带电粒子在磁场中做匀速圆周运动题型归类

合集下载

高考物理带电粒子在磁场中的运动试题类型及其解题技巧及解析

高考物理带电粒子在磁场中的运动试题类型及其解题技巧及解析

高考物理带电粒子在磁场中的运动试题类型及其解题技巧及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高三专题带电粒子在场中的运动归类解析(学生版)

高三专题带电粒子在场中的运动归类解析(学生版)

带电粒子在场中运动高考题型归类解析1、带电粒子在匀强磁场中匀速圆周运动基本问题找圆心、画轨迹是解题的基础。

带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。

【例1】(04天津)钍核Th 23090发生衰变生成镭核Ra 22688并放出一个粒子。

设该粒子的质量为m 、电荷量为q ,它进入电势差为U 的带窄缝的平行平板电极1S 和2S 间电场时,其速度为0v ,经电场加速后,沿ox 方向进入磁感应强度为B 、方向垂直纸面向外的有界匀强磁场,ox 垂直平板电极2S ,当粒子从p 点离开磁场时,其速度方向与ox 方位的夹角︒=60θ,如图所示,整个装置处于真空中。

(1)写出钍核衰变方程;(2)求粒子在磁场中沿圆弧运动的轨道半径R ; (3)求粒子在磁场中运动所用时间t 。

2、带电粒子在磁场中轨道半径变化问题。

导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。

如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。

②磁场变化导致半径变化。

如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。

③动量变化导致半径变化。

如粒子裂变,或者与别的粒子碰撞;④电量变化导致半径变化。

如吸收电荷等。

总之,由qBm vr =看m 、v 、q 、B 中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。

【例2】(06年全国2)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,磁场方向垂直于纸面向里,且B 1>B 2。

一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?3、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题带电粒子在磁场中运动的临界问题的原因有:粒子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析
量为四电荷量为 q 的带负电粒子从坐标(L,3L/2)处以初速度 v0 沿 x 轴负方向射入电场,射
出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小 E; (2)为使粒子进入磁场后途经坐标原点 0 到达坐标(-L,0)点,求匀强磁场的磁感应强度大小 B; (3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
Q 两点之间的距离为 L ,飞出电场后从 M 点进入圆形区域,不考虑电子所受的重力。 2
(1)求 0≤x≤L 区域内电场强度 E 的大小和电子从 M 点进入圆形区域时的速度 vM; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴,求所加磁场磁感应强度 B 的大小和电子在圆形区域内运动的时间 t; (3)若在电子从 M 点进入磁场区域时,取 t=0,在圆形区域内加如图乙所示变化的磁场 (以垂直于纸面向外为正方向),最后电子从 N 点飞出,速度方向与进入圆形磁场时方向 相同,请写出磁场变化周期 T 满足的关系表达式。
1 4
T0
T 2
2 m 又 T0 eB0
则 T 的表达式为T mL (n=1,2,3,…)。 2n 2emU
3.如图所示,一匀强磁场磁感应强度为 B;方向向里,其边界是半径为 R 的圆,AB 为圆 的一直径.在 A 点有一粒子源向圆平面内的各个方向发射质量 m、电量-q 的粒子,粒子重力 不计.
R,圆弧对应的圆心角为
2
.则有
x2
2R2 ,此时满足
L 2n 1 x2
联立可得:
R2
2n
L
1
2
由牛顿第二定律,洛伦兹力提供向心力,则有: qvB2
m
v2 R2
得:

