九年级数学上册第23章图形的相似检测题含解析华东师大版.doc

合集下载

华师大版九年级上册数学第23章 图形的相似 含答案

华师大版九年级上册数学第23章 图形的相似 含答案

华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D,E分别为AB,AC的中点,则△ADE与四边形BCED 的面积比为()A.1:1B.1:2C.1:3D.1:42、下列两个图形必定相似的是()A.有两条边对应成比例的等腰三角形B.有一个角是25度的等腰三角形 C.有一个角是100度的等腰三角形 D.有一个角相等,两边对应成比例的三角形3、如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A.28cm 2B.27cm 2C.21cm 2D.20cm4、如图,A,B两点的坐标分别为(2,0)(0,1),若将线段AB平移至A 1B1,则a+b的值为()A.5B.4C.3D.25、点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.6、如图,平行四边形的对角线,相交于点,为的中点,连接交于点,若,则的长为()A.5B.6C.7D.87、点A(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限8、如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1B.3:1C.2:3D.3:29、下列实际生活事例,形成位似关系的是()①放电影时,胶片和屏幕上的画面;②放映幻灯片时,幻灯片上的图片与屏幕上的图形;③照相时人物的影像与被缩小在底片上的影像.A.0个B.1个C.2个D.3个10、如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E`的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,4)11、如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠E的度数为()A.70°B.80°C.90°D.120°12、如图,在正方形ABCD中,边长为1,点E是BC边上的动点,过点E作AE 的垂线交CD边于点F,设,,关于的函数关系图象如图所示,则()A. B.2 C.2.5 D.313、如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5B.6C.7D.1214、下列四条线段为成比例线段的是()A.a=10,b=5,c=4,d=7B.a=1,b= , c= , d=C.a=8,b=5,c=4,d=3D.a=9,b= , c=3,d=15、点P(m,5)和点Q(m,-1)的连线()A.与x轴平行B.与y轴平行或重合C.与y轴平行D.与x轴的夹角为50°二、填空题(共10题,共计30分)16、如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD :S△ABE=1:3,那么BC:BE=________.17、点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.18、若点的坐标为,则点关于轴对称的坐标是________。

华师大版九年级上册数学第23章 图形的相似含答案(完整版)

华师大版九年级上册数学第23章 图形的相似含答案(完整版)

华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A. B. C. D.2、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.83、一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为()A.24cmB.21cmC.13cmD.9cm4、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =5、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)6、已知2x=3y(y≠0),则下面结论成立的是()A. =B. =C. =D. =7、如图,赵师傅透过平举的放大镜从正上方看水平桌面上的菱形图案的一角,那么∠A与放大镜中的∠C的大小关系是( )A.∠A=∠CB.∠A>∠CC.∠A<∠CD.无法比较8、AD 是△ABC 的中线,E 是 AD 上一点,AE= AD,BE 的延长线交 AC 于F,则的值为()A. B. C. D.9、点(3,-2)关于x轴的对称点是 ( )A.(-3,-2)B.(3,2)C.(-3,2)D.(3,-2)10、在平面直角坐标系xOy中,点A的坐标为(1,2),如果射线OA与x轴正半轴的夹角为α,那么sinα的值是()A. B.2 C. D.11、若,则的值是()A. B. C. D.12、点M(-3,4)离原点的距离是()A.3B.4C.5D.713、如图 ,D,E分别是△ABC的边AB,AC上的点,,则△AED与△ABC的面积之比等于()A.1:2B.1:3C.1:4D.4:914、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上15、如图,在矩形ABCD中,点E在AB上,点F在CD上,且BE=2AE,DF=2CF,G,H是对角线AC的三等分点。

