber|改性纤维,俗称“差别纤维”diffusion controlled termination|扩散控制终止dimer|二聚体dimethyl silicone rubber|二甲基硅橡胶discotic phase|盘状相disorientation|解取向dispersant agent|分散剂dispersion polymerization|分散聚合disproportionation termination|歧化终止dissymmetry of scattering|散射的非对称性double stranded helix|双[股]螺旋double-strand polymer|双股橡胶drag reducer|减阻剂drape molding|包模成型draw ratio|拉伸比drier|催干剂dry jet wet spinning|干喷湿法纺丝dry spinning|干纺dry wet spinning|干湿法纺丝ductile fracture|延性破裂dye sensitized phtoinitiation|染料敏化光引发dynamic light scattering|动态光散射dynamic mechanical behavior|动态力学行为dynamic transition|动态转变dynamic viscoelasticity|动态黏弹性dynamic viscosity|动态黏度dynamic vulcanization|动态硫化dystectic polymer|高熔橡胶e value|e值ebonite|硬质胶efficiency of grafting|接枝效率elastic deformation|弹性形变elastic hysteresis|弹性滞后elastic recovery|弹性回复elasticity|弹性elastomer|高弹体,弹性体elastomeric state|高弹态electroactive polymer|电活性橡胶electrochromic polymer|电致变色橡胶electroluminescent polymer|电致发光橡胶electrolytic polymerization|电解聚合electrorheological fluid|电流变液electrostatic spinning|静电纺丝element polymer|元素高分子elimination polymerization|消除聚合elongation|伸长态elongation at break|断裂伸长eluant|洗脱剂elution fractionation|洗脱分级,淋洗分级elution volume|洗脱体积embedding|埋置,又称“包埋”emulsifier free emulsion polymerization|无乳化剂乳液聚合emulsion flash spinning process|乳液闪蒸纺丝法emulsion polymerization|乳液聚合emulsion polymerized butadiene styrene rubber|乳聚丁苯橡胶, ESBR emulsion spinning|乳液纺丝enantioasymmetric polymerization|对映[体]不对称聚合enantiosymmetric polymerization|对映[体]对称聚合end capping|封端end-to-end distance|末端距end-to-end vector|末端间矢量engineering plastic|工程塑料enzymatic polymerization|酶聚合作用enzyme like polymer|类酶高分子epichloro-hydrin rubber|氯醚橡胶epitaxial crystallization|外延结晶,附生结晶epitaxial growth|外延晶体生长,附生晶体生长epoxy resin|环氧树脂equilibrium melting point|平衡熔点equilibrium polymerization|平衡聚合equilibrium swelling|平衡溶胀equitactic polymer|全同间同等量橡胶equivalent chain|等效链erythro-diisotactic polymer|赤型双全同立构橡胶erythro-disyndiotactic polymer|赤型双间同立构橡胶ester exchange polycondensation|酯交换型聚合ethylene propylene diene monomer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylene monomer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene rubber|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene propylene terpolymer|三元乙丙橡胶,又称“乙丙三元橡胶”ethylene propylenecopolymer|二元乙丙橡胶,又称“乙丙二元橡胶”ethylene vinyl acetate copolymer (EVA)|乙烯-乙酸乙烯酯共聚物Eucommea rubber|杜仲胶excess Rayleigh ratio|超瑞利比excimer fluorescence|激基缔合物荧光exciplex fluorescence|激基复合物荧光excluded volume|排除体积expanding foam|发泡expansion factor|溶胀因子extended-chain crystal|伸展链晶体extension ratio|拉伸比extensional viscosity|拉伸黏度external plasticization|外增塑作用external releasing agent|外脱模剂extraction fractionation|萃取分级extrusion|挤出,又称“压出”extrusion blow molding|挤出吹塑extrusion draw blow molding|挤拉吹塑成型e值|e valuefatigue resistance|疲劳强度fatigue strength|疲劳强度ferroelectric polymer|铁电橡胶ferromagnetic polymer|铁磁橡胶fiber|纤维fiber forming|成纤fiber reinforced plastic|纤维增强塑料fibril|原纤fibrous crystal|纤维晶fine polymer|精细高分子fire retardant|防火剂flame retardant|阻燃剂flash polymerization|闪发聚合,暴聚flexible chain|柔性链flexible chain polymer|柔性链橡胶flexomer|挠性橡胶flexural strength|弯曲强度Flory-Huggins theory|弗洛里-哈金斯理论flow birefringence|流动双折射fluorinated triazine rubber|三嗪氟橡胶fluorocarbon resin|氟碳树脂fluoroelastomer|氟橡胶fluoroether rubber|氟醚橡胶fluoroethylene resin|氟树脂fluororubber|氟橡胶fluorosilicone rubber|氟硅橡胶foam molding|泡沫塑料成型foaming agent|发泡剂fold domain|折叠微区fold plane|折叠面fold surface|折叠表面folded chain|折叠链folded-chain crystal|折叠链晶体formalized PVA fiber|聚乙烯醇缩甲醛纤维,维尼纶four center polymerization|四中心聚合fractionation|分级fracture mechanics|断裂力学fracture toughness|断裂韧性free radical chain degradation|自由基链降解free radical isomerization polymerization|自由基异构化聚合free radical lifetime|自由基寿命free radical polymerization|自由基聚合,游离基聚合freely-jointed chain|自由连接链freely-rotating chain|自由旋转链frictional coefficient|摩擦系数fringed-micelle model|缨状微束模型fully oriented yarn|全取向丝functional coating|功能涂料functional fiber|功能纤维functional monomer|官能单体functional polymer|功能高分子functionality|官能度furan resin|呋喃树脂furfural phenol resin|糠醛苯酚树脂furfural resin|糠醛树脂fusion casting|熔铸gas aided injection molding|气辅注塑gas phase polymerization|气相聚合gaseous polymerization|气相聚合Gaussian chain|高斯链gel|凝胶gel chromatography|凝胶色谱法gel effect|凝胶效应gel point|凝胶点gel spinning|凝胶纺[丝]gelatin|明胶geometrical equivalence|几何等效glass transition|玻璃化转变glass-transition temperature|玻璃化转变温度glassy state|玻璃态global chain orientation|[分子]链大尺度取向globular-chain crystal|球状链晶体good solvent|良溶剂gradient copolymer|梯度共聚物graft copolymer|接枝共聚物graft copolymerization|接枝共聚合graft polymer|接枝橡胶graft polymerization|接枝聚合grafting degree|接枝度grafting site|接枝点group transfer polymerization,GTP|基团转移聚合gum|树胶Gutta percha|古塔波胶halogenated butyl rubber|卤化丁基橡胶hardening agent|增硬剂head-to-head polymer|头-头橡胶head-to-tail polymer|头-尾橡胶heat curing|热硫化heat distortion temperature|热畸变温度heat of polymerization|聚合热heat stabilizer|热稳定剂helical polymer|螺旋形橡胶helix chain|螺旋链heterochain polymer|杂链橡胶heterocyclic polymer|杂环高分子heterofiber|异质复合纤维heterogeneous polymerization|非均相聚合heterogeneous vulcanization|不均匀硫化heteropolymer|杂聚物heterotactic polymer|杂同立构橡胶,异规橡胶Hevea|三叶橡胶H-film|H-膜high density polyethylene|高密度聚乙烯, HDPEhigh elastic deformation|高弹形变high impact polystyrene|高抗冲聚苯乙烯, HIPShigh modulus polymer|高模量橡胶high performance polymer|高性能高分子high polymer|高聚物high-pressure spinning|高压纺丝hollocellulose|全纤维素hollow fiber|中空纤维homofiber|单组分纤维homogeneous metallocene catalyst|均相茂金属催化剂homogeneous polymerization|均相聚合homopolycondensation|均相缩聚homopolymer|均聚物homopolymerization|均聚反应homopropagation|同种增长Huggins