高一上1-3单元其中复习

合集下载

【高一上学期物理期中复习课件】人教版高中物理必修1前三章

【高一上学期物理期中复习课件】人教版高中物理必修1前三章

x-t图象和v-t图象
★补充:注意交点的物理意义。
实验部分:速度、加速度的求解方法 (1)“平均速度法”求速度,即vn= ,如图所示.
(2)“逐差法”求加速度,即a1= a3= ,然后取平均值,即
,a2=
, ,这样
使所给数据全部得到利用,以提高准确度. (3)“图象法”求加速度,即由“平均速度法”求出多个点的 速度,画出v-t图,直线的斜率即加速度.
21.在物理学的发展历程中,首先采用了实 验检验猜想和假设的科学方法,把实验和逻 辑推理和谐地结合起来,从而有力地推进了 人类科学发展的是 A A. 伽利略 B. 亚里士多德 C. 牛顿 D. 爱因斯坦

警车达到最大速度后做匀速运动,设再经过△t时间
迫赶上货车.则:
15. 一质点在x轴上运动,初速度,加速度, 当加速度a的值由零逐渐增大到某一值后再逐 渐减小到零,则该质点 ( B ) A 速度先增大后减小 B 速度一直在增大 C位移先减小后增大 D 位移先增大后减小
C
17.下列说法,正确的是( D ) A.两个物体只要接触就会产生弹力 B.形状规则的物体的重心必与其几何 中心重合 C.滑动摩擦力的方向总是和物体的运 动方向相反 D.放在桌面上的物体受到的支持力是 由于桌面发生形变而产生的
2014年11月
1、四个基本公式
1、vt v0 at
2 3、t2 0 2ax 0
1 2 2、x 0t at 2 4、x t
知三求二
2
2
2、四个推论
5、 v t
0 t
2
(vx
2
2 0 t2
2
7、x aT 2 推广:xm-xn=(m-n)aT 2

