动量定理知识点总结及随堂练习资料讲解
动量和动量定理-知识点与例题

动量和动量定理-知识点与例题动量和动量定理的应用知识点一——冲量(I)要点诠释:1.定义:力F和作用时间的乘积,叫做力的冲量。
2.公式:3.单位:4.方向:冲量是矢量,方向是由力F的方向决定。
5.注意:①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。
②用公式求冲量,该力只能是恒力1.推导:设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为则物体的加速度由牛顿第二定律2.动量定理:物体所受合外力的冲量等于物体的动量变化。
3.公式:或4.注意事项:②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。
当合外力是变力时,F 应该是合外力在这段时间内的平均值;③研究对象是单个物体或者系统;规律方法指导1.动量定理和牛顿第二定律的比较(1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律(2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。
(3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。
4.应用动量定理解题的步骤①选取研究对象;②确定所研究的物理过程及其始末状态;大小无关,C错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D错误。
答案:A【变式】关于冲量和动量,下列说法中错误的是()A.冲量是反映力和作用时间积累效果的物理量B.冲量是描述运动状态的物理量C.冲量是物体动量变化的原因D.冲量的方向与动量的方向一致答案:BD点拨:冲量是过程量;冲量的方向与动量变化的方向一致。
故BD错误。
类型二——用动量定理解释两类现象2.玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。
这是为什么?解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。
由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。
动量知识点总结

动量知识点总结1、动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。
是矢量,方向与v的方向相同。
两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。
冲量也是矢量,它的方向由力的方向决定。
2、动量定理:物体所受合外力的冲量等于它的动量的变化。
表达式:Ft=p′―p或Ft=mv′―mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的.F是研究对象所受的包括重力在内的所有外力的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
3、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1′+m2v2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
4、爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理。
动量定理知识点总结及随堂练习

动量定理与动量守恒一、动量和冲量1.动量——物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
⑶动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(4)研究一条直线上的动量要选择正方向2.动量的变化:p p p -'=∆由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
2.冲量——力和力的作用时间的乘积叫做冲量:I =Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(2)冲量是矢量,它的方向由力的方向决定。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(3)高中阶段只要求会用I=Ft 计算恒力的冲量。
(4)冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
(5)必须清楚某个冲量是哪个力的冲量(6)求合外力冲量的两种方法:A 、求合外力,再求合外力的冲量B 、先求各个力的冲量,再求矢量和二、动量定理1.动量定理——物体所受合外力的冲量等于物体的动量变化。
既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
(完整版)动量知识总结

动量知识总结第一单元 动量和动量定理一、动量、冲量1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p =mv ,动量的单位:kg ·m/s.(2速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v 的方向相同(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p 2=2mE k .2.动量的变化量(1)Δp =p t -p 0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同(3)求动量变化量的方法:①Δp =p t -p 0=mv 2-mv 1;②Δp =Ft .3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I =Ft ,冲量的单位:N ·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.