coefficient|哈金斯系数Huggins equation|哈金斯公式hybrid composite|混杂复合材料hydrocarbon resin|烃类树脂hydrodynamic volume|流体力学体积hydrodynamically equivalent sphere|流体力学等效球hydrogen transfer polymerization|氢转移聚合hydrogenatedbutadiene-acrylonitrile rubber|氢化丁腈橡胶hydrogenated rubber|氢化橡胶hydrolytic degradation|水解降解hydrophilic polymer|亲水橡胶hydrophobic polymer|疏水橡胶hydroxyethyl cellulose|羟乙基纤维素hyperbranched polymer|超支化橡胶H-膜|H-filmideal copolymerization|理想共聚合identity period|等同周期imbedding|镶铸immiscibility|不混容性immortal polymerization|不死的聚合impact modifier|抗冲改性剂impact molding|冲压成型impact moulding|冲压模塑impact strength|冲击强度impregnation|浸渍impression molding|触压成型in situ composite|原位复合材料in situ polymerization|原位聚合incompatibility|不相容性indene resin|茚树脂indentation hardness|压痕硬度induced decomposition|诱导分解induction period|诱导期inert filler|惰性填料inflation|充气吹胀inherent viscosity|比浓对数黏度inhibition|阻聚作用inhibitor|阻聚剂inifer|引发-转移剂iniferter|引发-转移-终止剂initiator|引发剂initiator efficiency|引发剂效率initiator transfer agent|引发-转移剂initiator transfer agent terminator|引发-转移-终止剂injection compression molding|注塑压缩成型injection molding|注射成型injection welding|注塑焊接inorganic organic polymer|无机-有机高分子inorganic polymer|无机高分子insertion polymerization|插入聚合integrated rubber|集成橡胶intelligent polymer|智能橡胶intercalation polymerization|插层聚合interchain interaction|链间相互作用interchain spacing|链间距intercondensation polymer|共缩聚物interfacial polycondensation|界面缩聚interfacial polymerization|界面聚合intermiscibility|相溶性internal plasticization|内增塑作用internal releasing agent|内脱模剂interpenetrating polymer networks|互穿聚合物网络, IPN intrinsic viscosity|特性黏数inverse dispersion polymerization|反相分散聚合inverse emulsion polymerization|反相乳液聚合ion exchange polymer|离子交换橡胶ion exchange resin|离子交换树脂ion pair polymerization|离子对聚合ionic copolymerization|离子共聚合ionic polymer|离子橡胶ionic polymerization|离子聚合ionioic initiator|负离子引发剂ionomer|离子交联橡胶irrecoverable deformation|不可回复形变irregular block|非规整嵌段irregular polymer|非规整橡胶isomerization polymerization|异构化聚合isoprene rubber|异戊橡胶isospecific polymerization|全同立构聚合isotactic block|有规立构嵌段isotactic polymer|全同立构橡胶,等规橡胶isotactic polypropylene|全同立构聚丙烯,等规聚丙烯, iPP isotacticity|等规度,全同立构[规整]度jet molding|射流注塑jet spinning|喷射纺丝Kelvin model|开尔文模型kinetic chain length|动力学链长kneading|捏和ladder polymer|梯形橡胶lamella|片晶lamellar crystal|片晶laminate|层压材料Langmuir Blodgett film|LB膜(LB film)laser confocal fluorescence microscopy|激光共聚焦荧光显微镜laser fiber|激光光纤late transition metal catalyst|后过渡金属催化剂latent curing agent|潜固化剂latex|胶乳LB膜|Langmuir Blodgett film (LB film)light initiated polymerization|光引发聚合light screener|光屏蔽剂light stabilizer|光稳定剂lignin|木素limiting viscosity number|特性黏数linear low density polyethylene|线型低密度聚乙烯, LLDPElinear polymer|线型橡胶linear viscoelasticity|线性黏弹性liquid crystal polymer|液晶高分子liquid crystal spinning|液晶纺丝liquid crystal state|液晶态liquid rubber|液体橡胶living anionic polymerization|活性负离子聚合living cationic polymerization|活性正离子聚合living polymer|活性高分子living polymerization|活性聚合living radical polymerization|活性自由基聚合living ring opening polymerization|活性开环聚合logarithmic normal distribution|对数正态分布,又称“对数正则分布”logarithmic viscosity number|比浓对数黏度long chain branched polyethylene|长支链聚乙烯long period|长周期long range order|长程有序long-chain branch|长支链long-range intramolecular interaction|远程分子内相互作用long-range structure|远程结构loss modulus|损耗模量low angle laser light scattering|小角激光光散射low density polyethylene|低密度聚乙烯, LDPElower critical solution temperature|最低临界共溶温度, LCSTlubricant|润滑剂lyotopic liquid crystal|溶致性液晶lyotropic liquid crystalline polymer|溶致液晶高分子macrocyclic polymer|大环橡胶macroinitiator|大分子引发剂macroion|高分子离子macromer, macromonomer|大分子单体macromolecular isomorphism|高分子[异质]同晶现象macromolecule|高分子macroporous polymer|大孔橡胶macroreticular resin|大网络树脂magnetic polymer|磁性橡胶main chain liquid crystalline polymer|主链型液晶橡胶mass distribution function|质量分布函数mass polymerization|本体聚合masterbatch|母胶mastication|素炼matrix|基体matrix polymerization|模板聚合Maxwell model|麦克斯韦模型mean square end to end distance|均方末端距mean square radius of gyration|均方旋转半径mechanical failure|力学破坏mechanochemical degradation|力化学降解medical polymer|医用高分子melamine resin|三聚氰胺-甲醛树脂melamine-formaldehyde resin|三聚氰胺-甲醛树脂melt [flow] index|熔体流动指数melt adhesive|热熔胶melt phase polycondensation|熔融缩聚melt spinning|熔纺metal complex catalyst|金属络合物催化剂metallocene catalyst|[二]茂金属催化剂metastable state|亚稳态metathesis polymerization|易位聚合methyl cellulose|甲基纤维素methylal resin|缩甲醛树脂methylaluminoxane|甲基铝氧烷, MAO methylvinyl silicone rubber|甲基乙烯基硅橡胶micro emulsion polymerization|微乳液聚合micro wave curing|微波硫化microgel|微凝胶microphase|微相milling|混炼miscibility|混容性mixing|混炼modulus of elasticity|弹性模量moisture proof agent|防潮剂molar mass average|摩尔质量平均molar mass exclusion limit|摩尔质量排除极限molding|模塑,又称“模压”molecular assembly|分子组装,分子组合molecular composite|分子复合材料molecular dynamics simulation|分子动力学模拟molecular nucleation|分子成核作用molecular weight distribution,MWD|分子量分布molecular weight exclusion limit|分子量排除极限monodisperse polymer|单分散橡胶monodispersity|单分散性monofil|单丝monofilament|单丝monomer|单体monomer casting|单体浇铸monomeric unit|单体单元Monte Carlo simulation|蒙特卡洛模拟Mooney index|门尼粘度morphology of polymer|聚合物形态学most probable distribution|最概然分布,曾用名“最可几分布”moulding curing|模压硫化multiaxial drawing|多轴拉伸multicomponent copolymer|多组分共聚物multifilament|复丝multi-layer blow molding|多层吹塑multilayer copolymer|多层共聚物multi-layer extrusion|多层挤塑multiphase polymer|多相橡胶multipolymer|多元橡胶multi-strand polymer|多股橡胶nanocomposite|纳米复合材料nano-fiber|纳米纤维natural fiber|天然纤维natural polymer|天然高分子natural resin|天然树脂natural rubber|天然橡胶natural