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

2023—2024学年第一学期高一数学期中考试复习宝典

2023—2024学年第一学期高一数学期中考试复习宝典

2023—2024学年第一学期高一数学期中考试复习宝典1.已知全集{}1,2,3,4,5U=,集合{}1,3,4A =,集合{}2,4B=,则()UA B=() A.{}2,4,5B.{}1,3,4C.{}1,2,4D.{}2,3,4,5【答案】A【解析】因为{}2,5UA=,{}2,4B=,所以(){}2,4,5UA B=2.已知集合{}(){}1,20M x x N x x x=<=−>,则M N=()A. ()0,1 B. ()(),12,−∞+∞ C. ()1,0− D. ()(),21,−∞−−+∞【答案】B【解析】解绝对值不等式1x<得,11,x−<<解一元二次不等式()20x x−>得,0x<或2,x>故集合{}|11,M x x=−<<{}|02N x x x=<>或,()(),12,M N=−∞+∞,所以选B.已知集合{(,)|}A x y y x==,2{(,)|}B x y y x==,则A B的元素个数为()A.0 B.1 C.2 D.4【答案】C【时而习之】【不亦说乎】【考点一】集合与常用逻辑用语【解析】集合{(,)|}A x y y x==,2{(,)|}B x y y x==,{(A B x∴=,2)|}{(0,0)y xyy x=⎧=⎨=⎩,(1,1)},元素个数为21.已知集合2{|60}A x x x=+−=,B{|10}x mx=+=,若B A⊆,则实数m的取值集合是()A.11,23⎧⎫−⎨⎬⎩⎭B.11,23⎧⎫−⎨⎬⎩⎭C.11,,023⎧⎫−⎨⎬⎩⎭D.11,,023⎧⎫−⎨⎬⎩⎭【答案】C【解析】{}A3,2=−因为B A⊆①当0m=时,B=∅,满足题意②当0m≠时,B中元素可表示为1xm=−若13m−=−,13m=若12m−=,12m=−∴m组成的集合是110,,23⎧⎫−⎨⎬⎩⎭,故选C.2.已知{|25}A x x=,{|121}B x m x m=+−,B A⊆,求m的取值范围.【答案】3m【解析】当121m m+>−,即2m<时,B=∅,满足B A⊆,即2m<;当121m m+=−,即2m=时,{}2B=,满足B A⊆,即2m=;当121m m+<−,即2m>时,由B A⊆得12{215mm+−−,即23m<.所以3m【时而习之】【考点二】根据集合间的关系求参已知集合3{|5}2A x x =−<,{|1B x x =<或2}x >,U R =. (1)求A B ,()U A C B .(2)若{|2131}C x m x m =−<+,且BC U =,求m 的取值范围. 【答案】(1)322A B x x ⎧⎫=≤>⎨⎬⎩⎭或;()3{|1}2U A C B x x =(2)113m < 【解析】(1)集合3{|5}2A x x=−<,{|1B x x =<或2}x >, ∴322AB x x ⎧⎫=≤>⎨⎬⎩⎭或 U R =,{|1B x x =<或2}x >,{|12}UC B x x ∴=.∴()3{|1}2U A C B x x = (2)依题意得:2131211312m m m m −<+⎧⎪−<⎨⎪+⎩,即2113m m m ⎧⎪>−⎪<⎨⎪⎪⎩,∴113m <1.设,a b R ∈,则()20a b a −< 是a b <的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为()20a b a −<,20a ,所以有0a b −<,a b <;若a b <,当0a =时,有()20a b a −<,所以前者是后者的充分不必要条件【不亦说乎】【时而习之】【考点三】充分必要条件的判断2. 设 x ,y ∈R ,则“ 0x y >> ”是“ 1x y> ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“0x y >>”⇒“1x y >”,反之不成立,例如取 2x =−,1y =−. 因此“ 0x y >> ”是“1x y> ”的充分不必要条件.设集合{|0},{|03}1x A x B x x x =<=<<−,那么‘‘m A ∈''是‘‘m B ∈''的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】第一步:()0,1A =,()0,3B =;第二步:A 是B 的真子集,所以‘‘m A ∈''是‘‘m B ∈''的充分不必要条件,选A .【不亦说乎】1. 命题“ x ∀∈Z ,使 2210x x +−< ”的否定为( )A . x ∃∈Z ,2210x x +−≥B . x ∃∈Z ,2210x x +−>C . x ∀∈Z ,2210x x ++>D . x ∀∈Z ,2210x x +−≥【答案】A【解析】由全称命题的否定为特称命题,可得命题“ x ∀∈Z ,使 2210x x +−< ”的否定为“ x ∃∈Z ,2210x x +−≥ ”2. 已知命题“[]1,2x ∃∈ 使得 220x x a ++“为真命题,则 a 的取值范围是________.【答案】[)8,∞−+【解析】根据题意可得:()2min2a x x −− 当 []1,2x ∈ 时,根据二次函数图象性质可得:()22min 22228x x −−=−−⨯=−,故 [)8,a ∞∈−+.若对任意x R ∈,不等式23324x ax x −≥−恒成立,则实数a 的取值范围是________. 【答案】[]11a ,∈−【解析】2233322344x ax x ax x x −≥−⇔≤−+ ①当0x >时,min 32314a x x ⎛⎫≤−+ ⎪⎝⎭,因为3331231244x x x x −+≥⋅−=,所有22a ≤,即1a ≤ ②当0x =时,不等式恒成立③当0x <时,max 32314a x x ⎛⎫≥++ ⎪⎝⎭,因为333113244x x x x ⎛⎫++=−−+≤− ⎪−⎝⎭,所有1a ≥− 综上,[]11a ,∈−【时而习之】【不亦说乎】【考点四】全称量词与存在量词1. 如果00a b c d <<>>,,那么一定有A. c d a b> B. c d a b< C. c d b a > D. c d b a < 【答案】D 【解析】由题意,不妨令2121a b c d =−=−==,,,,经检验A ,B ,C 错,故选D.2.下列不等式恒成立的是( )A .222a b ab +B .222a b ab +−C .2||a b ab +D .222a b ab +−【答案】B【解析】A .显然当0a <,0b >时,不等式222a b ab +不成立,故A 错误;B .2()0a b +,2220a b ab ∴++,222a b ab ∴+−,故B 正确;C .显然当0a <,0b <时,不等式2||a b ab +不成立,故C 错误;D .显然当0a >,0b >时,不等式222a b ab +−不成立,故D 错误.已知α,β满足11123αβαβ−+⎧⎨+⎩①②,试求3αβ+的取值范围. 【答案】略 【解析】解 设3()(2)v αβλαβαβ+=+++()(2)v v λαλβ=+++.比较α、β的系数,得123v v λλ+=⎧⎨+=⎩, 【时而习之】 【不亦说乎】 【考点五】不等式性质从而解出1λ=−,2v =. 分别由①、②得11αβ−−−,2246αβ+, 两式相加,得137αβ+.故3αβ+的取值范围是[1,7].1. 已知x ,y R +∈,且满足131x y +=,则3x y +的最小值为( ) A .9B .10C .12D .16 【答案】B【解析】解:131x y+=, 133(3)()x y x y x y ∴+=++33331010216y x y x x y x y=+++=, 当且仅当33y x x y=且131x y +=,即4x y ==时取等号,故选:D .2.已知1x >,0y >,且1211x y +=−,则2x y +的最小值为( ) A .9B .10C .11D .726+ 【答案】B【解析】解:1x >,10x ∴−>,又0y >,且1211x y +=−, 2(1)21x y x y ∴+=−++12[(1)2]()11x y x y=−+++−22(1)61y x x y −=++− 22(1)621y x x y−+−10=, 当且仅当22(1)1y x x y −=−,即4x =,3y =时等号成立,故2x y +的最小值为10.故选:B .【时而习之】【考点六】基本不等式已知22451(,)x y y x y R +=∈,则22x y +的最小值是______ . 【答案】45【解析】解:方法一、由22451x y y +=,可得42215y x y −=, 由20x ,可得2(0y ∈,1],则44222222211411(4)555y y x y y y y y y −++=+==+ 221142455y y =,当且仅当212y =,2310x =,可得22x y +的最小值为45; 方法二、222222222254254(5)4()()24x y y x y y x y ++=+=+,故2245x y +, 当且仅当222542x y y +==,即212y =,2310x =时取得等号,可得22x y +的最小值为45. 故答案为:45.1. 已知不等式20+−<x bx c 的解集为{}36<<x x ,则不等式()2120−++−>bx c x 的解集为( )A. 129或⎧⎫<>⎨⎬⎩⎭x x x B.129⎧⎫<<⎨⎬⎩⎭x x C.129或⎧⎫<−>⎨⎬⎩⎭x x x D.129⎧⎫−<<⎨⎬⎩⎭x x 【答案】C【解析】由题可得,20+−=x bx c 的两根为123,6==x x ,根据韦达定理可得9=18−⎧⎨=−⎩b c ,解得=918,−=−b c ,则原式可化简为291720−−>x x ,解得129或⎧⎫<−>⎨⎬⎩⎭x x x 。