(4)求冲量的方法:①I =Ft (适用于求恒力的冲量,力可以是合力也可能是某个力);②I =Δp .(可以是恒力也可是变力)二、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ft =p p -'或Ft =mv v m -'(2)动量定理的研究对象一般是单个物体(3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力对作用时间的平均值.(4)动量定理公式中的F Δt 是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中,如果作用在研究对象上的各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.三.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象一般是一个物体,研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)规定正方向.(3)进行受力分析,写出总冲量的表达式,如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(4)写出研究对象的初、末动量.(5)根据动量定理列式求解四、典型题1、动量和动量的变化例1 一个质量为m =40g 的乒乓球自高处落下,以速度v =1m/s 碰地,竖直向上弹回,碰撞时间极短,离地的速率为v '=0.5m/s 。
高一物理《动量和动量定理》知识点总结

高一物理《动量和动量定理》知识点总结
一、动量和动量变化量
1.动量
(1)定义:物体质量和速度的乘积。
(2)定义式:p=m v。
(3)单位:千克米每秒,符号是kg·m/s。
(4)方向:动量是矢量,其方向与速度的方向相同。
2.动量的变化量
(1)公式:Δp=p′-p。
(2)矢量性:动量的变化量是矢量。
二动量定理
1.冲量
(1)定义:力与力的作用时间的乘积,用字母I表示。
(2)定义式:I=FΔt。
(3)单位:牛秒,符号是N·s。
(4)意义:反映了力的作用对时间的累积效应。
2.动量定理
(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量。
(2)表达式:I=p′-p或F(t′-t)=m v′-m v。
3.动量定理的应用
根据动量定理可知:如果物体的动量发生的变化是一定的,那么作用时间短,物体受的力就大;作用时间长,物体受的力就小。
动量定理及动量守恒定律专题复习(附参考答案)

动量定理及动量守恒定律专题复习一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。
2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
特别是力作用在静止的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
(完整版)知识讲解动量动量定理(基础)
物理总复习:动量 动量定理编稿:刘学【考纲要求】1、理解动量的概念;2、理解冲量的概念并会计算;2、理解动量变化量的概念,会解决一维的问题;3、理解动量定理,熟练应用动量定理解决问题。
【知识网络】【考点梳理】考点一、动量和冲量1、动量(1)定义:运动物体的质量与速度的乘积。
(2)表达式:p mv =。
单位:/kg m s ⋅(3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。
(4)动量的变化量:21p p p ∆=-,p ∆是矢量,方向与v ∆一致。
(5)动量与动能的关系:2221()222k mv p E mv m m=== 2k p mE =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。
对“p ∆是矢量,方向与v ∆一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ∆=--=,方向向上,动量的变化量为:2p mv ∆=方向向上。
2、冲量(1)定义:力与力的作用时间的乘积。
(2)表达式:I Ft = 单位: N s ⋅(3)冲量是矢量:它由力的方向决定考点二、动量定理(1)内容:物体所受的合外力的冲量等于它的动量的变化量。
(2)表达式:21Ft p p =- 或 Ft p =∆(3)动量的变化率:根据牛顿第二定律 2121v v p p F ma mt t --===∆∆ 即 p F t∆=∆,这是动量的变化率,物体所受合外力等于动量的变化率。
如平抛运动物体动量的变化率等于重力mg 。
要点诠释:(1)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。
完整版)动量、动量守恒定律知识点总结
完整版)动量、动量守恒定律知识点总结龙文教育动量知识点总结一、对冲量的理解冲量是力在时间上的积累作用,可以用公式I=Ft计算XXX或平均力F的冲量。
对于变力的冲量,常用动量定理求。
对于合力的冲量,有两种求法:若物体受到的各个力作用的时间相同,且都为XXX,则I合=F合.t;若不同阶段受力不同,则I合为各个阶段冲量的矢量和。
二、对动量定理的理解动量定理指出,冲量等于物体动量的变化量,即I合=Δp=p2-p1=mΔv=mv2-mv1.冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。
需要注意的是,ΔP的方向由Δv决定,与p1、p2无必然的联系,计算时先规定正方向。
三、对动量守恒定律的理解动量守恒定律指出,相互作用的物体所组成的系统的总动量在相互作用前后保持不变。
需要注意的是,动量守恒定律的条件有三种:理想条件、近似条件和单方向守恒。