华东师大版九年级数学上册第23章图形的相似单元测试题含答案与解析

华东师大版九年级数学上册第23章图形的相似单元测试题含答案与解析

华东师大版九年级数学上册第23章图形的相似单元测试题一、选择题(每小题4分,共24分) 1.若a -b b =23,则a b 的值为( )A.13B.23C.43D.532.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后点O ,A 的对应点分别为点O 1,A 1.若点O 的坐标为(0,0),点A 的坐标为(1,4),则点O 1,A 1的坐标分别是( )A .(0,0),(1,4)B .(0,0),(3,4)C .(-2,0),(1,4)D .(-2,0),(-1,4)3.若一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为5 cm ,则另一个四边形的最大边长为( )A .10 cmB .15 cmC .20 cmD .25 cm4.如图1,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG的值为( )图1A.23B.712C.12D.5125.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( )A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)6.如图2,在△ABC 中,中线BE ,CD 相交于点O ,连结DE ,下列结论:①DE BC =12;②S △DOE S △COB=12;③AD AB =OEOB ;④S △DOE S △ADE =13.其中正确的有( )图2A.1个B.2个C.3个D.4个二、填空题(每小题5分,共40分)7.已知△ABC∽△A′B′C′,相似比为3∶4,△ABC的周长为6,则△A′B′C′的周长为________.8.如图3,直线a∥b∥c,B是线段AC的中点,若DE=2,则EF=________.图39.如图4,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为________.图410.如图5,D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,那么线段CE的长应等于________.图511.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图6所示),已知亮区的E处到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为________.图612.如图7,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶2,点A的坐标为(0,1),则点E的坐标是________.图713.如图8,在△ABC中,AB=7 cm,BC=6 cm,AC=5 cm,D,E,F分别是AB,BC,AC 的中点,则四边形ADEF的周长等于________cm.图814.如图9,在矩形ABCD中,BE⊥AC交AC,AD分别于点F,E,若AD=1,AB=CF,则AE=________.图9三、解答题(共36分)15.(10分)如图10,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,当BD的长是多少时,图中的两个直角三角形相似?图1016.(12分)如图11,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E.求AE的长.图1117.(14分)提出问题(1)如图12①所示,在等边三角形ABC中,M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边三角形AMN,连结CN.求证:∠ABC=∠ACN.类比探究(2)如图②所示,在等边三角形ABC中,M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.拓展延伸(3)如图③所示,在等腰三角形ABC中,BA=BC,M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等腰三角形AMN,使顶角∠AMN=∠ABC,连结CN.试探究∠ABC与∠ACN 的数量关系,并说明理由.①②③图121.[解析] D ∵a -b b =23,∴5b =3a ,∴a b =53.2.D3.[解析] C 设它的最大边长为x cm.∵两个四边形相似,∴15=4x ,解得x =20,故选C.4.B 5.D 6.C 7.[答案] 8[解析] ∵△ABC ∽△A ′B ′C ′,∴△ABC 的周长∶△A ′B ′C ′的周长=3∶4.∵△ABC 的周长为6,∴△A ′B ′C ′的周长=6×43=8.8.2 9.4∶9 10.[答案]154[解析] ∵∠AEC =∠BED ,∴当BE AE =DE CE 时,△BDE ∽△ACE ,即43=5CE ,∴CE =154.11.[答案] 4米[解析] 连结AE ,BD .∵光是沿直线传播的,∴AE ∥BD ,∴△BCD ∽△ACE , ∴AC BC =EC DC ,即1.8+BC BC =8.78.7-2.7,解得BC =4(米). 12.[答案] (2,2)[解析] 连结OE .∵正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,∴OE 一定经过点B .又∵点A 的坐标为(0,1),∴OA =1,∴由勾股定理可求得OB = 2.∵正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶2,∴OB ∶OE =1∶2,即OE =2,∴由勾股定理,得DE =EF =2,即点E 的坐标是(2,2).13.[答案] 12[解析] ∵D ,E 分别是AB ,BC 的中点,∴DE ∥AC ,DE =12AC =2.5 cm ,同理,EF ∥AB ,EF=12AB =3.5 cm ,∴四边形ADEF 是平行四边形,∴四边形ADEF 的周长=2×(2.5+3.5)=12(cm),故答案为12.14.[答案]5-12[解析] ∵四边形ABCD 是矩形,∴BC =AD =1,∠EAB =∠ABC =90°,∴∠ABE +∠CBF =90°.∵BE ⊥AC ,∴∠BFC =90°,∴∠FCB +∠CBF =90°,∴∠ABE =∠FCB .在△ABE 和△FCB 中,⎩⎪⎨⎪⎧∠EAB =∠BFC =90°,AB =CF ,∠ABE =∠FCB ,∴△ABE ≌△FCB ,∴BF =AE ,BE =BC =1.∵BE ⊥AC ,∴∠BAF +∠ABF =90°.∵∠ABF +∠AEB =90°,∴∠BAF =∠AEB .∵∠BAE =∠AFB ,∴△ABE ∽△FBA ,∴AB BF =BE AB ,即AB AE =1AB ,∴AE =AB 2.在Rt △ABE 中,BE =1,根据勾股定理,得AB 2+AE 2=BE 2=1,∴AE +AE 2=1.∵AE >0,∴AE =5-12. 15.解:在Rt △ABC 中,BC =AC 2-AB 2=52-42=3. ∵∠ABC =∠ADB =90°,∴当BD BC =BA AC 时,Rt △DBA ∽Rt △BCA ,即BD 3=45,解得BD =125;当BD BA =BAAC时,Rt △DBA ∽Rt △BAC , 即BD 4=45,解得BD =165. 综上所述,当BD 的长是125或165时,图中的两个直角三角形相似.16.解:∵BD 为∠ABC 的平分线, ∴∠ABD =∠DBC .又∵AB ∥CD ,∴∠D =∠ABD , ∴∠DBC =∠D ,∴BC =CD =4. ∵AB ∥CD ,∴△AEB ∽△CED , ∴AB CD =AE CE, ∴AE CE =84=2,∴AE =2CE ,即CE =12AE . ∵AC =AE +CE =6,∴AE +12AE =6,即AE =4.17.解:(1)证明:∵△ABC 与△AMN 均为等边三角形, ∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°, ∴∠BAM =∠CAN , ∴△BAM ≌△CAN (S.A.S.),∴∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立.理由:∵△ABC与△AMN均是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴△BAM≌△CAN,∴∠ABC=∠ACN.(3)∠ABC=∠ACN.理由:∵BA=BC,MA=MN,∠ABC=∠AMN,∴BAMA=BCMN,∠BAC=∠MAN,∴△ABC∽△AMN,∴ABAM=AC AN.又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.。