高一期中总复习1到3单元

高一期中总复习1到3单元
各州有一定的自主权。
行政权
总统
通过立法规定法院的组织 和权限
立法权
国会
宣布国会制定的法律违宪
最高法院
司法权
知识深化
国 家 产生方式 元 有无任期 首 有无实权 异 政府首脑 国家元首
美国总统共和制
英国君主立宪制
总统
选民间接选举
国王 世袭
任期制 有
总统
终身制
无 首相
政 产生方式 全国选民间接选举 议会多数党领袖担任 府 宪法 对谁负责 议会 首 脑 与国会或 总统无权解散国会 首相可以解散议会 议会关系 国会可以弹劾总统 议会也能罢免首相 同
代表 资产阶级 利益,维护其统治
比较德意志君主立宪制和法国民主共和制的异同
同: 都属于资产阶级代议制,都代表资产阶级的利益 不同点:
比较项
国家元首产生 的办法不同
法国民主共和制
总统由选举产生,任 期7年,连选连任, 要对议会负责。 行政权属于总统,总 统对议会负责;总统 可以控制众议院的议 案。
德国君主立宪制
二、等级森严的分封制

巩固奴隶主贵族的统治 目的: 对象: 王族、功臣、先代贵族 内容: 王畿以外的地区分封诸侯 规定诸侯的权利和义务


特点: 层层分封,具有宗族色彩 作用: 加强对地方的统治,巩固王权
破坏:西周后期,王权衰弱,分封制受破坏

诸侯的权利和义务


权利:
1获得土地和人民 2在封国内有政治经济军事上的独立性 (设置官吏、 建立武装、征派赋税) 3再次分封
“私有财产是神圣不可侵犯的权利,除非由 于合法认定的公共需要的明显要求,并且在事先 公平补偿的条件下,任何人的财产不能被剥夺。” ———法国《人权宣言》

