中低速磁悬浮技术简析
中低速磁浮交通系统特征介绍及发展前景

表在400km/h以上速度商业运行的系统
上海高速磁浮示范线2003年初开始单
线试运行;2004 初开始按时刻表运行; 目前每天: 6:45-19:00时按 15min间
隔;19:00-22:30时按20min间隔 运行;
每天发车117班次; 目前列车每天9:00-11:00 点及 15:0016:00 点 按430km/h最高速度运行,其 他时间按 300km/h最高速度运行。
时多采用连续梁及其他特殊结构。
技 术 特 征
信号技术参数
信号系统由控制中心设备、车站设备、车载设备、轨旁设备组成,具有列车自动监 控、自动防护、自动驾驶的功能,具有安全、舒适、快捷、准点、自动化程度高的特 点。 利用感应式传感器(车载测速设备)接近金属目标物(轨枕)将产生变化的感应涡 电流的原理,在磁浮列车上安装了一组定距离布置的感应式传感器,解决了列车测速 问题。
中低速磁浮交通系统特征介绍
汇 报 提 纲
一.磁浮技术发展历程 二.技术特征 三.应用范围 四.审批流程 五.案例分析
六.发展与展望
汇 报 提 纲
一.磁浮技术发展历程
磁浮技术发展历程
磁悬浮列车是一种现代高科技轨道交通工具,它通过电磁力实现列车与 轨道之间的无接触的悬浮和导向,再利用直线电机产生的电磁力牵引列车运 行。
1991年建成了位于名古屋附近的大江试验线(1.53km),HSST-100S型磁浮列 车开始运行试验,最高试验速度达到110km/h。1993年宣布技术成熟。
磁浮技术发展历程
2005年3月,在名古屋建成商业线,HSST-100L型磁浮列车投入 运行。运营线路长8.9km,列车最高运行速度为100km/h。
技 术 特 征
无集中载荷,轨道受力均匀,土建投入低;
中低速磁悬浮列车牵引计算及特性分析

的增加,风阻逐渐超过电磁阻力。
图1阻力特性曲线
4牵引特性计算
4.1牵引计算
磁悬浮列车功率与运行速度、运行阻力以及最高运行时的剩余加速度有关。
根据整车基本性能通过牵引特性计算对牵引功率进行估算。
中低速磁悬浮列车牵引力计算公式为:
F牵引力-F运行阻力=Wa
式中:W为车重,a为剩余加速度。
根据列车运行阻力及启动加速度值可得:列车启动牵引力F=97kN。
由于要求加速到80km/h的加速距离在600m以内,由此,牵引电机功率选择45km/h对应的41kW 功率能够满足磁悬浮列车的牵引需求。
根据确定的持续速度点绘制AW2牵引特性曲线如图2所示。
图2AW2载荷牵引力、加速度特性曲线
4.2制动计算
根据列车运行阻力及最大减速度值可得:列车最大制动力F=102kN。
5运行特性分析
5.1牵引特性
列车最大启动牵引力为:F=97kN;
恒牵引力范围为0~45km/h;
自然特性速度范围为45~120km/h;
自然特性起始点列车牵引力为97kN;
单个牵引电机最大牵引功率约为41kW。
载荷速度范围(km/h)平均加速度(m/s2)
AW20-450-120 1.070.33
AW30-450-1200.930.28
表1列车平均加速度
牵引系统按列车重量从空车AW0到定员载荷AW2范围内自动调整牵引力的大小,使列车在空车AW0至定员载荷AW2范围内保持启动加速度基本不变。
超员载荷AW3条件下的牵引特性与定员载荷AW2一致。
5.2制动特性
图3AW2载荷电制动力、减速度特性曲线。
中低速磁浮车辆通用技术条件

