二项式定理考点大全(详解)
《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理知识点总结

二项式定理一、二项式定理:()nn n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做()n b a +的二项展开式,其中各项的系数kn C )3,2,1,0(n k ⋅⋅⋅=叫做二项式系数。
对二项式定理的理解: (1)二项展开式有1+n 项(2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n )(4)要注意二项式定理的双向功能:一方面可将二项式()nb a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()nb a +二、二项展开式的通项:kk n k nk b a C T -+=1 二项展开式的通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=的理解:(1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n(3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素例1.nnn n n n C C C C 1321393-++++ 等于 ( )A .n4 B 。
第03讲二项式定理(精讲)(原卷版)_1

第03讲 二项式定理目录第一部分:知识点必背 .............................................. 1 第二部分:高考真题回归 ............................................. 2 第三部分:高频考点一遍过 ........................................... 3 高频考点一:求二项展开式的特定项(或系数) ...................... 3 高频考点二:两个二项式之积中特定项(或系数)问题 ................ 3 高频考点三:三项展开式中特定项(或系数)问题 .................... 4 高频考点四:二项式系数和与系数和 ................................ 5 高频考点五:二项展开式的逆应用 .................................. 6 高频考点六:二项式系数最大问题 .................................. 6 高频考点七:系数最大问题 ........................................ 7 第四部分:数学文化题 . (9)第一部分:知识点必背知识点一:二项式定理 (1)二项式定理一般地,对于每个k (0,1,2,k n =),()n a b +的展开式中n k k a b -共有k n C 个,将它们合并同类项,就可以得到二项展开式:nn n r r n r n n n n n n n n b a C b a C b a C b a C b a C b a 022211100)(++++++=+--- (n N *∈).0,1,2,n ),项的系数是指该项中除变量外的常数部分0,1,2,n )叫做二项展开式的通项通项体现了二项展开式的项数、系数、次数的变化规律如含指定幂的项常数项、中间项、有理项、系数最大的项等①对称性:二项展开式中与首尾两端距离相等的两个二项式系数相等:(2)奇数项的二项式系数和与偶数项的二项式系数和相等:()02131*2n n n n n C C C C n N -++⋅⋅⋅=++⋅⋅⋅=∈第二部分:高考真题回归第三部分:高频考点一遍过高频考点一:求二项展开式的特定项(或系数)高频考点二:两个二项式之积中特定项(或系数)问题典型例题例题1.(2023秋·重庆沙坪坝·高三重庆一中校考阶段练习)已知实数x不为零,则26+-的展开式中x x(1)(1)2x项的系数为.高频考点三:三项展开式中特定项(或系数)问题高频考点四:二项式系数和与系数和1010a x ++,则22101359)()a a a a a -++++++的值为 2023春·山东菏泽·高二山东省鄄城县第一中学校考阶段练习)设()220230122023a a x a x a x x +++⋅⋅⋅+∈R .32023a a ++的值.22023a a +++.云南昆明·高二校考阶段练习)高频考点五:二项展开式的逆应用典型例题例题1.(2023春·黑龙江七台河·高二勃利县高级中学校考期中)()12312C 4C 8C 2C nnn n n n -+-++-=( ).A .1B .-1C .(-1)nD .3n例题2.(2023春·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-=,则n 的值为 .例题3.(2023·全国·高三专题练习)已知12n n a -=,解关于n 的不等式:012312341C C C C C 2024n n n n n n n a a a a a +++++⋅⋅⋅+<.练透核心考点1.(2023秋·高二课时练习)化简:设n +∈N ,则()()011C 2C 21C 21C knn n k n kn n n n n ---++-++-= .2.(2023春·上海浦东新·高二校考期中)0122C 2C 2C 2C n n n n n n ++++= .3.(2023春·辽宁·高三辽师大附中校考阶段练习)0122332022202220232023202320232023202320232023C 2C 2C 2C 2C 2C -+-++-的值是 .高频考点六:二项式系数最大问题高频考点七:系数最大问题典型例题例题1.(2023·全国·高二随堂练习)已知()1nx +的展开式中第5,6,7项系数成等差数列,求展开式中系数最大的项.(2)求展开式中项的系数最大的项.第四部分:数学文化题1.(2023春·吉林延边·高二延边二中校考期中)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 3C 3C 3a =+⨯+⨯+⋅⋅⋅+⨯,()mod5a b ≡=,则b 的值可以是( )A .2004B .2005C .2025D .20262.