在满足这些条件的前提下,可以应用动量守恒定律求解问题。
四、碰撞类型及其遵循的规律碰撞类型包括一般的碰撞、完全弹性碰撞和完全非弹性碰撞。
对于这些碰撞类型,需要遵循相应的规律,如系统动量守恒、系统动能守恒等。
需要特别注意的是,在等质量弹性正碰时,两者速度交换,这是根据动量守恒和动能守恒得出的结论。
五、判断碰撞结果是否可能的方法判断碰撞结果是否可能,需要检查碰撞前后系统动量是否守恒,系统的动能是否增加,以及速度是否符合物理情景。
动能和动量之间的关系是EK=p=2mEK/2m。
六、反冲运动反冲运动是指静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象。
在反冲运动中,系统动量守恒。
人船模型是反冲运动的典型例子,需要满足动量守恒的条件。
七、临界条件处理“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的关键是,系统各组成部分具有共同的速度v。
八、动力学规律的选择依据在选择动力学规律时,需要根据题目涉及的时间t和物体间相互作用的情况进行选择。
如果涉及时间t,优先选择动量定理;如果涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒。
动量 动量定律知识点总结
动量动量定律知识点总结一、动量的概念(一)动量的定义动量是物体运动状态的基本属性,通常用符号p来表示,动量的定义为物体的质量m与速度v的乘积,即p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位为千克·米/秒(kg·m/s)。
(二)动量的方向动量与速度方向一致,即物体的速度方向决定了其动量的方向。
当物体的速度和运动方向发生改变时,其动量的方向也会发生相应的改变。
(三)动量的数量物体的动量大小与其质量和速度成正比,即动量的大小取决于物体的质量和速度,质量越大,速度越快,动量也越大。
二、动量定律的内容动量定律是描述物体运动状态的基本定律之一,包括了动量定律和动量守恒定律两个重要内容。
下面将分别对这两个内容进行详细的介绍。
(一)动量定律动量定律又称牛顿第二定律,它描述了物体受到外力作用时,产生的动量变化情况。
具体表述为:物体所受外力的冲量等于物体动量的变化量,即FΔt=Δp,其中F表示物体所受外力,Δt表示外力作用时间,Δp表示物体动量的变化量。
这个定律揭示了物体运动状态的变化和外力作用之间的关系,是动力学的基本定律之一。
动量定律适用于描述物体在外力作用下的运动状态和变化规律,可以用来分析和计算物体的加速度、速度和位置随时间的变化情况,是物理学中非常重要的一个定律。
(二)动量守恒定律动量守恒定律是描述多体系统中动量守恒的定律,它表示了多个物体在相互作用过程中动量守恒的规律。
具体表述为:一个封闭系统中,若物体之间不存在外力作用,那么系统的总动量保持不变,即Σpi=Σpf,其中Σpi表示系统初态的总动量,Σpf表示系统末态的总动量。
这个定律告诉我们,在没有外力作用的情况下,多体系统的总动量是守恒的,不会发生改变。
动量守恒定律适用于描述多体系统的动量变化规律,例如弹道问题、碰撞问题等都可以利用动量守恒定律来分析和计算。
它是物理学中重要的一个定律,有着很广泛的应用。
三、动量定律的适用条件动量定律是描述物体运动状态的基本定律之一,但并非适用于所有情况,下面将介绍动量定律的适用条件。
动量的知识点及题型解析
动量的知识点及题型解析一、动量知识点总结。
1. 动量的定义。
- 物体的质量和速度的乘积叫做动量,表达式为p = mv,单位是kg· m/s。
动量是矢量,方向与速度方向相同。
2. 冲量的定义。
- 力与力的作用时间的乘积叫做冲量,表达式为I = Ft,单位是N· s。
冲量也是矢量,方向与力的方向相同。
3. 动量定理。
- 合外力的冲量等于物体动量的变化量,表达式为I=Δ p,即Ft = mv - mv_0。
- 应用动量定理时,要注意选取正方向,与正方向相同的矢量取正值,相反的取负值。
4. 动量守恒定律。
- 内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
- 表达式:- m_1v_1 + m_2v_2=m_1v_1'+m_2v_2'(适用于两物体相互作用的情况)- 对于多个物体组成的系统:∑_i = 1^nm_iv_i=∑_i = 1^nm_iv_i'- 适用条件:系统不受外力或者所受外力的矢量和为零;当系统所受外力远小于内力时,可近似认为系统动量守恒(如碰撞、爆炸等过程)。
5. 碰撞。
- 弹性碰撞:碰撞过程中系统的动量守恒,机械能也守恒。
- 对于质量分别为m_1、m_2,碰撞前速度分别为v_1、v_2,碰撞后速度分别为v_1'、v_2'的两物体,有<=ft{begin{array}{l}m_1v_1 + m_2v_2=m_1v_1'+m_2v_2' (1)/(2)m_1v_1^2+(1)/(2)m_2v_2^2=(1)/(2)m_1v_1'^2+(1)/(2)m_2v_2'^2end{array}right.- 非弹性碰撞:碰撞过程中系统的动量守恒,但机械能有损失。
- 完全非弹性碰撞:碰撞后两物体粘在一起,以共同速度运动,系统动量守恒,机械能损失最大。
二、动量题型解析(20题)(一)动量定理相关题型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量定理与动量守恒一、动量和冲量1.动量——物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
⑶动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(4)研究一条直线上的动量要选择正方向2.动量的变化:p p p -'=∆由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