中低速磁浮车辆通用技术条件中低速磁浮技术是指磁浮车辆在低于每小时500公里的速度下运行。
而“中低速磁浮车辆通用技术条件”简称“中低速磁浮技术条件”,是制定中低速磁浮车辆技术规范的重要文献。
一、技术概述中低速磁浮车辆通用技术条件包含了磁浮车辆的车体、底盘、电机、电控等核心技术。
它主要针对中低速磁浮车辆的定义、结构与参数、系统性能等方面进行规范,以保证车辆的安全性、运行性、结构性等各方面的优良表现,提高市场竞争力。
二、技术细节1.基本定义:中低速磁浮车辆是指磁悬浮式,整车靠永磁同步电机及其电器控制和驱动运动,以磁吸浮力保持离地高度及稳定运行,载运旅客或物品,行驶速度小于500km/h的城市轨道交通工具。
2.技术参数:车体长度、宽度、高度;净重、总重;底盘参数:轴向载荷、轮径、轴距、制动方式等;电机参数:功率、转速、变速比等;电控参数:控制系统满足的技术要求等。
3.系统性能:中低速磁浮车辆的性能要求也在技术条件中有所规定,如:牵引力、最大车速、加速度、制动距离、最大横向加速度、外部噪声等。
4.车体结构:中低速磁浮车辆通用技术条件还对车体结构提出了要求。
车体结构应具有一定的可靠性和刚度,以保证行驶安全,同时还要满足美观、舒适、节能、环保等要求。
三、技术进展中低速磁浮车辆通用技术条件的制定,充分推动了我国中低速磁浮车辆技术的发展与应用。
随着中国技术的不断创新,中低速磁浮技术也逐渐向智能化、节能化、环保化等方向发展,如光纤光栅测温、新型集电装置等技术应用的推广,使得中低速磁浮车辆在城市交通领域具有了更加广阔的应用前景。
四、结语随着大众生活水平的提高,城市交通问题也越来越凸显。
而中低速磁浮技术以其独特的环境友好、高效舒适、低碳节能的特点,正在成为解决城市交通矛盾的重要解决手段。
因此,加强对中低速磁浮技术的研究与实践,是未来的必然趋势。
中低速磁浮交通概述

03
中低速磁浮交通技术发展现状与 趋势
中低速磁浮交通技术发展现状
国内外研究与应用情况
中低速磁浮交通技术已在国内外得到 广泛研究与应用,如中国、日本、德 国等国家均已建成多条中低速磁浮交 通线路,用于城市交通、旅游观光等 场景。
技术特点与优势
中低速磁浮交通技术以其低噪音、低 振动、低污染、高速度、高安全等优 点,成为城市交通发展的重要方向之 一。
总结三
需综合考虑社会、经济和 环境效益
启示二
加强技术研发和标准化工 作
总结二
技术成熟度和资金投入是 关键因素
启示一
推广中低速磁浮交通需因 地制宜
启示三
促进产业合作和创新发展
THANKS
感谢观看
中低速磁浮交通技术的未来展望
技术成熟与产业升级
随着中低速磁浮交通技术的不断成熟,相关产业链将进一步完善, 推动产业升级和高质量发展。
国际化发展
中低速磁浮交通技术将逐步走向国际化,加强国际合作与交流,共 同推动磁浮交通技术的发展和应用。
社会经济效益提升
中低速磁浮交通技术的广泛应用将带来显著的社会经济效益,提高城 市交通效率,改善居民出行体验,促进城市可持续发展。
中低速磁浮交通系统的组成与工作原理
组成
中低速磁浮交通系统主要由磁浮列车、轨道、供电系统、信 号控制系统、车站等部分组成。
工作原理
通过磁力作用,使列车悬浮于轨道之上,实现无接触运行。 磁浮列车通过直线电机驱动,实现前进、后退和制动等动作 。轨道通常采用高架或地面铺设,供电系统提供列车所需电 力,信号控制系统确保列车安全运行。
04
中低速磁浮交通的实践案例与效 果分析
中低速磁浮交通实践案例介绍
中低速磁悬浮列车的稳定性研究

中低速磁悬浮列车的稳定性研究一、概述磁悬浮列车是一种利用磁力悬浮和驱动技术来实现列车悬浮和运行的交通工具。
中低速磁悬浮列车相对于高速磁悬浮列车来说,运行速度较低,但在城市交通中更具实用性和可行性。
然而,由于存在多种稳定性问题,中低速磁悬浮列车的研究日益显得关键。
二、列车悬浮系统的稳定性中低速磁悬浮列车的悬浮系统是保证列车稳定运行的重要组成部分。
悬浮系统包括永磁悬浮和电磁悬浮两种常见技术。
永磁悬浮技术利用永磁体与轨道上的磁钢板相互作用,实现列车悬浮。
电磁悬浮技术则通过输出感应电流,产生与轨道上的感应电流相互作用的磁场,使列车悬浮。
研究表明,中低速磁悬浮列车的悬浮系统需要保持足够的稳定性,以确保列车运行平稳。
三、列车运行的稳定性列车的运行速度和加减速度对稳定性有着直接影响。
低速磁悬浮列车相较于高速磁悬浮列车,其速度较低,因此其稳定性相对较强。
然而,即使在低速下,列车的运动也会受到外界环境和操作条件的影响。
例如,在弯道行驶时,列车会受到侧向力的作用,需要设计合适的悬浮系统以及动力控制系统来保持列车平衡。
此外,列车在起步、制动和转弯时,会产生不同的加速度和减速度,必须通过优化和控制这些参数,确保列车的稳定性和乘坐舒适性。
四、列车轨道的稳定性列车轨道的质量和稳定性是保证中低速磁悬浮列车安全运行的关键因素之一。
轨道的不平整度和几何误差会直接影响列车的稳定性和乘坐体验。
因此,设计和维护轨道需要严格的标准和规范,确保轨道的平整度和几何精度。
此外,轨道的固定和强度也需要经过精确计算和验证,以应对列车在运行过程中所产生的力和振动。
五、气动力对列车稳定性的影响当磁悬浮列车高速行驶时,会受到气动力的影响。
在高速情况下,列车与周围空气的相互作用会导致气动力效应。
这些效应包括气动阻力、升力和侧向力等。
这些气动力对列车的稳定性和运行效率有着重要影响。
为了解决气动力问题,研究人员通过数值模拟和实验测试,研究列车的气动性能,并对列车的外形进行优化设计。
磁悬浮列车减小摩擦力的原理