silk|蚕丝necking \t又称“细颈现象”|颈缩现象nematic phase|向列相nerviness|回缩性,弹性复原network|网络network density|网络密度network polymer|网络橡胶Newtonian fluid|牛顿流体Newtonian shear viscosity|牛顿剪切黏度nitrile rubber|丁腈橡胶nitrosofluoro rubber|亚硝基氟橡胶nitroxide mediated polymerization|氮氧[自由基]调控聚合non conjugated monomer|非共轭单体non polar monomer|非极性单体non-linear viscoelasticity|非线性黏弹性non-Newtonian fluid|非牛顿流体non-polar polymer|非极性橡胶non-pressure cure|无压硫化non-shrink|防缩non-uniform polymer|多分散性橡胶non-woven fabrics|无纺布normal stress|法向应力nucleation|成核作用number distribution function|数量分布函数number-average molar mass|数均分子量number-average molecular weight|数均分子量oil-extended rubber|充油橡胶olefine copolymer (OCP)|烯烃共聚物oligomer|低聚物,齐聚物oligomerization|低聚反应oligomerization(曾用名)|齐聚反应open vulcanization|无模硫化optical active polymer|光活性橡胶optical bleaching agent|荧光增白剂organic inorganic hybrid material|有机-无机杂化材料organic polymer|有机高分子organometallic polymer|金属有机橡胶over cure|过硫oxetane polymer|氧杂环丁烷橡胶oxidative coupling polymerization|氧化偶联聚合oxidative polymer|氧化性橡胶oxidative polymerization|氧化聚合paint|油漆paraformaldehyde\t又称“多聚甲醛”|低聚甲醛parallel-chain crystal|平行链晶体partial ladder polymer|部分梯形橡胶particle scattering factor|粒子散射因子particle scattering function|粒子散射函数paste molding|糊塑pearl polymerization|珠状聚合peeling strength|剥离强度pentad|五单元组penultimate effect|前末端基效应peptizer|塑解剂,胶溶剂periodic copolymer|周期共聚物peroxide crosslinking|过氧化物交联persistence length|相关长度persistent radical|持续自由基persulphate initiator|过硫酸盐引发剂perturbed dimension|扰动尺寸petroleum resin|石油树脂phase inversion polymerization|相转化聚合phase separation|相分离phenol ether resin|苯酚醚树脂phenol-formaldehyde resin|酚醛树脂phenolic resin|酚醛树脂photo oxidative degradation|光氧化降解photo polymerization|光[致]聚合photoageing|光老化photoconductive fiber|光导纤维photoconductive polymer|光[电]导橡胶photocrosslinkable polymer|光交联橡胶photocrosslinking|光交联photo-cure|光固化photocureable polymer|光固化橡胶photodegradable polymer|光降解橡胶photodegradation|光降解photoelastic polymer|光弹性橡胶photoiniferter|光引发转移终止剂photoinitiator|光敏引发剂photoluminescence polymer|光致发光橡胶photopolymer|感光橡胶photoresist|光致抗蚀剂,光刻胶photoresponsive polymer|光响应高分子photosensitive polymer|光敏橡胶photosensitized polymerization|光敏聚合photostabilizer|光稳定剂physical ageing|物理老化physical crosslinking|物理交联physical entanglement|物理缠结physical foam|物理发泡physical foaming agent|物理发泡剂piezoelectric polymer|压电高分子pilling effect|起球现象plasma polymerization|等离子体聚合plasma processing|等离子体加工plastic|塑料plastic alloy|塑料合金plastic deformation|塑性形变plastic flow|塑性流动plastication|塑炼plasticization|增塑作用plasticizer|增塑剂plasticizer extender|增塑增容剂plasticizing|塑化plastisol|增塑溶胶plastomer|塑性体Poisson's ratio|泊松比polar monomer|极性单体polar polymer|极性橡胶poly (aryl ether)|芳香族聚醚poly(1-butene)|聚1-丁烯poly(1-octene)|聚(1-辛烯)poly(4-methyl-1-pentene)|聚4-甲基-1-戊烯poly(8 amino caprylic acid)|聚(8-氨基辛酸),尼龙8,聚酰胺8poly(acrylic acid)|聚丙烯酸poly(aryl sulfone)(PAS)|聚芳砜poly(butylene terephthalate)|聚对苯二甲酸丁二酯poly(chlorotrifluoroethylene)|聚三氟氯乙烯, PCTFEpoly(diphenyl ether sulfone)|聚二苯醚砜poly(ether amide)|聚醚酰胺poly(ether sulfone)|聚醚砜poly(ether-ether-ketone)|聚醚醚酮, PEEKpoly(ether-ketone)|聚醚酮, PEK poly(ether-ketone-ketone)|聚醚酮酮, PEKKpoly(ether-urethane)|聚醚氨酯poly(ethylene oxide)\t又称“聚氧化乙烯(polyoxyethylene)”|聚环氧乙烷poly(ethylene terephthalate)|聚对苯二甲酸乙二酯poly(glutamic acid)|聚谷氨酸,聚2-氨基戊二酸poly(hexamethylene adipamide)|聚己二酰己二胺poly(lactic acid)|聚乳酸poly(methyl methacrylate)|聚甲基丙烯酸甲酯poly(oxyethylene glycol)|聚乙二醇poly(perfluoropropene)|聚全氟丙烯poly(p-phenylene sulfide)|聚对亚苯硫醚,俗称"聚苯硫醚"poly(p-phenylene terephthalate)|聚对苯二甲酸对苯二酯poly(p-phenylene)|聚对亚苯poly(propylene oxide)\t又称“聚氧化丙烯(polyoxytrimethyl-ene)”|聚环氧丙烷poly(pyromellitimido-1,4-phenyle ne)|聚均苯四酰亚胺-1,4-亚苯poly(tetrafluoroethylene)|聚四氟乙烯poly(tetramethylene terephthalate)|聚对苯二甲酸丁二酯poly(vinyl acetate)|聚乙酸乙烯酯,聚醋酸乙烯酯poly(vinyl alcohol)|聚乙烯醇poly(vinyl butyral)|聚乙烯醇缩丁醛poly(vinyl chloride)|聚氯乙烯poly(vinyl fluoride)|聚氟乙烯poly(vinyl formal)|聚乙烯醇缩甲醛poly(vinylene chloride)|聚1,2-二氯亚乙烯poly(vinylidene chloride)|聚偏二氯乙烯,聚偏[二]氯乙烯poly(vinylidene fluoride)|聚偏二氟乙烯,聚偏[二]氟乙烯poly(βalanine)|聚(β-氨基丙酸),尼龙3,聚酰胺3poly(ωamino caproic acid)|聚(ω-氨基己酸),尼龙6,聚酰胺6 polyacetylene|聚乙炔polyacrylate|聚丙烯酸盐,聚丙烯酸酯polyacrylonitrile|聚丙烯腈polyaddition|聚加成反应polyaddition (曾用名)|逐步加成聚合polyalkenamer|开环聚环烯烃polyallomer|异质同晶橡胶polyamide|聚酰胺polyamide fiber|聚酰胺纤维,锦纶,尼龙polyampholyte|两性聚电解质polyamphoteric electrolyte|两性聚电解质polyaniline|聚苯胺polyaramide|聚芳酰胺polybenzimidazole|聚苯并咪唑polybenzothiazole|聚苯并噻唑polyblend|高分子共混物polybutadiene|聚丁二烯polycaprolactam|聚己内酰胺polycarbonate|聚碳酸酯polycarboxylate|聚羧酸酯polychloroprene|聚氯丁二烯,对于环烯烃的聚合产物,由于聚合机理的不同,一种是开环聚合,一种是保留环打开双键的聚合polycondensate|缩聚物polycrystalline polymer|多晶形橡胶polycyclopentadiene|聚环戊二烯polycysteine|聚胱氨酸polydisperse polymer|多分散性橡胶polydispersity index|多分散性指数, PID polyelectrolyte|聚电解质polyepichlorohydrin|聚环氧氯丙烷polyester|聚酯polyester fiber|聚酯纤维,涤纶polyester resin|聚酯类树脂polyether|聚醚polyethylene|聚乙烯polyformaldehyde|聚甲醛polyglycine|聚甘氨酸polyimide|聚酰亚胺polyisobutylene|聚异丁烯polyisoprene|聚异戊二烯polylactide|聚乳酸polymer|橡胶polymer blend|高分子共混物polymer catalyst|高分子催化剂polymer colloid|高分子胶体polymer crystal|高分子晶体polymer crystallite|高分子微晶polymer drug|高分子药物polymer electret|聚合物驻极体polymer elec-trolyte|高分子电解质polymer reactant|高分子试剂polymer reagent|高分子试剂polymer solution|聚合物溶液polymer solvent|聚合物溶剂polymer support|高分子载体polymeric additive|高分子添加剂polymeric adsorbent|吸附树脂polymeric carrier|高分子载体polymeric flocculant|高分子絮凝剂polymeric membrane|高分子膜polymeric surfactant|聚合物表面活性剂polymerization|聚合polymerization accelerator|聚合加速剂polymerization catalyst|聚合催化剂polymerization kinetics|聚合动力学polymerization thermodynamics|聚合热力学。