2.冲量——力和力的作用时间的乘积叫做冲量:I =Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(2)冲量是矢量,它的方向由力的方向决定。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(3)高中阶段只要求会用I=Ft 计算恒力的冲量。
(4)冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
(5)必须清楚某个冲量是哪个力的冲量(6)求合外力冲量的两种方法:A 、求合外力,再求合外力的冲量B 、先求各个力的冲量,再求矢量和二、动量定理1.动量定理——物体所受合外力的冲量等于物体的动量变化。
既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
动量定理和牛顿第二定律的联系与区别 ①、ma tmv mv F =-12=合 形式可以相互转化②、tp F ∆∆=合动量的变化率,表示动量变化的快慢 ③、牛顿定律适用宏观低速,而动量定理适用于宏观微观高速低速④、都是以地面为参考系(4)动量定理表达式是矢量式。
在一维情况下,各个矢量以同一个规定的方向为正。
(5)如果是变力,那么F 表示平均值(6)对比于动能定理I = F t = m v 2 - m v 1W = F s =21 m v 22 -21 m v 21 3.动量定理的定量计算 ⑴明确研究对象和研究过程。
研究对象可以是一个物体,也可以是几个物体组成的质点组。
质点组内各物体可以是保持相对静止的,也可以是相对运动的。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
⑵进行受力分析。
只分析研究对象以外的物体施给研究对象的力。
⑶规定正方向。
由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。
⑷写出初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。
⑸根据动量定理列式求解。
4.在F -t 图中的冲量:F -t 图上的“面积”表示冲量的大小。
三、动量守恒定律1.动量守恒定律的内容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:22112211v m v m v m v m '+'=+ 守恒是指整个过程任意时刻相等(时时相等,类比匀速) 定律适用于宏观和微观高速和低速2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
3.动量守恒定律的表达形式(1)22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 24、理解:①正方向②同参同系③微观和宏观都适用5.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。
5.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。
(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。
注意:在研究地面上物体间相互作用的过程时,各物体的速度均应取地球为参考系。
(4)确定好正方向建立动量守恒方程求解。
四、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
(1)弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
(这个结论最好背下来,以后经常要用到。
) (2)弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
(3)弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ/ /过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为: ()()21212122121122121m m v m m v m m v m E k +='+-=∆。
【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v 。
【例2】 动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。
若已知碰撞后A 的动量减小了2kg ∙m/s ,而方向不变,那么A 、B 质量之比的可能范围是什么?2.子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例4】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例5】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:(1)A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。
【例9】两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为kg m A 5.0=,kg m B 3.0=,它们的下底面光滑,上表面粗糙;另有一质量kg m C 1.0=的滑块C (可视为质点),以s m v C /25=的速度恰好水平地滑到A 的上表面,如图所示,由于摩擦,滑块最后停在木块B 上,B 和C 的共同速度为3.0m/s ,求:(1)木块A 的最终速度A v ; (2)滑块C 离开A 时的速度C v '。
【例10】如图所示,质量为m2 和m3 的物体静止在光滑水平面上,两者之间有压缩着的弹簧,有质量为m1 的物体以v0 速度向右冲来,为了防止冲撞,m2 物体将m3 物体发射出去,m3 与m1 碰撞后粘合在一起. 问m3 的速度至少应多大,才能使以后m3 和m2 不发生碰撞?。