(多选)(2023·全国·高二专题练习)“杨辉三角”是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列命题中正确的是( )A .在第10行中第5个数最大B .22222348C C C C 84++++=C .第8行中第4个数与第5个数之比为4:5D .在杨辉三角中,第n 行的所有数字之和为12n -3.(2023春·黑龙江大庆·高二大庆实验中学校考期中)南宋数学家杨辉所著的《详解九章算法》一书中画了一张表示二项式展开式的系数构成的三角形数阵(如图所示),在“杨辉三角”中,第20行所有数字的平方和等于 .(用一个组合数作答)4.(2023春·高二单元测试)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下: 天干:甲 乙 丙 丁 戊 己 庚 辛 壬 癸 地支:子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,,若天干用完,则再从第一个天干开始循环使用,若地支用完,则再从第一个地支开始循环使用.已知2022年是壬寅年,则813年以后是年.。
考点35二项式定理(讲解)(解析版)

考点35二项式定理【思维导图】一项式定虔(・♦姻咯♦…'",_・C5kn)云术1敷的组杞Y6・7v丸,smr政用-iJE^irWWft^C,皿M砖为负;⑴WWKir: 7^・CV*①■58210为0二项式景致升一州.心眼u.ci・5.y・r ■NM1卜3・末等蹈第牌个一#果■[棚等・・。
i:'g”号'N.Ji犬的,■人<1.怎u*m,・忡而的一沔式,■■人力分ent金*可由:衣啄。
♦"eg n)»ww式中与特回we美的■的壬■方A:砌(法①emMWD■♦b.C■虞■《-•6)与cWHKK;②幅疆二映直建m出【(八«.Cf的(耕式J5SM!:①弄3W卸*®与"'的期式中的■畋》0―相"利的④把由后的项合并即可呷wi*wp瑛ms美・.sa=:»a方溢•FKT MaWTtOBit舞艳・3•”.(特•<TS b.«etjRlt7»g哄gg—•■•-次罕»t Hnmweeewit cwma:【常见考法】考点一指定项系数1.展开式中」r项的系数为()X)XA.10B.5C.-10D.一5【答案】C(解析】(1-i)5 '.匚匚眉项公式为A=0(—1)—t・=_3,时个r=3,x故展开式中号项的系数为-C;=-10,故选:C.2.若(尸+色)的展开式中/的系数为150,则,2=()A.20B.15C.10D.25【答案】C【解析】由己知得A=C:(r)ig、|故'l ir=2时,12-3/«=6.于是有7;=C^V=150x6,则〃2=]o.故选:c103.在I1+X+的展开式中,『的系数为(A.10B.30C.45D.120【答案】C【解析】[1+戏餐『10 =(,+x)^-2ima=隽(1+对。
+。
(山),土+席(心)8土+...+徭(1+打土人人通10的展开式中,X2的系数即为(1+4°的F(X(l+x)10展开式的通项为7;引=0'1,令10-r=2,故r=8,所以J的系数为篇=45.故选:C.4.若曲线),=3ln(x+l)在x=l处的切线斜率为。
二项式定理

第3讲二项式定理[必备知识]考点1二项式定理1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫做二项式定理.2.二项展开式的通项T k+1=C k n a n-k b k为展开式的第k+1项.3.二项式系数二项展开式中各项的系数C k n(k∈{0,1,…,n})叫做二项式系数.考点2二项式系数的性质[必会结论]二项展开式形式上的特点: (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,…一直到C n -1n ,C nn .二、小题快练1.[2014·湖南高考]⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20 2.[课本改编]若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6 3.[课本改编]若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.[2015·广东高考]在(x -1)4的展开式中,x 的系数为______. 5.[2015·天津高考]在⎝ ⎛⎭⎪⎫x -14x 6的展开式中,x 2的系数为______ 考向二项展开式中特定项或系数问题例1(1)[2015·陕西高考]二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( )A .7B .6C .5D .4(2)[2015·重庆高考]⎝ ⎛⎭⎪⎫x 3+12x 5的展开式中x 8的系数是______(用数字作答).52考向 二项式系数的和或各项系数的和例2 (1)[2015·湖北高考]已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=____.364二项式定理中赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.考向项的系数的最值问题例3 已知⎝ ⎛⎭⎪⎪⎫x +124x n的展开式中前三项x 的系数为等差数列.(1)求二项式系数最大项; (2)求展开式中系数最大的项.1.求二项式系数最大项(1)如果n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n 2+1项)的二项式系数最大; (2)如果n 是奇数,那么中间两项(第n +12项与第⎝ ⎛⎭⎪⎪⎫n +12+1项)的二项式系数相等并最大.2.求展开式系数最大项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎨⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得.【变式训练3】 [2016·宜昌高三测试]已知(x 23+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.命题角度1 几个多项式积的展开式问题例4 [2015·课标全国卷Ⅱ](a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.3命题角度2 与整除有关的问题例5 [2016·潍坊模拟]设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =( )A .0B .1C .11D .12命题角度3 求近似值的问题例6 求1.028的近似值.