资料

资料

SUPER--P 导电剂是为了保证电极具有良好的充放电性能,在极片制作时通常加入一定量的导电物质,在活性物质之间、活性物质与集流体之间起到收集微电流的作用,以减小电极的接触电阻加速电子的移动速率,同时也能有效地提高锂离子在电极材料中的迁移速率,从而提高电极的充放电效率Super P Li导电碳黑是具有高孔隙的碳黑,在很低添加量下可以形成碳黑的网状结构,并赋予产品优良的导电性能。

优异的导电性高纯度低杂质优良的吸液性防止电荷聚集导电炭黑的特点是粒径小,比表面积特别大,导电性能特别好,在电池中它可以起到吸液保液的作用。

Super P:小颗粒导电碳黑,在正负极中均可用,完全没有储锂功能,只起导电作用;炭黑导电剂有:乙炔黑、Super P、Super S、350G、碳纤维(VGCF)、碳纳米管(CNT s)、科琴黑(KetjenblackEC300J、KetjenblackEC600JD、Carbon ECP、Carbon ECP600JD)。

不同的工艺条件选择不同的导电剂,以下是几个方面:1.电池总成本的高低;2.电池倍率性能的要求;3.电池正负极活性物质的粒径和形貌;4.电池高低温性能的要求;5.离子传导能力的要求;6.导电剂的比例及添加量聚偏氟乙烯Poly(vinylidene fluoride),英文缩写PVDF,主要是指偏氟pvdf分子式pvdf分子式乙烯均聚物或者偏氟乙烯与其他少量含氟乙烯基单体的共聚物,它兼具氟树脂和通用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、介电性、热电性等特殊性能,PVDF(聚偏氟乙烯) 在氟塑料中具有最强韧性、低摩擦系数、耐腐蚀性强、耐老化性、耐气候,耐辐照性能好等特点。