华东师大版九年级数学上册 第23章 图形的相似 单元检测试卷及解析

华东师大版九年级数学上册 第23章 图形的相似 单元检测试卷及解析

华东师大版九年级数学上册 第23章 图形的相似 单元检测试卷 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(-2,3)向右平移3个单位长度后的坐标为( )A. (3,6)B. (1,3)C. (1,6)D. (3,3)2.已知△ABC 平移后得到△A 1B 1C 1,且A 1(﹣2,3),B 1(﹣4,﹣1),C 1(m ,n ),C (m+5,n+3),则A ,B 两点的坐标为( )A. (3,6),(1,2)B. (-7,0),(-9,-4)C. (1,8),(-1,4)D. (-7,-2),(0,-9)3.点P (x ,y ),且xy <0,则点P 在( )A. 第一象限或第二象限B. 第一象限或第三象限C. 第一象限或第四象限D. 第二象限或第四象限4.把点A (2,5)向下平移3个单位长度后,再向右平移2个单位长度,它的坐标是( )A. (﹣1,5)B. (2,2)C. (4,2)D. (﹣1,7)5.点M (3,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.一次函数24y x =+交y 轴于点A ,则点A 的坐标为 ( )A. (0,4)B. (4,0)C. (-2,0)D. (0,-2)7.点P 位于x 轴下方,距离x 轴5个单位,位于y 轴右方,距离y 轴3个单位,那么P 点的坐标是( )A .(5,-3)B .(3,-5)C .(-5,3)D .(-3,5) 8.下列说法正确的是( )A. 相似两个五边形一定是位似图形B. 两个大小不同的正三角形一定是位似图形C. 两个位似图形一定是相似图形D. 所有的正方形都是位似图形9.下列说法中,不正确的是( )A. 直角边长分别是6、4和4.5、3的两个直角三角形相似B. 底角为40°的两个等腰三角形相似C. 一个锐角为30°的两个直角三角形相似D. 有个角为30°的两个等腰三角形相似10.已知点A 的坐标为(a ,b),O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA 1,则点A 1的坐标为( )A (−a ,b)A. (a ,−b) B. (−b ,a) C. (b ,−a)第II 卷(非选择题)请点击修改第II 卷的文字说明二、解答题(题型注释)1的正方形,△ABC 与△A′B′C′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.画出位似中心点O ,并直接写出△ABC 与△A′B′C′的位似比.12.如图,是一块三角形土地,它的底边BC 长为100米,高AH 为80米,某单位要沿着底边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上,若大楼的宽是40米,求这个矩形的面积。

华师大版九年级上册数学第23章 图形的相似 含答案

华师大版九年级上册数学第23章 图形的相似 含答案

华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、点在轴上,则a的值为()A.2B.0C.1D.-12、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD ②AC2=AD•DB ③BC2=BD•BA ④CD2=AD•DB.A.1个B.2个C.3个D.4个3、下列各选项中的两个图形不一定相似的是()A.两个正方形B.两个等边三角形C.各有100°角的两个等腰三角形D.各有45°角的两个等腰三角形4、已知a=1,b=,c=,那么()A.a是b、c 的比例中项B.c是a、b的比例中项C.b是a、c的比例中项D.1是a、b、c的第四比例项5、一个梯形的上底长8cm,中位线长10cm,则其下底长为()cm.A.8B.10C.12D.146、如图,如果一只蚂蚁以均匀的速度沿台阶 A1→ A2→ A3→ A4→A5爬行,那么蚂蚁爬行的高度 h 随时间 t 变化的图象大致是( )A. B. C. D.7、在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)8、一个矩形按如图1的方式分割成三个直角三角形,把较大两个三角形纸片按图2中①、②两种方式放置,设①中的阴影部分面积为,②中的阴影部分面积为,当时,则矩形的长短两边之比为()A.2B.C.D.9、已知点A(﹣2,1)与B点关于直线x=1成轴对称,则点B的坐标是()A.(4,1)B.(4,﹣2)C.(﹣4,1)D.(﹣4,﹣1)10、阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE,(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米11、四边形ABCD相似四边形A'B'C'D',且AB:A'B'=1:2,已知BC=8,则B'C'的长是A.4B.16C.24D.6412、在平面直角坐标系中,将点P(-4,-2)先向上平移3个单位长度,再向左平移2个单位长度后得到的点的坐标是( )A.(-6,1)B.(-2,1)C.(-1,-4)D.(-1,0)13、如果两个相似三角形的面积比是1:2,那么它们的周长比是()A.1:2B.1:4C.1:D.2:114、已知点A(4,3)和点B是坐标平面内的两个点,且它们关于过点(﹣3,0)与y轴平行的直线对称,则点B的坐标是()A.(1,3)B.(﹣10,3)C.(4,3)D.(4,1)15、如图,△ABC中,∠C=90°,CD⊥AB,若AC=3,AB=4,则AD=()A.1B.C.D.5二、填空题(共10题,共计30分)16、已知△ABC∽△DEF ,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为________.17、如图,在平面直角坐标系中,,两点的坐标分别为和,为等边三角形,则点的坐标为________.18、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为________ .在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有________ 个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________ ;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.19、如图,在矩形ABCD中,AB=3,AD=7,点E是AD边上的一点,连接BE,将BE绕点E顺时针旋转90°至B′E,连接B′D,当△B′ED是直角三角形时,线段AE的长为________.20、如图,已知,,绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P、Q.当为BD为底边的等腰三角形时,的长为________.21、如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=________.22、在电影票上,将“3排6号”简记为(3,6),则(4,12)表示的意义是________ .23、如图,在△ABC中,AD,BE分别是BC,AC边上的中线,AD,BE交于点G,GF ∥AC,则________.24、已知线段c是线段a、b的比例中项,若,,则________.25、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是________三、解答题(共5题,共计25分)26、已知,且x+y-z=2,求x、y、z的值.27、如图,已知△ABC∽△AED,AD=5cm,AC=10cm,AE=6cm,∠A=66°,∠ADE=65°,求AB的长及∠C的度数.28、如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,求EH的长.29、如图,正方形的边长为,以直线为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留)30、如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,这个正方形零件的边长是多少mm.参考答案一、单选题(共15题,共计45分)1、D2、C3、D5、C6、B7、B8、B9、A10、A11、B12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