(精确到小数点后三位) [解] 1.028=(1+0.02)8≈C 08+C 18·0.02+C28·0.022+C 38·0.023≈1.172. 命题角度4 二项式定理与函数的交汇问题 例7 [2013·陕西高考]设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15【变式训练4】[2016·昆明调研]⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.3核心规律1.二项展开式的通项T k +1=C k n a n -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数时,要根据通项公式讨论对k 的限制.2.因为二项式定理中的字母可取任意数或式,所以,在解题时,根据题意,给字母赋值,是求解二项展开式各项系数和的重要方法.题型技法系列24——拆分法破解三项展开式中特定项(系数)问题 [2015·课标全国卷Ⅰ](x 2+x +y )5的展开式中,x 5y 2的系数为( )A .10B .20C .30D .60(1)[2016·皖南八校联考](x 2-4x +4)5的展开式中x 的系数是_____.-5120(2)[2016·河北名校联考](x 2-x +2)5的展开式中x 3的系数为_______.-2001.[2016·沈阳模拟]⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5.则x 等于( )A.17 B .-17C .7D .-72.[2015·大连模拟](2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .23.[2016·唐山模拟]⎝⎛⎭⎪⎫3x -2x 8二项展开式中的常数项为( )A .56B .-56C .112D .-1124.[2014·四川高考]在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .105.若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .3B .6C .9D .12[A 级 基础达标](时间:40分钟)1.[2014·湖北高考]若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.34 C .1 D.242.[2016·唐山模拟]⎝ ⎛⎭⎪⎫x 2+1x 2-23展开式中的常数项为( )A .-8B .-12C .-20D .203.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,若a 1+a 2+a 3+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3 4.[2016·洛阳二测](x +1)(x -2)6的展开式中x 4的系数为( )A .-100B .-15C .35D .220 5.在⎝ ⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .286.设二项式⎝⎛⎭⎪⎫3x +3x n的展开式各项系数的和为a ,所有二项式系数的和为b .若a +2b =80,则n 的值为( )A .8B .4C .3D .27.[2015·四川高考]在(2x -1)5的展开式中,含x 2的项的系数是________(用数字填写答案).40-8.[2016·安徽江南十校联考]二项式⎝ ⎛⎭⎪⎫x -1ax 6(a >0)展开式中x 2项的系数为15,则实数a =________.19.[2014·山东高考]若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.211.已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 23的项.12.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.[B 级 知能提升](时间:20分钟)1.[2016·洛阳统考]设n 为正整数,⎝ ⎛⎭⎪⎫x -1x x 2n 展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2 2.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 3.[2016·江西八校联考]若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a8x8,则a1+a2+…+a7的值是________.125。
二项式定理(讲解部分)

考法二 求二项式系数和与展开式中各项系数和的问题
例2 (1)(2019陕西师大附中模拟)在二项式(1-2x)n的展开式中,偶数项的二 项式系数之和为128,则展开式的中间项的系数为 ( )
A.-960 B.960
C.1 120 D.1 680
(2)若
x2
-
1 x
n
的展开式中含x的项为第6项,设(1-3x)n=a0+a1x+a2x2+…+anxn,则
的展开式的常
数项是60,则a的值为 ( )
A.4 B.±4 C.2 D.±2
(2)(2018山东枣庄二模,8)若(x2-a)
x
+
1 x
10
的展开式中x6的系数为30,则a等
于( )
A. 1 B. 1 C.1 D.2
3
2
解题导引 (1)常数项是指x0项的系数,展开式的通项是什么?化简通项时
用到什么运算,指数幂的运算性质有哪些?根式如何化成指数幂形式?结合
令10-2r=6,解得r=2, 所以x6项的系数为C120,
所以(x2-a)·
x
+
1 x
10
的展开式中x6的系数为C130
-a
C120=30,
解得a=2.故选D.
答案 (1)D (2)D
方法总结 求二项展开式中的特定项,一般是利用通项公式进行,化简通项 后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数 等),解出r,代回通项即可.
指数幂运算化通项为最简形式再求解.