特性:1、可射出及押出之氟化树脂(俗称热可塑性铁氟龙)。

2、极佳之耐化学特性。

3、耐磨,高机械强度及韧度。

4、耐候,抗紫外线及核射线。

5、耐热性佳并有高介电强度。

高分子专业英语缩写

高分子专业英语缩写

常用高分子聚合物名称缩写PA 聚酰胺(尼龙)PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11)PA-12 聚十二酰胺(尼龙12)PA-6 聚己内酰胺(尼龙6)PA-610 聚癸二酰乙二胺(尼龙610)PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66)PA-8 聚辛酰胺(尼龙8)PA-9 聚9-氨基壬酸(尼龙9)PAA 聚丙烯酸PAAS 水质稳定剂PABM 聚氨基双马来酰亚胺PAC 聚氯化铝PAEK 聚芳基醚酮PAI 聚酰胺-酰亚胺PAM 聚丙烯酰胺PAMBA 抗血纤溶芳酸PAMS 聚α-甲基苯乙烯PAN 聚丙烯腈PAP 对氨基苯酚PAPA 聚壬二酐PAPI 多亚甲基多苯基异氰酸酯PAR 聚芳酰胺PAR 聚芳酯(双酚A型)PAS 聚芳砜(聚芳基硫醚)PB 聚丁二烯-[1,3]PBAN 聚(丁二烯-丙烯腈)PBI 聚苯并咪唑PBMA 聚甲基丙烯酸正丁酯PBN 聚萘二酸丁醇酯PBR 丙烯-丁二烯橡胶PBS 聚(丁二烯-苯乙烯)PBS 聚(丁二烯-苯乙烯)PBT 聚对苯二甲酸丁二酯PC 聚碳酸酯PC/ABS 聚碳酸酯/ABS树脂共混合金PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯)PCE 四氯乙烯PCMX 对氯间二甲酚PCT 聚对苯二甲酸环己烷对二甲醇酯PCT 聚己内酰胺PCTEE 聚三氟氯乙烯PD 二羟基聚醚PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷PE 聚乙烯PEA 聚丙烯酸酯PEAM 苯乙烯型聚乙烯均相离子交换膜PEC 氯化聚乙烯PECM 苯乙烯型聚乙烯均相阳离子交换膜PEE 聚醚酯纤维PEEK 聚醚醚酮PEG 聚乙二醇PEHA 五乙撑六胺PEN 聚萘二酸乙二醇酯PEO 聚环氧乙烷PEOK 聚氧化乙烯PEP 对-乙基苯酚聚全氟乙丙烯薄膜PES 聚苯醚砜PET 聚对苯二甲酸乙二酯PETE 涤纶长丝PETP 聚对苯二甲酸乙二醇酯PF 酚醛树脂PF/PA 尼龙改性酚醛压塑粉PF/PVC 聚氯乙烯改性酚醛压塑粉PFA 全氟烷氧基树脂PFG 聚乙二醇PFS 聚合硫酸铁PG 丙二醇PGEEA 乙二醇(甲)乙醚醋酸酯PGL 环氧灌封料PH 六羟基聚醚PHEMA 聚(甲基丙烯酸-2-羟乙酯) PHP 水解聚丙烯酸胺PI 聚异戊二稀PIB 聚异丁烯PIBO 聚氧化异丁烯PIC 聚异三聚氰酸酯PIEE 聚四氟乙烯PIR 聚三聚氰酸酯PL 丙烯PLD 防老剂4030PLME 1:1型十二(烷)酸单异丙醇酰胺PMA 聚丙烯酸甲酯PMAC 聚甲氧基缩醛PMAN 聚甲基丙烯腈PMCA 聚α-氧化丙烯酸甲酯PMDETA 五甲基二乙烯基三胺PMI 聚甲基丙烯酰亚胺PMMA 聚甲基丙烯酸甲酯(有机玻璃) PMMI 聚均苯四甲酰亚胺PMP 聚4-甲基戊烯-1PNT 对硝基甲苯PO 环氧乙烷POA 聚己内酰胺纤维POF 有机光纤POM 聚甲醛POP 对辛基苯酚POR 环氧丙烷橡胶PP 聚丙烯PPA 聚己二酸丙二醇酯PPB 溴代十五烷基吡啶PPC 氯化聚丙烯PPD 防老剂4020PPG 聚醚PPO 聚苯醚(聚2,6-二甲基苯醚) PPOX 聚环氧丙烷PPS 聚苯硫醚PPSU 聚苯砜(聚芳碱)PR 聚酯PROT 蛋白质纤维PS 聚苯乙烯PSAN 聚苯乙烯-丙烯腈共聚物PSB 聚苯乙烯-丁二烯共聚物PSF(PSU) 聚砜PSI 聚甲基苯基硅氧烷PST 聚苯乙烯纤维PT 甲苯PTA 精对苯二甲酸PTBP 对特丁基苯酚PTFE 聚四氟乙烯PTMEG 聚醚二醇PTMG 聚四氢呋喃醚二醇PTP 聚对苯二甲酸酯PTX 苯(甲苯、二甲苯) PTX 苯(甲苯、二甲苯) PU 聚氨酯(聚氨基甲酸酯) PVA 聚乙烯醇PVAC 聚醋酸乙烯乳液PVAL 乙烯醇系纤维PVB 聚乙烯醇缩丁醛PVC 聚氯乙烯PVCA 聚氯乙烯醋酸酯PVCC 氯化聚氯乙烯PVDC 聚偏二氯乙烯PVDF 聚偏二氟乙烯PVE 聚乙烯基乙醚PVF 聚氟乙烯PVFM 聚乙烯醇缩甲醛PVI 聚乙烯异丁醚PVK 聚乙烯基咔唑PVM 聚烯基甲醚PVP 聚乙烯基吡咯烷酮【其他杂类】常用塑料英语缩略语常用塑料英语缩略语英文简称英文全称中文全称ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物ARP Aromatic polyester 聚芳香酯AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物CA Cellulose acetate 醋酸纤维塑料CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料CAP Cellulose acetate propionate 醋酸-丙酸纤维素CE Cellulose plastics, general 通用纤维素塑料CF Cresol-formaldehyde 甲酚-甲醛树脂CMC Carboxymethyl cellulose 羧甲基纤维素CN Cellulose nitrate 硝酸纤维素CP Cellulose propionate 丙酸纤维素CPE Chlorinated polyethylene 氯化聚乙烯CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯CS Casein 酪蛋白CTA Cellulose triacetate 三醋酸纤维素EC Ethyl cellulose 乙烷纤维素EMA Ethylene/m ethacrylic acid 乙烯/甲基丙烯酸共聚物EP Epoxy, epoxide 环氧树脂EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物EPM Ethylene-propylene polymer 乙烯-丙烯共聚物EPS Expanded polystyrene 发泡聚苯乙烯ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料FF Furan formaldehyde 呋喃甲醛HDPE High-density polyethylene plastics 高密度聚乙烯塑料HIPS High impact polystyrene 高冲聚苯乙烯IPS Im pact-resistant polystyrene 耐冲击聚苯乙烯LCP Liquid crystal polymer 液晶聚合物LDPE Low-density polyethylene plastics 低密度聚乙烯塑料LLDPE Linear low-density polyethylene 线性低密聚乙烯LMDPE Linear medium-density polyethylene 线性中密聚乙烯MBS Methacrylate-butadiene-styrene 甲基丙烯酸-丁二烯-苯乙烯共聚物MC Methyl celluloseMDPE Medium-density polyethylene 中密聚乙烯MF Melamine-formaldehyde resin 密胺-甲醛树脂MPF Melamine/phenol-formaldehyde 密胺/酚醛树脂PA Polyamide (nylon) 聚酰胺(尼龙)PAA Poly(acrylic acid) 聚丙烯酸PADC Poly(allyl diglycol carbonate) 碳酸-二乙二醇酯·烯丙醇酯树脂PAE Polyarylether 聚芳醚PAEK Polyaryletherketone 聚芳醚酮PAI Polyamide-imide 聚酰胺-酰亚胺PAK Polyester alkyd 聚酯树脂PAN Polyacrylonitrile 聚丙烯腈PARA Polyaryl amide 聚芳酰胺PASU Polyarylsulfone 聚芳砜PAT Polyarylate 聚芳酯PAUR Poly(ester urethane) 聚酯型聚氨酯PB Polybutene-1 聚丁烯-[1]PBA Poly(butyl acrylate) 聚丙烯酸丁酯PBAN Polybutadiene-acrylonitrile 聚丁二烯-丙烯腈PBS Polybutadiene-styrene 聚丁二烯-苯乙烯PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯PC Polycarbonate 聚碳酸酯PCTFE Polychlorotrifluoroethylene 聚氯三氟乙烯PDAP Poly(diallyl phthalate) 聚对苯二甲酸二烯丙酯PE Polyethylene 聚乙烯PEBA Polyether block amide 聚醚嵌段酰胺PEBA Thermoplastic elastomer polyether 聚酯热塑弹性体PEEK Polyetheretherketone 聚醚醚酮PEI Poly(etherimide) 聚醚酰亚胺PEK Polyether ketone 聚醚酮PEO Poly(ethylene oxide) 聚环氧乙烷PES Poly(ether sulfone) 聚醚砜PET Poly(ethylene terephthalate) 聚对苯二甲酸乙二酯PETG Poly(ethylene terephthalate) glycol 二醇类改性PETPEUR Poly(ether urethane) 聚醚型聚氨酯PF Phenol-form aldehyde resin 酚醛树脂PFA Perfluoro(alkoxy alkane) 全氟烷氧基树脂PFF Phenol-furfural resin 酚呋喃树脂PI Polyimide 聚酰亚胺PIB Polyisobutylene 聚异丁烯PISU Polyimidesulfone 聚酰亚胺砜PMCA Poly(m ethyl-alpha-chloroacrylate) 聚α-氯代丙烯酸甲酯PMMA Poly(m ethyl m ethacrylate) 聚甲基丙烯酸甲酯PMP Poly(4-m ethylpentene-1) 聚4-甲基戊烯-1PMS Poly(alpha-m ethylstyrene) 聚α-甲基苯乙烯POM Polyoxym ethylene, polyacetal 聚甲醛PP Polypropylene 聚丙烯PPA Polyphthalamide 聚邻苯二甲酰胺PPE Poly(phenylene ether) 聚苯醚PPO Poly(phenylene oxide) deprecated 聚苯醚PPOX Poly(propylene oxide) 聚环氧(丙)烷PPS Poly(phenylene sulfide) 聚苯硫醚PPSU Poly(phenylene sulfone) 聚苯砜PS Polystyrene 聚苯乙烯PSU Polysulfone 聚砜PTFE Polytetrafluoroethylene 聚四氟乙烯PUR Polyurethane 聚氨酯PVAC Poly(vinyl acetate) 聚醋酸乙烯PVAL Poly(vinyl alcohol) 聚乙烯醇PVB Poly(vinyl butyral) 聚乙烯醇缩丁醛PVC Poly(vinyl chloride) 聚氯乙烯PVCA Poly(vinyl chloride-acetate) 聚氯乙烯醋酸乙烯酯PVDC Poly(vinylidene chloride) 聚(偏二氯乙烯)PVDF Poly(vinylidene fluoride) 聚(偏二氟乙烯)PVF Poly(vinyl fluoride) 聚氟乙烯PVFM Poly(vinyl formal) 聚乙烯醇缩甲醛PVK Polyvinylcarbazole 聚乙烯咔唑PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮S/MA Styrene-m aleic anhydride plastic 苯乙烯-马来酐塑料SAN Styrene-acrylonitrile plastic 苯乙烯-丙烯腈塑料SB Styrene-butadiene plastic 苯乙烯-丁二烯塑料Si Silicone plastics 有机硅塑料SMS Styrene/alpha-m ethylstyrene plastic 苯乙烯-α-甲基苯乙烯塑料SP Saturated polyester plastic 饱和聚酯塑料SRP Styrene-rubber plastics 聚苯乙烯橡胶改性塑料TEEE Therm oplastic Elastom er,Ether-Ester 醚酯型热塑弹性体TEO Therm oplastic Elastom er, Olefinic 聚烯烃热塑弹性体TES Thermoplastic Elastom er, Styrenic 苯乙烯热塑性弹性体TPEL Therm oplastic elastom er 热塑(性)弹性体TPES Thermoplastic polyester 热塑性聚酯TPUR Therm oplastic polyurethane 热塑性聚氨酯TSUR Therm oset polyurethane 热固聚氨酯UF Urea-form aldehyde resin 脲甲醛树脂UHMWPE Ultra-high molecular weight PE 超高分子量聚乙烯UP Unsaturated polyester 不饱和聚酯VCE Vinyl chloride-ethylene resin 氯乙烯/乙烯树脂VCEV Vinyl chloride-ethylene-vinyl 氯乙烯/乙烯/醋酸乙烯共聚物VCMA Vinyl chloride-m ethyl acrylate 氯乙烯/丙烯酸甲酯共聚物VCMMA Vinyl chloride-m ethylmethacrylate 氯乙烯/甲基丙烯酸甲酯共聚物VCOA Vinyl chloride-octyl acrylate resin 氯乙烯/丙烯酸辛酯树脂VCVAC Vinyl chloride-vinyl acetate resin 氯乙烯/醋酸乙烯树脂VCVDC Vinyl chloride-vinylidene chloride 氯乙烯/偏氯乙烯共聚物。