高一数学期中模拟卷1-3章专题2

高一数学期中模拟卷1-3章专题2

专题2.1 期中真题模拟卷01(1-3章)一.选择题(共12小题)1.(2020·四川)设集合U=R ,A={x|0<x<2},B={x|x<1},U R =则图中阴影部分表示的集合为( ).A .{x |x 1}≥B .{x|x }1≤C .{x|0<x≤1}D .{x |1x 2}≤<【答案】D 【解析】由Venn 图可知所求阴影部分集合为:()U A C B ⋂ 又{}1U C B x x =≥(){}12U A C B x x ∴⋂=≤<本题正确选项:D2.(2020·四川)已知 p :0≤2x -1≤1, q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .[0,12] B .(0,12) C .(-∞,0]∪[12,+∞) D .(-∞,0)∪(12,+∞) 【答案】A 【解析】由0≤2x -1≤1得:112x ≤≤, 由(x -a )(x -a -1)≤0得:1a x a ≤≤+, 若p 是q 的充分不必要条件,则[]11,12a a ⎡⎤+⎢⎥⎣⎦,,即:1211a a ⎧≤⎪⎨⎪+≥⎩,解的:102a ≤≤,故选:A.3.(2020·呼图壁县第一中学期末)若0a b <<,则下列不等式成立的是( ) A .11a b> B .a b <C .1a b< D .22a b <【答案】A 【解析】解:由不等式的性质可知,A 正确;若2,1a b =-=-,则21a b =>=,B 不正确;若2,1a b =-=-,则21ab=>,C 不正确;若2,1a b =-=-,2241a b =>=,D 不正确, 故选:A.4.(2020·四川仁寿一中)已知10,0a b -<<<,则2,,b a a b 的大小关系是( )A .2b ab a b <<B .2a b ab b <<C .2a b b ab <<D .2b a b ab <<【答案】D解:10a -<<,所以201a <<,又0b <,所以,20b a b <<,易得0ab >,因此,2b a b ab <<, 故选:D.5.(2020·怀仁市第一中学校)已知不等式210ax bx --≥的解集是11[,]23--,则不等式20x bx a --<的解集是( )A .(2,3)B .(,2)(3,)-∞⋃+∞C .11(,)32D .11(,)(,)32-∞⋃+∞【答案】A 【解析】∪不等式210ax bx --≥的解集是1123⎡⎤--⎢⎥⎣⎦,, ∪1123x x =-=-,是方程210ax bx --=的两根,∪1152361111236b a a⎧⎛⎫=-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-⨯-= ⎪⎪⎝⎭⎩,解得65a b =-⎧⎨=⎩. ∪不等式20x bx a --<为2560x x -+<, 解得23x <<, ∪不等式的解集为()2,3.6.(2020·横峰中学)正数x ,y 满足22x y +=,则8x yxy+的最小值为( ). A .4 B .7 C .8D .9【答案】D 【解析】解:因为,x y 为正数,且22x y +=,所以有12xy +=,所以81818188155922x y x x yy xy y x y x y x y x ⎛⎫⎛⎫+⎛⎫=+=+⨯=++=++≥= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当443x y ==时,等号成立. 所以8x yxy+的最小值为9. 故选:D.7.(2020·江西省信丰中学月考)若不等式20ax bx c ++>的解集是()4,1-,则不等式()()2130b x a x c -+++>的解为( )A .413,⎛-⎫⎪⎝⎭B .(),3,41-∞+⎪∞⎛⎫⎝⎭C .()1,4-D .()()–21,∞-+∞,【答案】A 【解析】根据题意,若不等式20ax bx c ++>的解集是()4,1-,则4-与1是方程20ax bx c ++=的根,且0a <,则有()()4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得3b a =﹐4c a =-﹐且0a <;∴不等式()()2130b x a x c -+++>化为:()()231340x x -++-<,整理得2340x x +-<﹐ 即()()3410x x +-<﹐解可得413x -<<, 即不等式()()2130b x a x c -+++>的解为4,13⎛⎫-⎪⎝⎭; 故选:A.8.(2020·浙江)已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6C .4D .2【答案】C 【解析】()11a ax y x y a x y y x⎛⎫++=+++ ⎪⎝⎭.若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.∪当0a <时,1ax ya y x+++无最小值,不合乎题意; ∪当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ∪当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C.9.(2020·古浪县第二中学期中(文))下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .3y x = B .1y x =+C .21y x =-+D .2x y -=【答案】B 【解析】根据函数的基本性质,逐项判定:对于A 中,函数y =x 3是奇函数,在区间(0,+∞)上单调递增,不合题意; 对于B 中,函数y =|x |+1是偶函数,在区间(0,+∞)上单调递增;对于C 中,函数y =-x 2+1是偶函数,在区间(0,+∞)上单调递减,不合题意; 对于D 中,函数y =2-|x |是偶函数,在区间(0,+∞)上单调递减,不合题意. 故选:B .10.(2020·昆明市官渡区第一中学)已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【答案】A 【解析】()()f x f x =- ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤- 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤对于[]1,2x ∈恒成立 31a xx∴-≤≤-在[]1,2上恒成立312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A11.(2020·江苏淮阴中学期末)已知13,2,,23α⎧⎫⎨∈-⎩-⎬⎭,若幂函数()f x x α=为奇函数,且在),(∞+0上单调递减,则α的值为( ) A .-3 B .-2 C .13D .2【答案】A 【解析】当3α=-时,函数()3f x x -=,此时函数()f x 的定义域为(,0)(0,)-∞+∞关于原地对称,且()()33()f x x x f x --=--=-=-,所以函数()f x 为奇函数,且在),(∞+0上单调递减,满足题意;当2α=-时,函数()2f x x -=,此时函数()f x 满足()()22()f x x x f x --=-=-=,所以函数()f x 为偶函数,不满足题意;当13α=时,函数()13f x x =,此时函数()f x 的在),(∞+0上单调递增,不满足题意; 当2α=时,函数()2f x x =,此时函数()f x 的在),(∞+0上单调递增,不满足题意. 故选:A.12.(2020·银川·宁夏大学附属中学期末(文))设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫ ⎪ ⎪⎝⎭的值为( ) A .1516B .2716-C .89D .18【答案】A 【解析】因为1x >时,2()2,f x x x =+-所以211(2)2224,(2)4f f =+-==; 又1x ≤时,2()1f x x =-,所以211115(()1().(2)4416f f f ==-=故选A. 二.填空题(共6小题)13.