华师大版九年级上册数学第23章 图形的相似含答案

华师大版九年级上册数学第23章 图形的相似含答案

华师大版九年级上册数学第23章图形的相似含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠E的度数为()A.70°B.80°C.90°D.120°2、如图,已知,点是的中点,,则的长为()A.2B.4C.D.3、用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M 为AD的中点.用这两部分纸片可以拼成图2所示的Rt△BCE.若Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB=a,BC=b,b满足a+b=m﹣1,ab=m+1,则点D到CM的距离为()A.2B.4C.2D.4、在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)5、下列各组图形中不是位似图形的是()A. B. C. D.6、下列命题中,错误的是()A.所有的正多边形都相似B.有一对锐角相等的两个直角三角形相似 C.全等的三角形一定相似 D.所有的等边三角形都相似7、在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第2021个正方形四条边上的整点个数共有()A.2021个B.4042个C.6063个D.8084个8、如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以P点为位似中心的位似图形,则P点的坐标是().A. (-3,4)B. (-3,-3)C. (-4,-4)D.(-4,-3)9、如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.D.10、若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变11、冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射.此时竖一根a米长的竹杆,其影长为b米,某单位计划想建m米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年四季不受影响?().A. 米B. 米C. 米D.abm 米12、如图,△ABC的项点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,后再向下平移5个单位,得到△A′B′C,那么点A′的坐标是()A.(-3,-2)B.(3,-8)C.(-2,-1)D.(1,-1)13、如图,在△ABC中,DE∥BC,,则()A. B. C. D.14、两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为().A.48cmB.54cmC.56cmD.64cm15、若两个相似三角形的相似比是1:2,则它们的面积比等于()A.1:B.1:2C.1:3D.1:4二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,在∠ABC的内部作∠ABE=45°,EC⊥BC点D在AB上,DE、AC相交点F,若以DE为直径的⊙O与AB、BC都相切,切点分别为点D和G,则的值是________.17、如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE 与△ABC的面积之比为________.18、三角形是由三角形平移得到的,点的对应点为,若点的坐标为,则点的对应点C的坐标为________.19、如图,在平面直角坐标系中,点A(0,1),点B为直线y= x上的一个动点,∠ABC=90°,BC=2AB,则OC的最小值为________.20、在平面直角坐标系中,点A、B、C的坐标分别为、、,点E是的外接圆上一点,BE交线段AC于点D,若,则点D的坐标为________.21、已知点和点,若直线轴,且,则的值________.22、如图,在直角坐标系中,点、点、,则外接圆的半径为________.23、已知点P是线段AB的黄金分割点,且PA>PB,若PA=2,AB=x,PB=y,则y与x之间的函数关系式为________.24、如图,在正方形中,E是边的中点,F是边上异于B,C 的一点.⑴若,则________;⑵若,则________;⑶当与满足数量关系________时,.25、如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是________.三、解答题(共5题,共计25分)26、已知,且x+y-z=2,求x、y、z的值.27、如图,矩形中,,,点分别在,边上,,求证:矩形矩形.28、如图,小明在地面上放置一个平面镜来测量铁塔的高度,镜子与铁塔的距离米,镜子与小明的距离米时,小明刚好从镜子中看到铁塔顶端.已知小华的眼睛距地面的高度CD=1.6米,求铁塔的高度.(根据光的反射原理,)29、生活中存在大量的形状相同的图形,试举出几例.30、如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h 上,索塔h垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:≈2.24,≈1.41)参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、D6、A7、D8、D9、D10、D11、A12、A13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

华东师大版九年级数学上册 第23章 图形的相似 单元测试题(有答案)

华东师大版九年级数学上册 第23章 图形的相似 单元测试题(有答案)

第23章图形的相似一、选择题1. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个3.△ABC与△A′B′C′相似,且△ABC与△A′B′C′的相似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.124.如图,在□ABCD中,点E为AD的中点,连接BE交AC于点F,则AF∶CF= ()A.1∶2 B.1∶3 C.2∶3 D.2∶55.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似.A.1个B.2个C.3个D.4个6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S △BCD =时,t的值为()第 1 页A.2或2+3 B.2或2+3 C.3或3+5 D.3或3+57. 一个铝质三角形框架三条边长分别为24 cm、30 cm、36 cm,要做一个与它相似的铝质三角形框架,现有长为27 cm、45 cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边,截法有()A.0种B.1种C.2种D.3种8. 某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条,如图所示,在Rt △ABC 中,∠C =90°, AC =30 cm , AB =50 cm ,依次裁下宽为1 cm 的纸条a 1 、a 2 、a 3 、…,若使裁得的矩形纸条长度不小于5 cm ,则每张直角三角形彩纸能裁成矩形纸条的条数为()A.24 B.25 26 D.279. 一个铝质三角形框架三条边长分别为24 cm,30 cm,36 cm,要做一个与它相似的铝质三角形框架,现有长为27 cm,45 cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种10. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值()A.只有1个B.可以有2个C.有2个以上但有限D.有无数个二、填空题11.如图,直线l 1 ∥l 2 ∥l 3 ,另两条直线分别交l 1 、l 2 、l 3 于点A、B、C及点D、E、F,且AB=3,DE=4,DF=6,则BC=.12.如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4)。

第23章 图形的相似 华东师大版数学九年级上册素养检测(含解析)

第23章 图形的相似 华东师大版数学九年级上册素养检测(含解析)