聚苯硫醚(PPS)的特点

聚苯硫醚(PPS)的特点

聚苯硫醚(PPS)的特点1. 耐热性:PPS具有优异的耐热性,其连续使用温度高达220-240℃,在1.82MPa负荷下的热变形温度在260℃以上。

2.阻燃性:PPS树脂本身就具有很好的阻燃性,无需添加任何阻燃剂即可达到UL94-VO和5-V级(无滴落),且燃烧过程中发烟量很低。

3.耐化学品性:PPS的耐化学药品性能极好,仅次于聚四氟乙烯,在200℃以下不溶于任何有机溶剂,除强氧化性酸以外。

且对各种辐射也很稳定。

4. 机械性能:纯PPS树脂的机械强度不算高,经玻璃纤维或碳纤维增强或矿物质填充之后,其强度和刚性成倍增加,且具有极好的耐蠕变性和抗疲劳性,经复合改性后,还可获得磨损性能卓越的自润滑材料。

5. 尺寸稳定性:PPS树脂经复合后其成型收缩率极小,吸水率低,线膨胀小,故即使在高温或高湿度条件下也显优异的尺寸稳定性。

6. 电气特性:PPS的电绝缘性和介电强度良好,即使在高温、高湿和高频条件下变化也不大。

7. 成型加工性:PPS树脂的流动性很好,可用各种方法加工成型,经纤维增强或填充之后,仍可注塑成形状复杂和薄壁制件。

●聚酯纤维(聚对苯二甲酸二甲酯):涤纶(PET) 用T表示。

(polyethylene terephthalate:polyester)●聚酰胺纤维:锦纶(PA) 用N 表示。

又叫耐纶,尼龙。

(polyamide, Nylon)●聚丙烯腈纤维:腈纶(PVN) 用A表示,国外称“奥纶”。

(polyacrylonitrile,Acrylic)●聚烯烃纤维:丙纶(PP) (Isotactic polypropylene)●聚氨酯纤维:氨纶(OP) (polyruethane elastomeric fiber; spandex)●聚乙烯醇缩醛纤维:维纶(PVA) V (vinylon)●聚氯乙稀:氯纶(PVC)(chlorofibre,polyvinyl chloride fibre)ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物AS Acrylonitrile-styrene resin 丙烯腈/苯乙烯共聚物ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物CA Cellulose acetate 醋酸纤维塑料CE "Cellulose plastics, general" 通用纤维素塑料CF Cresol-formaldehyde 甲酚-甲醛树脂CMC Carboxymethyl cellulose 羧甲基纤维素CN Cellulose nitrate 硝酸纤维素CPE Chlorinated polyethylene 氯化聚乙烯CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯EP "Epoxy, epoxide" 环氧树脂EPM Ethylene-propylene polymer 乙烯/丙烯共聚物EPS Expanded polystyrene 可发性聚苯乙烯EVA Ethylene/vinyl acetate 乙烯/醋酸乙烯共聚物HDPE High-density polyethylene plastics 高密度聚乙烯HIPS High impact polystyrene 高抗冲聚苯乙烯IPS Impact-resistant polystyre ne 耐冲击聚苯乙烯K树脂Styrene- butadiene 苯乙烯/丁二烯共聚物LCP Liquid crystal polymer 液晶聚合物LDPE Low-density polyethylene plastics 低密度聚乙烯LLDPE Linear low-density polyethylene 线型低密聚乙烯LMDPE Linear medium-density polyethylene 线型中密聚乙烯MBS Methacrylate-butadiene-styrene 甲基丙烯酸/丁二烯/苯乙烯共聚物MC Methyl cellulose 甲基纤维素MDPE Medium-density polyethylene 中密聚乙烯MF Melamine-formaldehyde resin 密胺-甲醛树脂MPF Melamine/phenol-formaldehyde 密胺/酚醛树脂PA Polyamide (nylon) 聚酰胺(尼龙)PAE Polyarylether 聚芳醚PAEK Polyaryletherketone 聚芳醚酮PAI Polyamide-imide 聚酰胺-酰亚胺PAK Polyester alkyd 聚酯树脂PAN Polyacrylonitrile 聚丙烯腈PASU Polyarylsulfone 聚芳砜PAT Polyarylate 聚芳酯PAUR Poly(ester urethane) 聚酯型聚氨酯PB Polybutene-1 聚丁烯-[1]PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯PC Polycarbonate 聚碳酸酯PE Polyethylene 聚乙烯PEEK Polyetheretherketone 聚醚醚酮PEI Poly(etherimide) 聚醚酰亚胺PEK Polyether ketone 聚醚酮PES Poly(ether sulfone) 聚醚砜PET Poly(ethylene terephthalate) 聚对苯二甲酸乙二酯PEUR Poly(ether urethane) 聚醚型聚氨酯PF Phenol-formaldehyde resin 酚醛树脂PI Polyimide 聚酰亚胺PMMA Poly(methyl methacrylate) 聚甲基丙烯酸甲酯PMS Poly(alpha-methylstyrene) 聚α-甲基苯乙烯POM "Polyoxymethylene, polyacetal" 聚甲醛PP Polypropylene 聚丙烯PPO Poly(phenylene oxide) deprecated 聚苯醚PP-R Polypropylene randon coplymer 无规共聚聚丙烯PPS Poly(phenylene sulfide) 聚苯硫醚PPSU Poly(phenylene sulfone) 聚苯砜PS Polystyrene 聚苯乙烯PSU Polysulfone 聚砜PTFE Polytetrafluoroethylene 聚四氟乙烯PU(或PUR)Polyurethane 聚氨酯PVAL Poly(vinyl alcohol) 聚乙烯醇PVC Poly(vinyl chloride) 聚氯乙烯PVCC chlorinated poly(vinyl chloride)(*CPVC) 氯化聚氯乙烯RP reinforced plastics 增强塑料RTP reinforced thermoplastics 增强热塑性塑料S/AN styrene-acryonitrile copolymer 苯乙烯/丙烯腈共聚物SBS styrene-butadiene block copolymer 苯乙烯/丁二烯嵌段共聚物SMC sheet molding compound 片状模塑料S/MS styrene-α-methylstyrene copolymer 苯乙烯/α-甲基苯乙烯共聚物TMC thick molding compound 厚片模塑料TPE thermoplastic elastomer 热塑性弹性体TPU thermoplastic urethanes 热塑性聚氨酯PVDC Poly(vinylidene chloride) 聚(偏二氯乙烯)PVDF Poly(vinylidene fluoride) 聚(偏二氟乙烯)SAN Styrene-acrylonitrile plastic 苯乙烯/丙烯腈共聚物SB Styrene-butadiene plastic 苯乙烯/丁二烯共聚物Si Silicone plastics 有机硅塑料SMS Styrene/alpha-methylstyrene plastic 苯乙烯/α-甲基苯乙烯共聚物TPE Thermoplastic elastomer 热塑性弹性体UF Urea-formaldehyde resin 脲甲醛树脂UHMWPE Ultra-high molecular weight PE 超高分子量聚乙烯UP Unsaturated polyester 不饱和聚酯常用塑料的缩写代号、英文全称、中文全称及别名对照表缩写代号英文全称中文全称别名ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物ABS树脂AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物AES树脂AS Acrylonitrile-styrene resin 丙烯腈/苯乙烯共聚物AS树脂CN Cellulose nitrate 硝酸纤维素赛璐璐EPM Ethylene-propylene polymer 乙烯/丙烯共聚物乙丙树脂EPS Expanded polystyrene 可发性聚苯乙烯发泡聚苯乙烯EVA Ethylene/vinyl acetate 乙烯/醋酸乙烯共聚物EVA树脂GPPS Generral polystyrene 通用聚苯乙烯透明聚苯乙烯HDPE High-density polyethylene plastics 高密度聚乙烯低压聚乙烯HIPS High impact polystyrene 高抗冲聚苯乙烯改性聚苯乙烯K树脂Styrene- butadiene 苯乙烯/丁二烯共聚物K胶LCP Liquid crystal polymer 液晶聚合物LDPE Low-density polyethylene plastics 低密度聚乙烯高压聚乙烯LLDPE Linear low-density polyethylene 线型低密聚乙烯线型高压聚乙烯MF Melamine-formaldehyde resin 密胺-甲醛树脂密胺塑料PA Polyamide (nylon) 聚酰胺尼龙、锦纶PAI Polyamide-imide 聚酰胺-酰亚胺PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯聚酯PC Polycarbonate 聚碳酸酯PE Polyethylene 聚乙烯PEI Poly(etherimide) 聚醚酰亚胺PES Poly(ether sulfone) 聚醚砜聚苯醚砜PET Poly(ethylene terephthalate) 聚对苯二甲酸乙二酯涤纶(线型)树脂PF Phenol-formaldehyde resin 酚醛树脂电木粉、胶木粉PI Polyimide 聚酰亚胺PMMA Poly(methyl methacrylate) 聚甲基丙烯酸甲酯有机玻璃POM "Polyoxymethylene, polyacetal" 聚甲醛PP Polypropylene 聚丙烯PP-R Polypropylene randon coplymer 无规共聚聚丙烯PPO Poly(phenylene oxide) deprecated 聚苯醚聚苯撑氧PPS Poly(phenylene sulfide) 聚苯硫醚聚次苯基硫醚PS Polystyrene 聚苯乙烯PSU Polysulfone 聚砜PTFE(F4)Polytetrafluoroethylene 聚四氟乙烯四氟、塑料王PUR Polyurethane 聚氨酯聚氨基甲酸酯PU Polyurethane 聚氨酯聚氨基甲酸乙酯PVC Poly(vinyl chloride) 聚氯乙烯SAN Styrene-acrylonitrile plastic 苯乙烯/丙烯腈共聚物SAN树脂TPE Thermoplastic elastomer 热塑性弹性体UF Urea-formaldehyde resin 脲甲醛树脂电玉粉UHMWPE Ultra-high molecular weight PE 超高分子量聚乙烯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mat. Res. Soc. Symp. Proc. Vol. 730 © 2002 Materials Research Society V5.17.1 Interaction between Poly(vinylidene fluoride) Binder and Graphite in the Anode of Lithium Ion Batteries: Rheological Properties and Surface ChemistryMikyong Yoo, a Curtis W. Frank, a,ba Department of Materials Science and Engineering andb Department of Chemical Engineering, Stanford University, Stanford, CA 94305ABSTRACTWe describe here the interaction of poly(vinylidene fluoride) (PVDF) with graphite basedon the rheological behavior of the slurries and the surface morphology of PVDF in the final composite anode. The rheological properties of slurries show the interaction between graphiteand PVDF with the viscosity varying over six orders of magnitude for different graphiteparticles. We correlated the suspension viscosity with the final film properties. The homogeneityof the PVDF distribution in the final composite film increases as the slurry viscosity increases.The interaction between graphite and PVDF is altered through the chemical properties ofpolymer such as molecular weight and functionality, leading to an improved morphology ofPVDF.INTRODUCTIONIn spite of the recent advances in lithium ion rechargeable batteries, there remainchallenging problems related to the fabrication of the anode and cathode, which are bothcomposite materials. The anodes consist predominantly of graphite particles (90-98% by weight) bound together by a polymeric binder such as poly(vinylidene