(2020·全国)设0,2πα⎛⎫∈ ⎪⎝⎭,0,2⎡⎤∈⎢⎥⎣⎦πβ,那么23βα-的取值范围是________.【答案】,6ππ⎛⎫-⎪⎝⎭【解析】因为0,2πα⎛⎫∈ ⎪⎝⎭,0,2⎡⎤∈⎢⎥⎣⎦πβ, 所以()20,απ∈,,036βπ⎡⎤-∈-⎢⎥⎣⎦, ∪2,36βπαπ⎛⎫-∈- ⎪⎝⎭. 故答案为:,6ππ⎛⎫- ⎪⎝⎭.14.(2020·浙江)已知04x <<,则414x x+-的最小值为______. 【答案】94. 【解析】4144114(4)95444444x x x x x x x x x x +--⎛⎫⎛⎫⎛⎫+=+=++ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭,当且仅当4(4)4x x x x -=-,解得1288,3x x ==,又因为04x <<,所以83x =时等号成立.故答案为:94. 15.(2020·南昌市期中)关于x 的不等式0ax b ->的解集为(1,)+∞,则关于x 的不等式02ax bx +>-的解集为______ 【答案】()(),12,-∞-+∞【解析】不等式0ax b ->的解集为(1,)+∞,故0a >且0a b -=,故02ax bx +>-可化为()102a x x +>-即()()120x x +->, 它的解为()(),12,-∞-+∞,填()(),12,-∞-+∞.16.(2020·浙江鄞州·宁波华茂外国语学校一模)设函数()23axf x x =+,若()()f f x x =恒成立,则实数a 的值为_____. 【答案】3- 【解析】因为()()f f x x =恒成立,所以()25(1)1253a f f a ==+即22150a a --=,解得:5a =或3a =-当5a =时,5()23x f x x =+,()25()169xf f x x x =≠+,则5a =不满足条件 当3a =-时,3()23xf x x -=+,()()f f x x =,则3a =-满足条件故答案为:3-17.(2020·浙江)已知函数2()(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________. 【答案】2 【解析】∪幂函数f (x )=(m 2﹣m ﹣1)x m 在区间(0,+∞)上单调递增,∪2110m m m ⎧--=⎨⎩>, 解得m =2或-1(舍). 故答案为2.18.(2019·赤峰二中月考(文))已知()f x =则()f x 的单调递增区间为______. 【答案】[6,)+∞【解析】∪()f x =∪2560x x --≥,求得1x ≤-,或6x ≥,故函数的定义域为{|1x x ≤-或6}x ≥由题即求函数256y x x =--在定义域内的增区间.由二次函数的性质可得函数256y x x =--在定义域内的增区间为[)6,+∞,故答案为[)6,+∞. 三.解析题(共6小题)19.(2020·赣榆智贤中学月考)已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求AB ;(2)若>0a ,且“x A ∈”是“Rx B ∈”的充分不必要条件,求实数a 的取值范围.【答案】(1){11A B x x ⋂=-≤≤或}45x ≤≤;(2)01a <<. 【解析】(1)∪当3a =时,{}15A x x =-≤≤, {1B x x =≤或}4x ≥, ∪{11A B x x ⋂=-≤≤或}45x ≤≤; (2)∪{1B x x =≤或}4x ≥,∪{}14RB x x =<<,由“x A ∈”是“Rx B ∈”的充分不必要条件,得A 是B R 的真子集,且A ≠∅,又{}()22>0A x a x a a =-≤≤+,∪2>1,012+4a a a -⎧∴<<⎨<⎩. 20.(2020·福建厦门双十中学期中)设函数()21f x mx mx =--(1)若对一切实数x ,()0f x <恒成立,求m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求m 的取值范围:【答案】(1)(]4,0-.(2)6,7⎛⎫-∞ ⎪⎝⎭【解析】(1)210mx mx --<对x ∈R 恒成立, 若0m =,显然成立,若0m ≠,则00m <⎧⎨∆<⎩,解得40m -<<.所以,(]4,0m ∈-.(2)对于[]1,3x ∈,()5f x m <-+恒成立,即2(1)6m x x -+<对[]1,3x ∈恒成立 210x x -+>对[]1,3x ∈恒成立∪261m x x <-+对[]1,3x ∈恒成立,即求26()1g x x x =-+在[]1,3的最小值, 21y x x =-+的对称轴为12x =, ∴min 13()24y y ==,max (3)7y y ==,∴22]1146[,][,8173176x x x x ∈⇒∈-+-+,可得min 6(),7g x =即6,7m ⎛⎫∈-∞ ⎪⎝⎭.21.(2020·浙江)()1已知3x >,求43y x x =+-的最小值,并求取到最小值时x 的值; ()2已知0x >,0y >,223x y +=,求xy 的最大值,并求取到最大值时x 、y 的值.【答案】()1当5x =时,y 的最小值为7.()2 2x =,3y =时,xy 的最大值为6. 【解析】()1已知3x >,则:30x ->,故:44333733y x x x x =+=-++≥=--,当且仅当:433x x -=-, 解得:5x =,即:当5x =时,y 的最小值为7.()2已知0x >,0y >,223x y +=,则:23x y +≥ 解得:6xy ≤,即:123x y==, 解得:2x =,3y =时,xy 的最大值为6.22.(2020·古浪县第二中学期中(文))函数()f x 是R 上的偶函数,且当0x >时,函数的解析式为()21f x x=-. (1)求()1f -的值;(2)用定义证明()f x 在()0,∞+上是减函数; (3)求当0x <时,函数的解析式.【答案】(1)1;(2)证明见解析;(3)2()1f x x=--. 【解析】(1)因为()f x 是偶函数,所以(1)(1)211f f -==-=;(2)设12,x x 是(0,)+∞上的两个任意实数,且12x x <,()()2112121212111122x x f x f x x x x x x x ⎛⎫--=---=-= ⎪⎝⎭ 因为210x x ->,120x x >, 所以()()12f x f x >. 因此 ()21f x x=-是(0,)+∞上的减函数. (3)设0x <则0x ->,所以2()1f x x-=--,又()f x 为偶函数, 所以2()1f x x=--. 23.(2020·山东省滕州市第二中学月考)已知关于x 的不等式2320ax x -+<的解集为{}1A x x b =<<.(1)求a b ,的值;(2)求函数9()(2)()()f x a b x x A a b x=+-∈-的最小值.【答案】(1)12a b ==,;(2)12. 【解析】解:(1)由题意知:31210b a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得12a b ==,.(2)由(1)知12a b ==,, ∪{}|12A x x =<<,()()9412f x x x x=+<<而0x >时942612x x +≥=⨯=, 当且仅当94x x =,即32x =时取等号 而32x A =∈,∪()f x 的最小值为12. 24.(2020·黑龙江建华·齐齐哈尔市实验中学期中)若不等式2(1)460a xx 的解集是{}31x x -<<.(1)解不等式22(2)0xa x a ;(2)b 为何值时,230ax bx ++≥的解集为R . 【答案】(1){|1x x <-或3}2x >;(2)66b -≤≤ 【解析】解:(1)由题意知10a -<且-3和1是方程2(1)460a xx 的两根,∪10421631a a a⎧⎪-<⎪⎪=-⎨-⎪⎪=-⎪-⎩ 解得3a =. ∪不等式22(2)0x a x a ,即为2230x x -->,解得1x <-或32x >. ∪所求不等式的解集为{|1x x <-或3}2x >;(2)230ax bx ++≥,即为2330x bx ++≥,若此不等式的解集为R ,则24330b ∆=-⨯⨯≤, 解得66b -≤≤.。