磁悬浮列车减小摩擦力的原理
原理:磁悬浮列车是通过磁力悬浮在铁轨上,然后减小车辆与铁轨的摩擦力的。
中低速磁悬浮列车的铁轨本身不带电,而列车底部装有磁铁。
当列车底部与铁轨接近时,列车上装的电磁铁和轨道两侧的通电线圈之间就会产生强大的吸力,磁悬浮技术就是利用列车与铁轨之间八毫米的间隙,让吸力始终保持在较为稳定的状态,从而实现列车的平稳悬浮。
传统火车的速度越快,阻力就会变得越大,车轮和轨道的黏着力会降低,所以当速度提高以后,车轮和轨道就无法产生足够的摩擦力,进而速度就会受影响,如果再遇上轨道上有冰霜时,速度也会受影响。
要突破现在高铁速度发展瓶颈,首先要解决两个问题。
一要改变传统轮轨列车的轮轨黏着极限的制约和公网运行的极限速度、波动速度的制约。
二要克服列车运行速度越高所带来的空气阻力越大的问题,所以运用磁悬浮技术是未来高铁发展的方向。
中低速磁浮总体技术介绍

动态
≦2250Pa
运行环境:
海拔高度
≦1200m
相对空气湿度
≦100%
全天候运行,并能承受风、沙、雨、雪的侵袭
大气环境温度:
标准工况
-15ºC~+45ºC
车辆平稳性指标:不大于GB5599-1895 中规定的2.5
运控系统: ATC模式,包括ATO、ATP、ATS
Hale Waihona Puke 车钩:自动车钩供电方式:
载
测
控
测
载
天
系
制
系
天
线
统
系
统
线
2
2
统
1
1
车载子系统
编码电缆子系统
1#地面站 地面站子系统
终端箱
段间箱 段间箱
段间箱
编 码 电 缆
段间箱
段间箱 段间箱
3#地面站 4#地面站 5#地面站 6#地面站
终端箱 2#地面站
地面站子系统包括若干地址发生器箱,每一个箱内 有载波发生器和电源模块等
车载子系统由车载控制器、车载接口板、串口隔离 器、电源、天线箱组成。
行组织模式。虽然该模式满足了世博会期间的客流,
但对于中等规模城市的交通来讲,远不能满足单位 截面小时单方向2~3万人的要求。
在保证单方向2~3万人/小时 截面运能的条件下, 列车编组可为:E+M+M+M+M+M+M+E的8 节编组,满足的列车载客量不低于1080人,
车辆
坐席
站位
额定
超员
端车E 中车M 六节编组运能: 2×E+4×M
式实现列车位置信息的采集。利用速度位置脉冲, 车载设备可以计算出列车行驶的相对位移。沿线每 隔一定距离设置一个地面应答器,车辆经过时可以 得到所处的绝对位置,用以矫正交叉感应线圈带来 的累计误差。
中低速磁悬浮技术简析