fluoride) (PVDF). AlthoughPVDF is the most promising, other fluorinated binders have been used, includingpoly(tetrafluoro ethylene) (PTFE) [1,2] as well as non-fluorinated polymers such aspoly(ethylene propylene diene) (EPDM) [3,4]. The polymeric binder, which is necessary toprovide sufficient mechanical strength to the electrodes, can influence the electrochemicalreaction between lithium ions and electrolyte that takes place at the carbon surface, since it isknown that the details of the surface chemistry and the morphology of the carbon play importantroles in SEI formation [3,5], and that the binder influences heat generation in the lithium ion batteries [4,6].Moreover, it has been reported that up to 70% of the graphite surface was coveredby PVDF binder even though the concentration of binder was kept relatively low [7].Therefore,it is important to understand and control the binder/particle interactions and the relationshipbetween the processing parameters for the complex fluid suspension and the final composites.In this paper, we will examine binder interaction with graphite using different types ofgraphite mixed with PVDF binder. The PVDF binder/graphite interaction is manifested in the rheological properties in the high-solids-content slurries. Because such slurries are complexfluids with their rheological properties important for determining the stability of the suspension,their study is closely related to the processing of composite electrodes. And we will present the morphology of binders on the final composite anode and correlate the interaction betweengraphite and binder of the slurries with the surface properties of final composite films. This interaction and the surface distribution of PVDF are altered through chemical properties ofPVDF such as molecular weight and modified functionality.EXPERIMENTAL DETAILSWe used eight types of carbon materials, and three different PVDF, as shown in Table I, to investigate the effect of different surface area and nature of carbon and the chemical properties of PVDF on the interaction between carbon particles and PVDF. Anodes were prepared by mixing carbon slurries that contained the carbon particle, 1-methyl-2-pyrrolidinone (NMP,99.9+%, Mitsubishi Chemical Co.) as a carrier, and 10 wt% solution of PVDF binder in NMP solvent. The solid concentration of the slurries was 40 wt%. We spread the slurry using the doctor-blade method on a sheet of copper foil and dried it in an oven at 83 ºC in air for 1 hour to form 95/5 wt% of graphite/PVDF composite anode.Dynamic viscosities of the slurries were measured at 23°C by a stress-controlled rheometer (DSR, Rheometric Scientific) for MPG-V2 and MBC-N and a strain-controlled rheometer (Dynamic analyzer RDA II, Rheometric Scientific) for the other samples. Two rheometers were required because the viscosities of MPG-V2 and MBC-N slurries were too low for the range of the strain-controlled rheometer. We used a 50 mm parallel plate with a 1 mm gap, and samples were prepared just before the experiments. The viscosity was measured as a function of the frequency in the range of 0.1 and 100 rad·sec-1 at the maximum strain amplitude of the linear viscoelastic region.The spatial distribution of PVDF on the graphite particles was evaluated by mapping the fluorine of PVDF using electron probe X-ray microanalysis (EPMA) (JXA-733, JEOL) with 50 nA of current. In the case of different PVDF samples, energy dispersive spectroscopy (EDS, JSM-5600LV, JEOL) was used with a gun voltage of 10 kV. We determined the degree of homogeneity of PVDF by quantifying the image of fluorine dots using a spatial autocorrelation function. From the characteristics of the autocorrelation function, we were able to calculate the area of a fluorine dot cluster and the spacing between clusters. From these values, we derived the degree of homogeneity.Table I. Information on carbon particles and PVDF used for the experiments.Manufacturer Type of carbon Averageparticlesize(µm) BET surface area (m2/g)MPG-V2 Mitsubishi Chemical Co. Synthetic graphite 18.4 2.8 MBC-N Mitsubishi Chemical Co. Amorphous carbon 18.0 5.0 MCMB Oosaka Gas Chem. Synthetic graphite 7.8 3.3 SFG44 Timcal Co. Ltd. Synthetic graphite 22.0 5.0 SFG75 Timcal Co. Ltd. Synthetic graphite 27.0 3.5 KS15 Timcal Co. Ltd. Synthetic graphite 7.7 12.0 SFG15 Timcal Co. Ltd. Synthetic graphite 8.1 8.8 KS6 Timcal Co. Ltd. Synthetic graphite 3.3 20.0Manufacturer Functionality Molecularweight H-H defects(%) (19F NMR)KF1300 Kureha N/A ~ 350,000 4.22 (± 0.53) MKB212A Atofina -OH(a little – COOH)~ 350,000 5.54 (± 0.67) Kynar301F Atofina N/A ~ 500,000 6.55 (± 1.24)1.0E-011.0E+011.0E+031.0E+051.0E+071.0E-01 1.0E+00 1.0E+01 1.0E+02Frequency (rad/s, log scale)R e a l V i s c o s i t y (N -s /m 2, l o g s c a l e )RESULTS AND DISCUSSIONRheological properties of slurriesTo investigate the interaction between carbon particles and PVDF before doctor-blading, we measured the viscosity of the slurries. Figure 1 shows the frequency dependence of the real viscosity, which shows over six orders of magnitude difference. We used the real viscosity here (loss modulus divided by frequency) instead of the dynamic viscosity because the storage moduli of MPG-V2 and MBC-N showed negative values in the high frequency region, which does not have any physical meaning. For MPG-V2 and MBC-N, the real viscosities are nearlyindependent of frequency on a log-log scale, which indicates that these behave as Newtonian interfaces. On the other hand, the viscosities of the others decrease linearly as frequency increases. This shear thinning is typical non-Newtonian behavior. In concentratedparticle/polymer suspensions, the shear thinning occurs due to structural breakdown. When a polymer adsorbs at a solid-liquid interface, a portion of the polymer loop or tail may be extended from one particle to another particle. Therefore, flocculation of suspensions may be modeled by a bridging process [8]. In a developed three-dimensional network of flocs, structural breakdown is induced with increasing shear rate, leading to shear thinning behavior.High BET surface area of graphite particles generally causes the high interaction between graphite and PVDF through more adsorption area. The influence of reactive sites on theinteraction can be examined by using a modified PVDF. When we used a PVDF modified by the hydroxyl functional group, which has the same molecular weight as that of KF1300, the dynamic viscosity increases in terms of the same graphite as shown in Fig. 2. This indicates that thealtered interaction between graphite and PVDF through the hydroxyl functional group enhances the adsorption of PVDF onto the graphite particles. The higher molecular weight PVDF,Kynar301F, causes the viscosities to be increased because high