新版人教版高一上学期英语期中考试2022-2023学年高一英语必修第一册单元重难点易错题精练

新版人教版高一上学期英语期中考试2022-2023学年高一英语必修第一册单元重难点易错题精练

新版人教版高一上学期英语期中考试2022-2023学年高一英语必修第一册单元重难点易错题精练2022-2023学年上学期高一英语期中考试(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共30分,略)第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。

AJanet Guthrie and Danica Patrick, first female Indy competitor and winnerNo complaints about woman drivers. Janet Guthrie, an space engineer who was training to be an astronaut, turned to car racing when she was cut from the space program for not having completed her doctors degree. In 1977, Guthrie became the first female Indy 500 competitor. She didn’t take the lead, but Danica Patrick did. In 2005 and in 2008, Patrick became the first woman ever to win an Indy Car Series. Raymonde de Laroche, first female licensed pilotA former actress who'd been born Elise Raymonde Deroche in Paris in 1882, Raymonde de Laroche was inspired to take up flying after seeing the Wright Brothersflight demonstrations in 1907 in France. Though she wasn’t the first female pilot, de Laroche was the first woman to earn a pilot’s li cense in 1910.Gertrude Ederle, first woman to swim across the English ChannelOn August 6. 1926. Gertrude Caroline Ederle became the first woman to swim across the English Channel. Ederle, who lived to be 98 and died in 2003, was also an Olympic swim champion and five-time world record-holder in five swimming eventsKathrine Switzer, Nina Kuscik and Joan Benoit, first major female marathoners.In 1967, 20-year-old Kathrine Switzer became the first woman to run in the Boston Marathon, even though race officials had tried to stop her. Nina Kuscik became the first woman to officially win the Boston Marathon, 1972. In 1984, American Joan Benoit became the first winner of the Women’s Olympic Marathon, finishing 400 meters ahead of Norway's Grete Waitz1.Why was Janet Guthrie forbidden to take up space program?A.She used to be a woman driver.B.She showed interested in car racing.C.She was employed as an engineer.D.She didn't gain doctors degree.2.What made Raymonde de Laroche decide to become a pilot?A.Her experience as an actress.B.Her settlement in Paris.C.Wright Brothers influence.D.Wright Brothers dialogues.3.What's the similarity between Gertrude Ederle and Kathrine Switzer?A.They were athletic B.They lived a long life.C.They had a higher fame. D.They were looked down upon.BEverybody hates rats. But in the earthquake capitals of the world-Japan, Los Angeles, Turkey - rats will soon be man’s new best friends.What happens after an earthquake? We send in rescue dogs.Why? Because they can smell people. Dogs save lives.They help rescuers to find living people. But dogs are big and they can’t get into small spaces. So now a new research project is using a smaller animal to save lives: the rat.How does it work? First, the rat is trained to smell people. When this happens, the rat’s brain gives a signal. This is sent to a small radio on its back, and then the rescuers follow the radio signals.When the rat’s brain activity jumps, the rescuers know that someone is alive.The rat has smelled that person.Although there are already robots which can do this job, rats are better. Christian Linster at Cornell University, New York, says, “Robots’ noses don’t work well when there are other smells around. Rats are good at that.” Rats can also see in the dark.They are cheaper and quicker to train than dogs, and unlike robots, they don’t need electricity!The “rat project” is not finished, but Julie Ryan of International Rescue Corps in Scotland says, “It would be fantastic.A rat could get into spaces we couldn’t get to, and a rat would get out if it wasn’t safe.” Perhaps for the first time in history, people will be happy to see a rat in a building (but only after an earthquake, of course).4.In the world earthquake capitals, rats will become popular because they can .A.get into small spacesB.take the place of man’s rescue jobsC.find food for survivors trapped in buildingsD.find the position of survivors trapped in buildings5.From the third paragraph we know rescuers can judge a person is alive by .A.the noise made by the rat B.the rat’s unusual behaviourC.the signal sent by the radio on the rat D.the smell given off by the person trapped6.After reading the passage we know that now .A.people still use dogs and robots in rescue workB.the “rat project” has been completed alreadyC.rats have replaced dogs in searching for peopleD.people are happy to see a rat in a building7.The main idea of the passage is about_______in an earthquake.A.dos and don’ts B.the role rats will playC.ways of rescuing people D.the reason for not using dogsCFor several months, Cara has been working up the courage to talk to her mom about what she saw on Instagram. Not long ago, the 11-year-old girl discovered that her mom had been posting her photos for much of her life. “It’s strange to see myself up there, and sometimes there are pictures I don’t like of myself,” she said.Like most other modern kids, Cara grew up under the influence of socialmedia.Facebook, Twitter, and YouTube were all founded before she was born. Instagram has existed since she was a toddler. Although many kids may not yet have accounts (账户) themselves, their parents, schools, sports teams have been organizing an online one for them since birth. It is a shock to know that details about their lives have been shared online without their permission or knowledge. And this has become a common experience for many teenagers.Recently a parenting blogger (博主) said that despite her 14-year-old daughter’s horror at discovering that her mother had shared years of highly personal information about her online, she simply could not stop doing it.But it’s not just crazy mommy bloggers who share their children’s information on social media. P lenty of average parents do the same. There’s even a special word for it: sharenting. Almost a quarter of children begin their digital lives when parents upload their prenatal sonogram scans (产前超声波扫描) to the Internet, according toa study conducted by the Internet-security company AVG. The study also found that92 percent of kids under the age of 2 already have their own unique online identity(身份).8.What does the underlined word “toddler” in the second paragraph probably mean? A.Teenage girl. B.Very young child.C.Elementary school student. D.High school student.9.What’s Cara’s attitude towards her mom’s posting?A.Supportive. B.Doubtful.C.Negative. D.Uninteresting.10.What can we infer from Paragraph 4?A.AVG is the name of an Internet company.B.About 25% of children begin their digital lives before they are born. C.Fathers don’t like to share their kids’ information on social media.D.Average parents created the word “sharenting” on the Internet recently. 11.What can be a suitable title for the article?A.Growing up on the Internet B.A New Word BornC.Parents Lost in Blogging D.The Children’s HorrorDWhile elephants born without tusks (长牙)are not unheard of,they normally form just 2 to 6 percent of the population. However, that is not the case at Mozambique’s Gorongosa National Park, where an astonishing 33 percent of female elephants born after the country’s civil war ended in 1992 are tuskless. While that may appear to be just a coincidence, Joyce Poole, an elephant behavior expert, has another theory. The researcher thinks we may be witnessing unnatural evolution of the species due to the constant hunting of elephants for valuable ivory.Poole says before the country’s 15-year-long civil war, the 100,000-acre park was home to over 4,000 elephants. However, by the time the conflict ended in 1992, about 90 percent of them had been killed for ivory to help finance weapons (武器)and meat to feed the soldiers. Of the less than 200 survivors, over 50 percent of adult females had no tusks. Therefore, it is not surprising that the park’s tuskless elephant population has grown greatly.This is not the first time researchers have observed a great change in the population of elephants. At Zambia’s South Luangwa National Park and Lupande Game Management Area, areas which were heavily hunted in the 1970s and 1980s, 35% of elephants 25 years or older and 13% of those younger than 25 are now without tusks. A 2008 study published found that the number of tuskless females at the Ruaha National Park in Tanzania went from 10.5 percent in 1969 to almost 40 percent in 1989, largely due to illegal hunting for ivory.The recent ban on ivory in both the US and China should help get rid of, or at least reduce, elephant hunting. However, scientists are not sure how long it will take for elephants with a higher rate of tuskless females, to change the trend.12.What is the probable cause of the phenomenon mentioned in Paragraph 1 ? A.Illegal hunting. B.Constant farming.C.A pure coincidence. D.Natural evolution.13.Why did people kill so many elephants during the civil war in Mozambique?A.To get funds by selling ivory.B.To develop new weapons.C.To provide food for local people.D.To make ivory products.14.Which of the following had the earliest record on tuskless elephants?A.Gorongonsa National Park.B.South Luangwa National Park.C.The Ruaha National Park.D.Lupande Game Management Area.15.What does the underlined phrase “the trend” in the last paragraph refer to?A.Elephants facing greater danger.B.Elephants growing more slowly.C.Fewer female elephants staying alive.D.More female elephants being tuskless.第二节(共5小题;每小题2.5分,满分12.5分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