第23章 素养综合检测(满分100分,限时60分钟)一、选择题(每小题4分,共32分)1.(2023浙江金华期末)如图,已知△ABC,点D,E分别在边AB,AC的反向延长线上,且DE∥BC.若AE=4,AC=8,AD=5,则AB=( )A.5B.8C.10D.152.(2022浙江台州中考)如图所示的是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为( )A.(40,-a)B.(-40,a)C.(-40,-a)D.(a,-40)3.(2023四川资阳安岳期末)如图,在△ABC中,D、E、F分别是AB、AC、BC的中点,若∠CFE=55°,则∠ADE的度数为( )A.65°B.60°C.55°D.50°4.(2022江苏徐州中考)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )A.5B.6C.163D.1735.【新情境·雷锋雕像中的黄金比】【方程思想】(2022湖南衡阳中考)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比等于下部与全部的高度比,可以增加视觉美感.如图所示的是按此比例设计的一座高度为2 m 的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01 m .参考数据:2≈1.414,3≈1.732,5≈2.236)( )A.0.73 mB.1.24 mC.1.37 mD.1.42 m6.(2022山东东营中考)如图,点D 为△ABC 边AB 上任一点,DE ∥BC 交AC 于点E ,连结BE 、CD 相交于点F ,则下列等式中不成立的是( )A.AD DB =AE ECB.DE BC =DF FCC.DE BC =AE ECD.EF BF =AE AC 7.(2022重庆渝中巴蜀中学模拟)如图,菱形ABCD 中,点B 坐标为(2,1),点C 坐标为(1,0),点D 在y 轴正半轴上,以点C 为位似中心,在x 轴的下方作菱形ABCD 的位似图形菱形A'B'CD',并把菱形ABCD 的边长放大到原来的2倍,则点B 的对应点B'的横坐标是( )A.-1.5B.-0.5C.-2D.-18.(2023山西晋中榆次一中月考)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD∶DC=2∶1,CE∶AE=2∶1,BE与AD相交于点F,则下列结论:①∠AFE=60°,②CE2=DF·DA,③AF·BE=AE·AC.其中正确的有( )A.3个B.2个C.1个D.0个二、填空题(每小题4分,共20分)9.(2023四川成都二十中月考)如图,A(1,0),B(0,2),若将线段AB平移至A1B1,则a= ,b= .10.【主题教育·爱国主义教育】【跨学科·物理】(2022北京东城模拟)据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了世界上第1个“小孔成像”的实验,阐释了光的直线传播原理,如图1所示.如图2所示的小孔成像实验中,若物距为10 cm,像距为15 cm,蜡烛火焰倒立的像的高度是6 cm,则蜡烛火焰的高度是 cm.图1 图211.【新独家原创】如图,点A是平面直角坐标系xOy中y轴上一点,其坐标为(0,-5).现以点A为圆心、13为半径作圆A,交x轴的负半轴于点B,则点B的坐标为 .第11题图 第12题图12.(2023吉林白城大安期末)如图,直线a∥b∥c,它们依次交直线m、n于点A、C、E 和B、D、F,已知AC=4,CE=6,BD=3,那么BF等于 .13.(2023山东日照东港新营中学月考)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排放入(不重叠)边长为1的小正方形纸片,最下面的一层小纸片的一条边都在AB上,首尾两个小正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放 个小正方形纸片.三、解答题(共48分)14.(2023湖南张家界永定期中)(8分)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,求DF的长.15.(2023吉林白城大安期末)(8分)按要求画图.(1)画出图①的另一半,使它成为一个轴对称图形;(2)画出图②绕O点按顺时针旋转90°后的图形;(3)画出图③按相似比为1∶2缩小后的图形.16.【一题多解】(2022陕西中考B卷)(10分)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.17.【一线三等角模型】(2023湖南衡阳衡南一中月考)(10分)如图,在△ABC 中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.18.【项目式学习试题】(2022陕西榆林榆阳模拟)(12分)紫云楼是大唐芙蓉园的标志性建筑.小强所在的“综合与实践”小组开展了测量“紫云楼高度”的实践活动.他们制订了测量方案,并完成了实地测量.为了减小误差,测量两点之间的距离时都分别测量了两次并取它们的平均值作为测量结果,测量结果如下表:课题测量紫云楼的高度平面镜、皮尺等测量工具测量示意图说明:如图,小强先在地面上A处放置了一块平面镜,然后从A点向后退了一段距离至B处,他的眼睛F恰好看到了镜中紫云楼最高点E的像;再将平面镜向后移动一段距离放在C处,小强从C点后退一段距离至D处,眼睛G恰好又看到了紫云楼最高点E的像,已知小强眼睛距地面的高度FB=GD,且FB⊥OD,GD⊥OD,OE⊥OD,点O,A,B,C,D在同一条直线上测量项目第一次第二次第三次A、C之间的距离13.2米12.8米13米C、D之间的距离1.6米1.4米1.5米测量数据A、B之间的距离0.95米1.05米1米已知数据小强眼睛距地面的高度(FB、GD)1.5米根据以上测量结果,请你帮助该“综合与实践”小组求出紫云楼的高度OE.