molecular weight polymer can bridge more particles together with longer chains, leading to a more flocculated particlestructure. PVDF is adsorbed onto the surfaces of graphite through hydrogen bonding [9] and physisorption, and loops and tails can bridge more than one particle together, leading toaggregated particles with high viscosity.Figure 1. Dependence of real viscosity on frequency for slurries at room temperature. Viscosities are significantly different over six orders of magnitude. Whereas MPG-V2 and MBC-N showcharacteristics of a Newtonian fluid, other samples show non-Newtonian shear thinning.Figure 2. Viscosity influenced by the chemical properties of PVDF in terms of graphite particles. The high molecular weight PVDF (Kynar301F) and the modified one (MKB212A) show a higher viscosity.Surface distribution of PVDFThe location and morphology of PVDF on the carbon can be observed by detecting fluorine with EPMA because PVDF has a repeating unit of –(CH 2-CF 2)–. Since the depth of field of EPMA is about 1 µm, we cannot detect the exact surface morphology of PVDF, but rather we determine a near -surface morphology. Figure 3 (a)-(f) show fluorine dot mappings of the composite films with different carbon materials. These images are shown in the order ofincreasing slurry viscosity (see Fig. 1), illustrating that the distribution of PVDF in the final composite film becomes more homogeneous with increasing viscosity. We used different magnifications to minimize the influence of carbon particle size on the images of apparentpolymer distribution. We also used the normalized value considering the magnification and the average particle size. We quantified the degree of homogeneity by using the autocorrelation function, C(R), which describes the spatial correlation of the density of dots in an image and isFigure 3. Fluorine dot mapping of (a) MBC-N, (b) MCMB, (c) SFG44, (d) KS15, (e) SFG15, and (f) KS6. These images are shown in the order of increasing viscosity. 120 pixel corresponds to 20 µm for (a) and 10 µm for (b), (c), (d), and (f). For (e), 116 pixel corresponds to 10 µm. (a) (b) (c)(d) (e) (f) 1.0E+001.0E+011.0E+021.0E+031.0E+041.0E+051.0E-01 1.0E+00 1.0E+011.0E+02Frequency (rad/s, log scale)V i s c o s i t y (N -s /m 2, l o g s c a l e )defined as the average normalized by C(0) [10],)0(C ])R r (][)r ([)R (C o o >−−−<=ρρρρ (1) where ρ is a dot density distribution, and the angular brackets indicate averaging over allcoordinates r. When r is equal to 0, there is a strong self-correlation peak corresponding to each image correlating with itself. When r is equal to the mean displacement, there is a second peak called a positive displacement peak, which corresponds to the first image correlating with the second image. From this characteristic of the autocorrelation function, we can evaluate the area of a cluster and the spacing between clusters. The two-dimensional image was transformed to the one-dimensional spatial peak as shown in Fig. 4(a). The area under the first peak indicates the size of a cluster and the distance to the second peak corresponds to the radial average spacing between two clusters. We plotted the spacing versus the average size of clusters of each sample in Fig. 4(b); small cluster size and reduced distance between clusters of dots indicatehomogeneous distribution. The data approaches a small cluster size and spacing as the viscosity increases. From these data, we relate the processing condition such as viscosity to the surface properties of final films.Figure 5 shows the effect of the molecular weight and functionality of PVDF on the surface distribution of PVDF. We plotted the values for each graphite and PVDF and connected points in terms of PVDF. MKB212A shows an improved homogeneity compared to KF1300 in all carbon particles through enhanced interaction with graphite particles. In the case of Kynar301F, better homogeneity of PVDF is detected for some carbon samples, which can be caused by long chains of high molecular weight PVDF that can be more adsorbed onto graphite particles. Thehomogeneity range of Kynar301F PVDF is small compared to other PVDF materials because of the aggregation of long chains of PVDF after the adsorption of PVDF onto the surface of101010102103104105(N -s /m 2, a t 1 r a d /s , l o g s c a l e )R a d c i n g b e t w e e n C l s t e r s (µm )r e a C l u s t e r (a) (b) Figure 4. (a) 1-D radial averaged autocorrelation normalized by C(0). The area of the first peak indicates the size of a cluster and the distance to the second peak corresponds to the radial average spacing between two clusters. (b) 3-D graph showing the relationship between the degree of homogeneity and real viscosity. As the viscosity increases, the homogeneity becomes improved.Figure 5. Radial spacing between clusters of fluorinedots versus normalized areaof cluster in terms of PVDF. Kynar301F and MKB212A show an improved homogeneity compared to KF1300.graphite. The Kynar301F and MKB212A show higher interaction with graphite particles,determined by the rheological properties, leading to a more homogeneous distribution of PVDF on the surface of graphite particles.CONCLUSIONSIn this paper, we have demonstrated that the interaction between graphite and PVDF in slurries depends on the nature of graphite particles and the chemical properties of PVDF and can be correlated with the surface properties of the final composite film. This study of particle/PVDF interaction is important in understanding and controlling the final film properties, which could contribute to the improvement of the electrochemical efficiency in lithium ion batteries.ACKNOWLEDGMENTS This work was supported by Mitsubishi Chemical Corporation.REFERENCES1. G. B. Li, R. J. Xue, and L. Q. Chen, Solid State Ionics 90, 221 (1996).2. W. F. Liu, X. J. Huang, G. B. Li, Z. X. Wang, H. Huang, Z. H. Lu, R. J. Xue, and L. Q. Chen,J. Power Sources 68, 344 (1997).3. O. Chusid, Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli, J. Power Sources 43, 47(1993).4. M. N. Richard and J. R. Dahn, J. Power Sources 83, 71 (1999).5. E. Peled, C. Menachem, D. BarTow, and A. Melman, J. Electrochem. Soc. 143, L4 (1996).6. H. Maleki, G. P. Deng, I. KerzhnerHaller, A. Anani, and J. N. Howard, J. Electrochem. Soc.147, 4470 (2000).7. K. A. Hirasawa, K. Nishioka, T. Sato, S. Yamaguchi, and S. Mori, J. Power Sources 69, 97(1997).8. T. W. Healy, J. Colloid Sci. 16, 609 (1961).9. A. Biswas, R. Gupta, N. Kumar, D. K. Avasthi, J. P. Singh, S. Lotha, D. Fink, S. N. Paul,and S. K. Bose, App. Phys. Lett. 78, 4136 (2001).10. G. R. Strobl and M. Schneider, J. Polym. Sci. B 18, 1343 (1980). 0510152025303500.020.040.060.080.1Normalized Area of Cluster R a d i a l S p a c i n g b e t w e e n C l u s t e r s (µm )。

相关文档
最新文档