(2)的展开式中x6项的来源有几个?结合多项式乘法法则,可分析出来有2个
来源,分别是哪两个?写出
二项式定理知识点总结

二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。
n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。
n4n34C。
13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。
二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理高考知识点总结1.求103)1(xx -展开式中的常数项2.已知9)2(x x a -的展开式中3x 的系数为49,求常数a 的值3.求84)21(xx +展开式中系数最大的项;4.若n xx )21(-+的展开式的常数项为-20.求n .5求当25(32)x x ++的展开式中x 的一次项的系数?6.已知n xx )21(4⋅+的展开式前三项中的x 的系数成等差数列.(1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项.7. 已知二项式n xx )2(2-,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1,(1)求展开式中各项的系数和(2)求展开式中系数最大的项以及二项式系数最大的项8.求6998.0的近似值,使误差小于001.0;9.求证:15151-能被7整除。
10.求证:32n +2-8n-9能被64整除.11 求9192除以100的余数.12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =11+n (2n+1-1).13 计算c C C C nn nn n n n 3)1( (279313)21-++-+-; 14.求值:15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。
(1)求和:;,334233132031223122021C a C a C a C a C a C a C a -+-+-(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求:.)1(134231201nn n n n n n n C S C S C S C S C S +-++-+-16.规定!)1()1(m m x x x C mx +--=,其中x ∈R ,m 是正整数,且10=x C ,这是组合数mn C (n 、m 是正整数,且m ≤n )的一种推广. (1) 求315-C 的值;(2) 设x >0,当x 为何值时,213)(x xC C 取得最小值?(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.ﻩ是否都能推广到mx C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.1解:r r rr rr r xC xx C T 65510310101)1()1()(--+⋅-=-=令0655=-r ,即6=r 。
所以常数项是210)1(6106=-C2 解:9239299912)1()2()(----+⋅⋅⋅-=-=r r r r r r r r r x a C x x a C T令3923=-r ,即8=r 依题意,得492)1(894889=⋅⋅---a C ,解得1-=a 3 解:记第r 项系数为r T ,设第k 项系数最大,则有⎩⎨⎧≥≥+-11k kk k T T T T 又1182.+--=r r r C T ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--kk k k k k k k C C C C 2.2.2.2.8118228118 即⎪⎪⎩⎪⎪⎨⎧-≥⨯--⨯--≥--)!8(!!82)!9)!.(1(!82)!10)!.(2(!8)!9)!.(1(!8K K K K K K K k ⎪⎩⎪⎨⎧≥--≥-∴K K K K 1922211 解得43≤≤k , ∴系数最大的项为第3项2537x T =和第4项2747x T =。
4 解:当x >0时,n x x )21(-+=n xx 2)1(-, 其通项为:1+r T =r rn n xx C )1()(22--=rn r n r xC 222)1(--,令2n -2r =0,得:n =r ,∴展开式中的常数项为:nn r C 2)1(-;当x <0时,n x x )21(-+=n xx 2)1(-+-, 同理:展开式中的常数项为:nn r C 2)1(-; 无论哪一种情况,常数项均为nn r C 2)1(-. 令nn r C 2)1(-=-20,得n =3.5 解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r rr T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x它的系数为1445423240C C =。
解法②:255505145051455555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++⋅⋅⋅+++⋅⋅⋅+故展开式中含x 的项为4554455522240C xC C x x +=,故展开式中x 的系数为240.6解:(1)展开式前三项的系数分别为)1(81)21(,221,12221-=⋅=⋅=n n C n C C n n n . 由题设可知:)1(81122-+=⋅n n n解得:n=8或n=1(舍去).当n=8时,r r rr x x C T --+⋅⋅=)2()(4881=r r r xC 43482--⋅⋅.据题意,4-r 43必为整数,从而可知r 必为4的倍数, 而0≤r ≤8,∴r =0,4,8.故x 的有理项为:41x T =,x T 8355=,292561x T =. (2)设第r +1项的系数1+r t 最大,显然1+r t >0, 故有rr t t 1+≥1且12++r r t t ≤1.∵r r t t 1+=r rC C r r r r 29221188-=⋅⋅+---,由rr29-≥1,得r ≤3. ∵12++r r t t =r r C C rr r r -+=⋅⋅---+8)1(2228118, 由rr -+8)1(2≤1,得r ≥2.∴r =2或r =3,所求项分别为2537x T =和4747x T =.7 解:(1)∵第5项的系数与第3项的系数的比是10:1,∴110)2()2(2244=-⋅-⋅CC nn ,解得n =8 令x=1得到展开式中各项的系数和为(1-2)8=1(2) 展开式中第r项, 第r+1项,第r+2项的系数绝对值分别为r n r C --⋅218,r r C 28⋅,1182++⋅r r C ,若第r+1项的系数绝对值最大,则必须满足:r n r C--⋅218≤r rC 28⋅ 并且1182++⋅r r C ≤r rC 28⋅,解得5≤r ≤6;所以系数最大的项为T 7=1792111x ⋅;二项式系数最大的项为T 5=112061x ⋅ 8分析:因为6998.0=6)002.01(-,故可以用二项式定理展开计算。