(平面镜的厚度忽略不计)答案全解全析1.C ∵DE ∥BC ,∴AE AC =AD AB ,∵AE =4,AC =8,AD =5,∴48=5AB ,解得AB =10.2.B ∵飞机E (40,a )与飞机D 关于y 轴对称,∴飞机D 的坐标为(-40,a ).3.C ∵D 、E 、F 分别是AB 、AC 、BC 的中点,∴EF ∥AB ,DE ∥BC ,∴∠B =∠CFE =55°,∠ADE =∠B =55°.4.C 如图,∵CD ∥AB ,∴△ABE ∽△CDE ,∴AE CE =AB CD =42=2,∴S 阴影=23S △ABC =23×12×4×4=163.5.B 设下部的高度为x m,则上部高度为(2-x )m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比等于下部与全部的高度比,∴2―x x =x 2,解得x =5-1或x =-5-1(舍去),经检验,x =5-1是原方程的解,∴x =5-1≈1.24.6.C ∵DE ∥BC ,∴AD DB =AE EC ,故A 成立;∵DE ∥BC ,∴△EDF ∽△BCF ,∴DE BC =DF FC ,故B 成立;∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC ≠AE EC ,故C 不成立;∵△EDF ∽△BCF ,∴EF BF =DE BC ,又∵AE AC =DE BC ,∴EF BF =AE AC ,故D 成立.7.D 如图,过点B 作BM ⊥x 轴于M ,过点B'作B'N ⊥x 轴于N ,则BM ∥B'N ,∴CM CN =CB CB′,∵把菱形ABCD 的边长放大到原来的2倍得到菱形A'B'CD',∴CB'=2CB ,∵点B 坐标为(2,1),点C 坐标为(1,0),∴OC =CM =1,∴CN =2,∴ON =1,∴点B'的横坐标是-1.8.A ∵△ABC 是等边三角形,∴AB =BC =AC ,∠BAC =∠ABC =∠BCA =60°,∵BD ∶DC =2∶1,CE ∶AE =2∶1,∴BD =CE ,∴△ABD ≌△BCE ,∴∠BAD =∠CBE ,∵∠ABE +∠EBD =60°,∴∠ABE +∠BAD =60°,∵∠AFE 是△ABF 的外角,∴∠AFE =60°,∴①正确;∵∠BFD =∠AFE =∠ABD =60°,∠BDF =∠ADB ,∴△BDF ∽△ADB ,∴BD AD =DF DB ,∴BD 2=DF ·DA ,∴CE 2=DF ·DA ,∴②正确;∵∠BAE =∠AFE =60°,∠FEA =∠AEB ,∴△AFE ∽△BAE ,∴AF AB =AE BE ,∴AF ·BE =AE ·AB ,∴AF ·BE =AE ·AC ,∴③正确.故选A .9.2;2解析 ∵A (1,0),A 1(3,b ),B (0,2),B 1(a ,4),∴a =0+(3-1)=2,b =4-(2-0)=2.10.4解析 设蜡烛火焰的高度是x cm,由相似三角形的性质可得1015=x 6,解得x =4,即蜡烛火焰的高度是4 cm .11.(-12,0)解析 如图,连结AB ,∵点A 坐标为(0,-5),∴OA =5.∵☉A 的半径为13,∴AB =13,∴OB =AB 2―OA 2=132―52=12,∴点B 的坐标为(-12,0).12.7.5解析 ∵直线a ∥b ∥c ,∴AC CE =BD DF ,∵AC =4,CE =6,BD =3,∴46=3DF ,解得DF =4.5,∵BD =3,∴BF =BD +DF =3+4.5=7.5.13.16解析 如图,过点C 作CF ⊥AB 于点F.在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,由勾股定理得AB =AC 2+BC 2=10,∴S △ABC =12AB ·CF =12AC ·BC ,∴CF =AC·BC AB =4.8,∴小正方形最多可以摆放4层.∵DE ∥AB ,∴△CED ∽△CAB ,∴DE AB =4.8―14.8,∴DE =9512≈7.9,∴最下面一层有7个小正方形.同理可得GH AB =4.8―24.8,∴GH =356≈5.8,∴从下往上数第二层有5个小正方形. 同理易得,从下往上数第三层有3个小正方形,最上面一层有1个小正方形,∴最多能摆放7+5+3+1=16个小正方形纸片.14.解析 ∵AD ∥BE ∥CF ,∴AB BC =DE EF ,∵AB =1,BC =3,DE =2,∴13=2EF ,∴EF =6,∴DF =DE +EF =2+6=8,∴DF 的长为8.15.解析 (1)如图,图④为图①的另一半,整个图形为轴对称图形(答案不唯一).(2)如图,图⑤为图②绕O 点按顺时针旋转90°后的图形.(3)如图,图⑥为图③按相似比为1∶2缩小后的图形(答案不唯一).16.解析 解法1:(两次相似)∵AD ∥EG ,∴∠ADO =∠EGF ,∵∠AOD =∠EFG =90°,∴△AOD ∽△EFG ,∴AO EF =OD FG ,即AO 1.8=202.4,∴AO =15. 同理可得△BOC ∽△AOD ,∴BO AO =OC OD ,即BO 15=1620,∴BO =12,∴AB =AO -BO =15-12=3,故旗杆的高AB 是3米.解法2:(构造相似三角形)如图,过点C 作CM ⊥OD 交AD 于M ,易得△EGF ∽△MDC ,∴EF FG =CM DC ,即1.82.4=CM 20―16,∴CM =3,∵AB ∥CM ,AD ∥CB ,∴四边形ABCM 为平行四边形,∴AB =CM =3,故旗杆的高AB 是3米.17.解析 (1)证明:∵AB =AC ,∴∠B =∠C ,∵∠APD =∠B ,∴180°-∠B -∠APB =180°-∠APD -∠APB ,∵∠BAP =180°-∠B -∠APB ,∠CPD =180°-∠APD -∠APB ,∴∠BAP =∠CPD ,∴△ABP ∽△PCD ,∴AB CP =BP CD ,∴AB ·CD =CP ·BP ,∵AB =AC ,∴AC ·CD =CP ·BP.(2)由AB CP =BP CD ,得AB BP =CP CD ,∵PD ∥AB ,∴CP BC =CD AC ,∴CP CD =BC AC ,∴AB BP =BC AC ,∵AB =AC =10,BC =12,∴BP =AB·AC BC =10×1012=253,∴BP 的长是253.18.解析 由题意可得AB =1米,AC =13米,CD =1.5米,GD =FB =1.5米,设OA =x 米,则OC =(x +13)米,根据入射角等于反射角易得△AOE ∽△ABF ,△DCG ∽△OCE ,∴AB AO =FB OE ,DC OC =DG EO ,∴1x =1.5OE ,∴OE =1.5x 米,由 1.5x +13=1.51.5x ,得x =26,∴OE =1.5×26=39(米),故紫云楼的高度OE 是39米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第23章 图形的相似检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.