高一上学期期中考试复习一(修辞和默写专题)

高一上学期期中考试复习一(修辞和默写专题)

博达高一部语文期中复习专题三默写与修辞练习专题一、名句默写1、携来百侣曾游,。

2、指点江山,,。

3、横眉冷对千夫指,。

4、鹰击长空,谁主沉浮。

5、在雨的哀曲里,,,消散了甚至她的,。

6、不是清泉,,,。

7、又前而为歌曰:,复为慷慨羽声,士皆瞋目,发尽上指冠。

8、恰同学少年,;书生意气。

9、,岁岁重阳。

今又重阳,。

10、一年一度秋风劲,。

胜似春光,。

11、以其无礼于晋,。

12、微夫人之力不及此。

,不仁;,不知;,不武。

13、事所以不成者,,。

14、其人虽已没,。

15、大行不顾细谨,。

16、惨象,;流言,。

17、苟活者在淡红的血色中,;真的猛士,。

二、选择题1.与“终岁不闻丝竹声”一句中运用的修辞手法相同的一项是()A.在荣誉、利益、艰苦、危险、责任、义务等面前,上前一步或退后一步,往往是检验人的思想品格的试金石。

B.泉声咽危石,日色冷青松。

C.“你教的‘子曰诗云’么?”他惊奇地问。

D.残星几点雁横塞,长笛一声人倚楼。

2.对下列句子运用的修辞手法,判断无误的一组是()(1)墙上芦苇,头重脚轻根底浅;山间竹笋,嘴尖皮厚腹中空。

(2)闭塞眼睛捉麻雀。

(3)对于共产党员来说,个人地位,只是“大海中之一滴”罢了。

(4)他的头脑就象停在军港里升火待发的一艘军舰,准备一接到通知就开向任何思想的海洋。

A.(1)对偶、比喻 (2)比喻 (3)引用、比喻 (4)比喻B.(1)对偶、讽刺 (2)比喻 (3)引用、夸张 (4)比喻C.(1)夸张、比喻 (2)比喻 (3)引用、比喻 (4)夸张D.(1)对偶、夸张 (2)夸张 (3)引用、比喻 (4)象征3.下列诗句中,不是对偶句的一项是()A.旦辞爷娘去,暮宿黄河边。

B.野径云俱黑,江船火独明。

C.浮云游子意,落日故人情。

D.乱花渐欲迷人眼,浅草才能没马蹄。

4.从下列各句中的“红”来看,使用了相同修辞手法的一组是()A.日出江花红胜火,春来江水绿如蓝。

问花花不语,乱红飞过秋千去。

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

【答案】B
【解析】由 A 1,3, 5 , B 3, 4, 5 ,得 A B 1,3, 4,5 ,
所以 ðU A B 2, 6 ,
故选:B
2.(2023 秋·江苏盐城·高一校联考期末)设全集U R ,集合 A x x 2 , B x x 2 或 x 6,则
A ðU B ( ) A.x x 2
秋·辽宁抚顺·高一抚顺一中校考阶段练习)已知集合
M
x∣x
m
1 6
,m
Z