中低速磁悬浮技术简析中低速磁悬浮轨道交通是一种依靠磁悬浮列车五个转向架悬浮系统及直线电机牵引系统实现无接触和非粘着牵引抱轨运行的交通方式,因其技术先进、功能强大、节能环保、性价比高,我国具有自主知识产权,受到社会广泛青睐,是一种先进、经济、环保的交通方式。
一般认为,高速磁悬浮适合远距离交通,而中低速磁悬浮适合近距离交通。
长沙中低速磁浮工程连接高铁长沙南站和长沙黄花国际机场,初期设车站3座,预留车站2座,线路全长18.54公里,总投资46.04亿元,于2014年5月开工,2015年12月26日建成并试运行,建设工期20个月,计划2016年上半年正式通车运营。
长沙中低速磁浮工程是中国国内第一条自主设计、自主制造、自主施工、自主管理的中低速磁悬浮,是继上海以来又一个开通磁悬浮的城市,也是湖南省践行“一带一路”的重点项目。
铁四院以中国铁建名义采取“股权投资+设计施工总承包+采购+研发+制造+联调联试+运营维护+后续综合开发”独创性建设模式承建的长沙磁悬浮工程,是中国第一条中低速磁悬浮轨道交通商业线。
相对于地铁、轻轨、新型有轨电车等主要城市轨道交通运输方式,中低速磁悬浮轨道交通具有以下优势:一是低噪音。
运行噪声约62分贝,低于人正常说话的噪声值,是“超静交通”的代表。
二是低成本。
长沙中低速磁浮交通转弯半径小、爬坡能力强,特别适合在城市中穿梭。
综合造价约2亿元/公里,与地铁相比具备明显的价格优势。
其次目前轮轨交通的年运营维护成本是总投资的4.4%左右。
中低速磁悬浮轨道交通后期维护费用较低,年运营维修费理论值约为总投资的1.2%。
三是低辐射。
经科学检测,长沙磁浮交通辐射值1米外小于电磁炉、3米外不到微波炉的一半、5米外比电动剃须刀更低,堪称绿色“环保交通”的典范。
四是低震动。
列车沿轨道无接触运行,无车轮摩擦与冲击。
可实现有害气体零排放,由于没有车轮磨耗,也不会在运行中产生铁粉或橡胶粉尘,最大限度避免环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中低速磁悬浮技术简析
中低速磁悬浮轨道交通是一种依靠磁悬浮列车五个转向架悬浮系统及直线电机牵引系统实现无接触和非粘着牵引抱轨运行的交通方式,因其技术先进、功能强大、节能环保、性价比高,我国具有自主知识产权,受到社会广泛青睐,是一种先进、经济、环保的交通方式。
一般认为,高速磁悬浮适合远距离交通,而中低速磁悬浮适合近距离交通。
长沙中低速磁浮工程连接高铁长沙南站和长沙黄花国际机场,初期设车站3座,预留车站2座,线路全长18.54公里,总投资46.04亿元,于2014年5月开工,2015年12月26日建成并试运行,建设工期20个月,计划2016年上半年正式通车运营。
长沙中低速磁浮工程是中国国内第一条自主设计、自主制造、自主施工、自主管理的中低速磁悬浮,是继上海以来又一个开通磁悬浮的城市,也是湖南省践行“一带一路”的重点项目。
铁四院以中国铁建名义采取“股权投资+设计施工总承包+采购+研发+制造+联调联试+运营维护+后续综合开发”独创性建设模式承建的长沙磁悬浮工程,是中国第一条中低速磁悬浮轨道交通商业线。
相对于地铁、轻轨、新型有轨电车等主要城市轨道交通运输方式,中低速磁悬浮轨道交通具有以下优势:
一是低噪音。
运行噪声约62分贝,低于人正常说话的噪声值,是“超静交通”的代表。
二是低成本。
长沙中低速磁浮交通转弯半径小、爬坡能力强,特别适合在城市中穿梭。
综合造价约2亿元/公里,与地铁相比具备明显的价格优势。
其次目前轮轨交通的年运营维护成本是总投资的
4.4%左右。
中低速磁悬浮轨道交通后期维护费用较低,年运营维修费理论值约为总投资的1.2%。
三是低辐射。
经科学检测,长沙磁浮交通辐射值1米外小于电磁炉、3米外不到微波炉的一半、5米外比电动剃须刀更低,堪称绿色“环保交通”的典范。
四是低震动。
列车沿轨道无接触运行,无车轮摩擦与冲击。
可实现有害气体零排放,由于没有车轮磨耗,也不会在运行中产生铁粉或橡胶粉尘,最大限度避免环境污染。
中低速磁悬浮在柳州落地,存在以下几点问题:
1、运量较低,且其车厢编组调整较其他制式困难。
轻轨每小时运量为1.5至3万人,中低速磁悬浮每小时运量为0.8至1.5万人。
目前长沙磁悬浮采用三节车厢编组,每列最大载客量约为500人,且调整其车厢编组过程需要2-3个月周期(咨询中车株机技术人员数据)。
轻轨一般采用四节车厢编组,B型车厢最大载客量约为1000人,客流高峰期间增加车厢编组方便。
2、一般来说中低速磁悬浮采用高架敷设。
线路经过市区采用高架,对柳州的山水城市景观是否有影响需要进一步论证。
3、中低速磁悬浮在长沙尚处于试运营阶段,国内尚未有成熟的商业运营城市,其技术还在提升阶段,运营的成熟性、可靠性还有待实践检验。
4、中低速磁悬浮作为一种新的技术进行推广,大众的接受需要过程。
深圳8号线曾经计划以磁悬浮高架方式建设,曾受到莲塘和沙头角片区居民的强烈反对,导致项目方案全盘否定,前期工作进展缓慢,目前新的方案正在论证中。
长沙磁悬浮也是选择从长沙火车南站至黄花机场的郊区线路。