下列四组图形中,不是相似图形的是( )2如图,为估算某河的宽度,在河对岸岸边选定一个目标点,在近岸取点,C ,AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m,EC = 10 m,CD =20 m,则河的宽度AB 等于( )A.60 mB.40 mC.30 mD.20 m3. (2016·兰州中考)如图,在△ABC 中,DE ∥BC ,若,则=( )A.B.C.D.4.若875c b a ==,且,则的值是( )A.14B.42C.7D.314 5. (2016·重庆A 卷中考)△ABC 与△DEF 的相似比为1∶4,则△ABC 与△DEF 的周长比为( )A.1∶2B.1∶3C.1∶4D.1∶166.如图,//,//,分别交于点,则图中共有相似三角形( )A.4对B.5对C. 6对D.7对AB C D7.已知△如图所示,则下列4个三角形中,与△相似的是( )8. (2015·湖南株洲中考)如图,已知AB ,CD ,EF 都与BD 垂直,垂足分别是B ,D ,F ,且AB =1,CD =3,那么EF 的长是( ) A.13 B.23 C.34 D.459.如图,笑脸盖住的点的坐标可能为( ) A . B . C. D.10.如图,正五边形是由正五边形经过位似变换得到的,若,则下列结论正确的是( ) A.B.x 第9题图 O y 第10题图 FH M A B D EC. D.11.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有1个B.可以有2个C.可以有3个D.有无数个12. (2016·河北中考)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( )A. B. C. D.二、填空题(每小题3分,共18分)13.已知,且,则_______.14.(2014·成都中考)如图,为估计池塘两岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA、OB的中点M,N,测的MN=32 m,则A,B两点间的距离是___________m.15. (2016·上海中考)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是 .16.如图,阳光从教室的窗户射入室内,窗户框在地面上的影长,窗户下沿到地面的距离,,那么窗户的高为________.17.(2015·山西中考)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80 cm,AD=24 cm,BC=25 cm,EH=4 cm,则点A到地面的距离是 cm.18. (2016·河南中考)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为 .三、解答题(共78分)19.(10分)已知线段成比例(a cb d),且a=6 cm,,,求线段的长度.20.(8分)(2016·杭州中考)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.21.(10分)试判断如图所示的两个矩形是否相似.22.(12分)(2015·上海中考)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.23.(12分)(2016·福州中考)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断与AC·CD的大小关系;(2)求∠ABD的度数.24.(12分)(2016·浙江宁波中考)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形.求完美分割线CD的长.图1 图225.(14分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.第25题图根据以上测量过程及测量数据,请你求出河宽BD是多少米?第23章图形的相似检测题参考答案1.D 解析:根据相似图形的定义知,A 、B 、C 项中的两个图形都为相似图形,D 项中的两个图形一个是等边三角形,一个是直角三角形,不是相似图形.2.B 解析:∵ AB ⊥BC ,CD ⊥BC ,∴ AB ∥CD ,∴ ∠A =∠D .又∠AEB =∠DEC , ∴ △BAE ∽△CDE ,∴ =.∵ BE 20 m ,EC 10 m ,CD 20 m ,∴ =,∴ AB =40 m.3. C 解析:∵ DE ∥BC ,∴ .∵ ,∴ ,故选C.点拨:平行线分线段成比例的内容是:两条直线被一组平行线所截,所截得的对应线段成比例.注意对应线段不能找错. 4.D 解析:设x cb a ===875,则所以15x -14x +8x =3,即x =13,所以314. 5. C 解析:△ABC 与△DEF 的周长比=△ABC 与△DEF 的相似比=1∶4. 点拨:掌握“相似三角形周长的比=相似比”是解答此题的关键. 6.C 解析:△∽△∽△∽△.7.C 解析:由对照四个选项知,C 项中的三角形与△相似. 8. C 解析:∵ AB ⊥BD ,CD ⊥BD ,EF ⊥BD ,∴ AB ∥CD ∥EF , ∴ △ABE ∽△DCE ,∴.∵ AB ∥CD ∥EF ,∴ △BEF ∽△BCD , ∴14EF BE BE CD BC BE EC ===+, ∴ EF =CD =.9.D 解析:A 项的点在第一象限;B 项的点在第二象限;C 项的点在第三象限;D 项的点在第四象限.笑脸在第四象限,所以选D. 10.B 解析:由正五边形是由正五边形经过位似变换得到的,知,所以选项B正确.11.B 解析:当一个直角三角形的两直角边长为6,8,且另一个与它相似的直角三角形的两直角边长为3,4时,x的值为5;当一个直角三角形的一直角边长为6,斜边长为8,另一直角边长为27,且另一个与它相似的直角三角形的一直角边长为3,斜边长为4时,x的值为7.故x的值可以为5或7.(其他情况均不成立)12. C 解析:因为选项A,B中,阴影三角形与原三角形有一个公共角且有一个角与原三角形的一个角相等,所以阴影三角形与原三角形相似;选项D中,阴影三角形与原三角形的两边对应成比例且对应边的夹角相等,所以阴影三角形与原三角形相似;选项C中,虽然阴影三角形与原三角形的两边对应成比例,但对应边的夹角不相等,所以选项C中的阴影三角形与原三角形不相似.