N
x∣x
n
1
,
n
Z

P
x∣x
p
1 , p Z ,则 M
,N
, P 的关系为(

23
26
A. M N P
B. M N P
C. M N P
D. N P M
【答案】B
【解析】因为 M
∣ x x
m1,
m
Z
所以实数 a 的取值范围是{a | 0 a 4} .
故选:D
考点五 不等式的性质
【例 5】(2023 秋·上海浦东新 )已知 a b c d ,下列选项中正确的是( )
A. a d b c
B. a c b d
C. ad bc
D. ac bd
【答案】B
【解析】对于选项 A,因为 a 3,b 2,c 1, d 10 ,满足 a b c d ,但不满足 a d b c ,所以选项 A
数是( ) A.0
B.1
C.2
D.4
【答案】C
【解析】因为 A x, y x y 0 , B x, y | x2 2y2 1 ,
所以集合 A 是直线 x y 0 上的点的集合,集合 B 是椭圆 x2 2y2 1 上的点的集合; 因为 M A B ,所以若要求 M 中的元素个数,只需联立方程即可;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• • • • • • • • • • • • • •
Explain sth to sb Respond to sb / sth with … go through one failure after another be generally regarded as a fascination to sb Show up Reach out to Plan for sth / to do sth Reason why …. Without regard to Feel like doing On the right track Do what one can to do Have no choice but to do
• 38. leave sb alone • 39 . Owe sb sth/ sth to sb / owe sth to….. 40. result in 41. Be sure to do .. 42. Make contact with /lose contact with in contact with contact sb 43. What if….. 44. When it comes to sth …. 45. An idea come into my mind/ head 46.The reason why ….. is that……. 47. It take sb sometime to do sth 48. Whatever difficulty we may have, we….. 49. Even if/ though 50 . Except that/ what / when / except for (the fact that) 51.What satisfies /fascinates/ upsets/interests sb is that …… 52 . It is / was + ……+ that ….
• 51. alone / lonely • 52. be regarded /consider / looked on / thought of / seen / viewed as • be remembered as …. • 53.A rather than / as well as B • 54. as/ while /
• 这家商店似乎属于我叔叔工作的那家公司 的。(belong) It seems that the shop belongs to the company where my uncle works.before 2. since/ ever since 3. so far / in the past /last few years 4.by/ by the end of/ by the time 5. sell /wash / write + adv 6. need/ want/ require …. 7. be worth …/ be busy … 8.insist / imagine 9.have / get / make 10. consider 11.seem to do / to be doing/ to have done 12. Sth /sb is/ was reported/ believed to do /to have done • 13.Take an interest in
老师向学生们讲解了那个句子的意思。(explain) The teacher explained the meaning of the sentence to the students. 全体学生都赞成在自己的教室里举办晚会。 (favour) All the students are in favor of having the party in their own classroom. 5. 谢谢你为我们所做一切。(grateful) We are grateful to you for what you have done for us. 他坚持说他没有偷钱,并且应当马上被释放。 ( insist ) He insisted that he hadn’t stolen the money and should be set free at once.
• The days we are looking forward to ___finally . (stick to /be used to ) • A, arriving b. arrive c. arrived d. has arrived • You don’t know the difficulty we had ___the problem. • A. solve b. solving c. solved d. to solve
1. 演出还没有结束,孩子们就睡着了。(before) The children had fallen asleep before the performance ended. 2. 使我们满意的是,他已承认自己卷入赌博。 involve What satisfied us was that he had admitted to being involved in the gambling. 要鼓励学生向老师提问。(encourage) Students should be encouraged to ask teachers questions / put questions to teachers. 上海是座美丽的城市,只是交通繁忙了些。(except) Shanghai is a beautiful city except for its heavy traffic 他喜欢这些聚会,在聚会上他可以与年轻人就各种话题交 换意见。(exchange) He loves these parties, where he can exchange views on various subjects with young people.
1. professional /surgeon/patient /sculpture /dentist /leisure time /secretary/superstar /engineer /composer /technician /facial expression /suitable topic /body /psychologist language/positive /negative/ casual /conversation /universal topic / launch manmade satellite 2. 2. take care of patient’s medical treatment • 3.work out a plan • 4. traditionally /generally / immediately/attentively • 5. for oneself • 6. make up our minds to do / about • 7. one one’s own / by oneself • 8.Follow the career of a teacher • 9. all through one’s life • 10. won’t have sb doing • 11.Get started • 12. raise open-minded question
• • • • • • • • • • • • • •
13.can’t but ../can’t help but/ can’t help .. 14. remember/ forget / regret/ mean /stop/go on 15.involve / wear / dress/ take up /occupy/ 16.belong to /take place/ break out 17.be satisfied/ fascinated/ patient/busy /equipped with /chat with sb 18. be upset about/talk about /feel guilty about 19 have an impact /have effect /influence on 20 operate on /insist on /feed …on/to / comment on /make a comment on 21. be/get used to doing /stick to /pay attention to /lead to 22. wait to do / wait for sb to do 23. search ..for/search for / in search of 24.admire sb for sth 25. be grateful to sb for sth
• • • • • • • • • • • • •
26.be capable of .. 27. take measures /steps to do 28. seize a perfect opportunity to do 29. make use of sth to do … 30. have some trouble / difficulty (in)doing have a lot of fun in doing 31.exchang sth for sth with sb 32. stare / smile /laugh at 33. force sb to do /force sth on sb 34.have a positive attitude towards… 35. have something in common 36.offer sb sth /sth to sb /offer to do 37./make /put off /call off /cancel an appointment with sb
相关文档
最新文档