解:6998.0=6)002.01(-=621)002.0(...)002.0.(15)002.0.(61-++-+-+001.000006.0)002.0(15)002.0.(22263<=-⨯=-=C T , 且第3项以后的绝对值都小于001.0,∴从第3项起,以后的项都可以忽略不计。
∴6998.0=6)002.01(-)002.0(61-⨯+≈=988.0012.01=- 9证明:15151-=1)249(51-+=12.2.49.....2.49.2.49.495151515050512492515015151051-+++++C C C C C=49P+1251-(*∈N P )又 1)2(1217351-=-=(7+1)171-=17.....7.7.7.17171617152171611717017-+++++C C C C C=7Q (Q *∈N ))(77715151Q P Q P +=+=-∴15151-∴能被7整除。
10证明:ﻫ能被64整除.11 分析 转化为二项展开式来求.解法一 9192=(100-9)92=10092—C 192·10091·9+C 292·10090·92— …—C 9192·100·991+992,前面各项均能被100整除,只有末项992不能被100整除,于是求992除以100的余数.∵992=(10-1)92=1092—C 192·1091+C 292·1090—…+C 9092·102—C 9192·10+(-1)92=1092—C 192·1091+C 292·1090—…+C 9092·102—920+1 =(1092—C 192·1091+C 292·1090—…+C 9092·102—1000)+81 ∴被100除的余数为81,即9192除以100的余数为81. 解法二 ∵9192=(90+1)92=C 092·9092+C 192·9091+ …+C 9092·902+C 9192·90+1 由于前面各项均能被100整除,只有末尾两项不能被100整除, 由于C 9192·90+1=8281=8200+81 ∴被100除余81.12分析 ∵2n+1=C n 01++C n 11++C n 21++…+C n n 1++C n n 11++ ∴右边=11+n (C n 11++C n 21++…+C n n 1++C n n 11++) 比较左、右两边和,只要证明k 1·C k n 1-=11+n C k n 1+即可.证明 k 1·C k n 1-=k1·)!1()!1(!+--k n k n =)!1(!!+-k n k n =11+n ·)!1(!)!1(+-+k n k n =11+n C k n 1+∴C n 0+21C n 1+31C n 2+…+11+n C n n=11+n (C n 11++C n 21++…+C n n 1++C n n 11++)=11+n (2n+1-1)13解:原式=nn n n n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+ 14分析:注意将此式还原成二项展开式的结构 ﻫ 原式=15解:(1),)1(2212111223122021q a q a q a a C a C a C a -=+-=+-.)1(3331312111334233132031q a q a q a q a a C a C a C a C a -=-+-=-+-归纳概括的结论为:若数列{an}是首项为a1,公比为q 的等比数列,则n nn n n n n n n q a C a C a C a C a C a )1()1(1134231201-=-++-+-+ ,n 为整数. 证明:nn n n n n n n C a C a C a C a C a 134231201)1(+-++-+- n n n n n n n n C q a C q a C q a qC a C a 133********)1(-++-+-= .)1(])1([13322101n n n n n n n n nq a C q C q C q qC C a -=-++-+-= (3)因为,111qq a a S nn --=所以nn n n n n n n C S C S C S C S C S 134231201)1(+-++-+-nn n n n n n C qq a a C q q a a C q q a a C q q a a ---++--+-----=+1)1(11111123111211011 --++-+--=])1([132101nn n n n n n C C C C C qa .)1(1])1([113322101n nn n n n n n n q q q a C q C q C q qC C q q a --=-++-+--16.解:(1)680!3)17)(16)(15(315-=---=-C . (4分)(2))32(616)2)(1()(2213-+=--=xx x x x x C C x x . (6分) ∵ x > 0 , 222≥+xx .当且仅当2=x 时,等号成立. ∴ 当2=x 时,213)(x xC C 取得最小值. (8分)(3)性质①不能推广,例如当2=x 时,12C 有定义,但122-C 无意义; (10分)性质②能推广,它的推广形式是m x m x m x C C C 11+-=+,x∈R , m 是正整数. (12分)事实上,当m=1时,有11011+=+=+x x x C x C C . 当m ≥2时.)!1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m xm x⎥⎦⎤⎢⎣⎡++--+--=11)!1()2()1(mm x m m x x x !)1)(2()1(m x m x x x ++--= mx C 1+=.(14分)。