故答案为C.13.4 解析:因为,所以设,所以所以14.64 解析:根据三角形中位线定理,得AB=2MN=2×32=64(m).15.解析:如图,∵ D、E分别是边AB、AC的中点,∴ DE是△ABC的中位线.∴ DE∥BC,DE=BC.∴ △ADE∽△ABC.∴ ===.规律:相似三角形对应中线、对应角平分线、对应高的比等于相似比;相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.16.解析:∵∥,∴△∽△,∴,即.又,,,∴17.80.8解析:如图所示,作AM⊥EF,垂足为点M,则AM的长即为点A到EF的距离.作CN⊥AB,垂足为点N,则四边形ADCN是矩形,AD=CN.∵ ∠CNB=∠AMB,∠CBN =∠ABM,∴ △CNB∽△AMB,∴ ,∴ ,∴ AM,∴ 点A到地面的距离=AM+4480.8(cm).18.或解析:分两种情况:(1)如图1,当B′M=1时,B′N=2,由折叠知AB′=AB=3,BE=B′E,∠ABE=∠AB′E=90°,易证△AB′M∽△B′EN,∴ =.在Rt△AB′M中,由勾股定理求得AM=2,即=,∴ B′E=BE=.(2)如图2,当B′M=2时,B′N=1,由折叠知AB′=AB=3,BE=B′E,∠ABE=∠AB′E=90°,易证△AB′M∽△B′EN,∴ =.在Rt△AB′M中,由勾股定理求得AM=,即=,∴ B′E=BE=.综上所述,BE的长为或.图1 图2点拨:涉及折叠的问题,通常根据其性质找到全等的图形,进而得到相等的角和相等的线段.求线段的长度一般通过寻找相似三角形,根据相似三角形的对应边成比例,建立关于某个未知数的等式来求解.19.分析:列比例式时,单位一定要统一,做题时要看仔细.解:∵ 6 cm,,,∴ =a cb d,即,解得.20. (1) 证明:因为∠AED =∠B ,∠DAE =∠CAB ,所以∠ADF =∠C . 又因为=,所以△ADF ∽△ACG .(2) 解:因为△ADF ∽△ACG ,所以=.又因为=,所以=,所以=1.解析:(1)由已知△ADF 与△ACG 有两组边对应成比例,要证两三角形相似,只需再证明∠ADF =∠C ,这可以由∠AED =∠B ,∠DAE =∠CAB 证得;(2)根据(1)中△ADF ∽△ACG 列出比例式=,进而求得的值.21.分析:要判定两个多边形相似,必须对应角相等,对应边成比例,因矩形的四个角都直角,符合对应角相等,只要证明对应边成比例即可. 解:因为两个图形都是矩形,显然它们的四个角都分别相等.从图中数据观察可知小矩形的长为20,宽为10, 于是两个矩形的长之比为4020=21,宽之比为212010=, 符合对应边成比例,对应角相等,故这两个矩形是相似的.22. 证明:(1)∵ OB =OE ,∴ ∠OEB =∠OBE .∵ 四边形ABCD 是平行四边形,∴ OB =OD .∴ OD =OE ,∴ ∠OED =∠ODE . 在△BED 中,∠OEB +∠OBE +∠ODE +∠OED =180°,∴ 2(∠OEB +∠OED )=180°,∴ ∠OEB +∠OED =90°,即∠BED =90°,∴ DE ⊥BE . (2)如图,设OE 交CD 于点H .∵ OE ⊥CD 于点H ,∴ ∠CHE =90°,∴ ∠CEH +∠HCE =90°. ∵ ∠CED =90°,∴∠CDE +∠DCE =90°.∴ ∠CDE =∠CEH . ∵ ∠OEB =∠OBE ,∴ ∠OBE =∠CDE . 在△CED 与△DEB 中,,,CED DEB CDE DBE ∠=∠⎧⎨∠=∠⎩∴ △CED ∽△DEB ,∴CE CDDE DB,∴BD·CE=CD·DE23.解:(1)∵ AD=BC=,∴==.∵AC=1,∴CD=1-=,∴=AC·CD.(2)∵=AC·CD,∴=AC·CD,即=.又∠C=∠C,∴△ABC∽△BDC.∴=.又AB=AC,∴ BD=BC=AD.∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°.解得x=36°.∴∠ABD=36°.解析:(1)分别求出与AC·CD的值,然后进行比较,得出它们之间的关系;(2)由(1)中=AC·AD,AD=BC,先证明△ABC∽△BDC,可得=.又AB=AC,从而有BD=BC=AD,设∠A=∠ABD=x,则∠ABC=∠C=∠BDC=2x,根据△ABC的内角和等于180°列方程求出∠ABD的度数.24.(1)证明:∵ ∠A=40°,∠B=60°,∴ ∠ACB=80°,∴ △ABC不是等腰三角形.∵ CD平分∠ACB,∴ ∠ACD=∠BCD=∠ACB=40°,∴ ∠ACD=∠A=40°,∴ △ACD为等腰三角形.∵ ∠DCB=∠A=40°,∠CBD=∠ABC,∴ △BCD∽△BAC.∴ CD是△ABC的完美分割线.(2)解:当AD=CD时(如图①),∠ACD=∠A=48°.∵ △BDC∽△BCA,∴ ∠BCD=∠A=48°,∴ ∠ACB=∠ACD+∠BCD=96°.当AD=AC时(如图②),∠ACD=∠ADC==66°.∵ △BDC∽△BCA,∴ ∠BCD=∠A=48°,∴ ∠ACB=∠ACD+∠BCD=114°.当AC=CD时(如图③),∠ADC=∠A=48°.∵ △BDC∽△BCA,∴ ∠BCD=∠A=48°.∵ ∠ADC>∠BCD,矛盾,舍去.∴ ∠ACB=96°或114°.①②③(3)解:由已知AC=AD=2.∵ △BCD∽△BAC,∴ =.设BD=x,∴ ,解得x=-1±.∵ x>0,∴ x=-1.∵ △BCD∽△BAC,∴ ==,∴ CD=×2=(-1)=.解析:(1)利用三角形内角和求得∠ACB=80°,得△ACB不是等腰三角形.利用角平分线的定义,得∠ACD=∠BCD=40°,从而证明△ACD为等腰三角形,△BCD∽△BAC,故CD是△ABC的完美分割线.(2)若△ACD是等腰三角形,则应分三种情况讨论:①AD=CD;②AD=AC;③AC=CD.①AD=CD与AD=AC时,求得∠ACD的度数,利用相似求得∠BCD的度数,进而求得∠ACB的度数;②AC=CD时,求得∠ADC的度数,利用相似求得∠BCD的度数,进而得矛盾结论,假设不成立.(3)根据条件得AC=AD=2,利用△BCD∽△BAC,得==,从而得=BD·BA,设BD=x,表示出BA,建立方程求得BD,再根据=求出CD的长.25.解:由题意,知∠BAD=∠BCE.∵ ∠ABD=∠CBE=90°,∴ △BAD∽△BCE.∴ BD AB BE BC=,∴1.79.6 1.2BD=.∴ BD=13.6.∴ 河宽BD是13.6米.。

相关文档
最新文档