带电粒子在磁场中的运动常考的3种题型

带电粒子在磁场中的运动常考的3种题型

[例1] 中心均开有小孔的金属板C、D与边长为d的正方形单 匝金属线圈连接,正方形框内有垂直纸面的匀强磁场,大小随时 间变化的关系为B=kt(k未知,且k>0),E、F为磁场边界,且与 C、D板平行。D板正下方分布磁场大小均为 B0,方向如图1所示
的匀强磁场。区域Ⅰ的磁场宽度为d,区域Ⅱ的磁场宽度足够大。 在C板小孔附近有质量为m、电量为q的正离子由静止开始加速 后,经D板小孔垂直进入磁场区域 Ⅰ,不计离子重力。
(1)金属板CD之间的电场强度方向由C垂直指向
D,正方形线框内的磁场方向垂直纸面向里。 (2)由题意,离子在磁场中运动的轨迹如图甲所示。 2πR 2πm T= v = ① qB0
由图示几何关系知离子在磁场中运动的总时间 1 5 7πm t= T+ T= 3 6 3qB0 (3)设离子进入磁场的速度为v ΔΦ U= =kd2 Δt 1 2 由qU= mv 2 解得v= 2qkd2 m ③ ④ ⑤ ②
[例1] 如图6甲所示的控制电子运动装置由偏转电场、偏转 磁场组成。偏转电场处在加有电压U、 相距为d的两块水平平行 放置的导体板之间,匀强磁场水平宽度一定,竖直长度足够长, 其紧靠偏转电场的右边。大量电子以相同初速度连续不断地沿两 板正中间虚线的方向向右射入导体板之间。当两板间没有加电压 时,这些电子通过两板之间的时间为2t0;当两板间加上图乙所示 的电压U时,所有电子均能通过电场、穿过磁场,最后打在竖直 放置的荧光屏上。已知电子的质量为m、电荷量为e,不计电子的 重力及电子间的相互作用,电压U的最大值为U0,磁场的磁感应 强度大小为B、方向水平且垂直纸面向里。
mv2 1 则B2qv= ,求得r3= m≈0.017 m r3 60 因r3<r2,所以离子能做完整的圆周运动 2πm π 离子在外加磁场后做圆周运动的周期T2= = ×10-7 s B2q 12 对照外加磁场的规律可知,每隔 π ×10-7 s离子在周期性外加 12

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBL v m=;(2)41(1)45m t qB π=+ 【解析】【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQ O Q L == 在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR = 解得:8qBL v m= ; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PC t v= 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12m T qBπ= 2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m m T q B qBππ== 3212t T = 从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145m t qB π⎛⎫=+ ⎪⎝⎭。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R qB==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t gg==; 所以质点在P 点的竖直分速度03yP y v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,在平面直角坐标系xOy平面内,直角三角形abc的直角边ab长为6d,与y轴重合,∠bac=30°,中位线OM与x轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y轴正向的匀强电场,场强大小E与匀强磁场磁感应强度B的大小间满足E=v0B.在x=3d的N点处,垂直于x轴放置一平面荧光屏.电子束以相同的初速度v0从y轴上-3d≤y≤0的范围内垂直于y轴向左射入磁场,其中从y轴上y=-2d处射入的电子,经磁场偏转后,恰好经过O点.电子质量为m,电量为e,电子间的相互作用及重力不计.求(1)匀强磁杨的磁感应强度B(2)电子束从y轴正半轴上射入电场时的纵坐标y的范围;(3)荧光屏上发光点距N点的最远距离L【答案】(1)0mved;(2)02y d≤≤;(3)94d;【解析】(1)设电子在磁场中做圆周运动的半径为r;由几何关系可得r=d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:2vev B mr=解得:0mvBed=(2)当电子在磁场中运动的圆轨迹与ac边相切时,电子从+ y轴射入电场的位置距O点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最大值解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图所示,在直角坐标系xOy 平面内有两个同心圆,圆心在坐标原点O,小圆内部(I 区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy 平面向里的匀强磁场(图中未画出),I 、Ⅱ区域磁场磁感应强度大小分别为B 、2B 。

(完整版)带电粒子在匀强磁场中的运动专题

(完整版)带电粒子在匀强磁场中的运动专题

带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。

2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。

3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。

例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。

现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。

一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。

粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。

不计重力。

求M点到O点的距离和粒子在磁场中运动的时间。

二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。

如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。

2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。

如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。

3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析

的匀强磁场,磁感应强度 B=2.5×10-2T,宽度 D=0.05m,比荷 q =1.0×108C/kg 的带正电 m
的粒子以水平初速度 v0 从 P 点射入电场.边界 MM′不影响粒子的运动,不计粒子重力.
(1) 若 v0=8.0×105m/s,求粒子从区域 PP′N′N 射出的位置; (2) 若粒子第一次进入磁场后就从 M′N′间垂直边界射出,求 v0 的大小; (3) 若粒子从 M′点射出,求 v0 满足的条件.
【答案】(1) 2 3 105 m / s ;垂直于 AB 方向出射.(2) 3 3 T (3) 2 3 T
3
10
5
【解析】
试题分析:(1)设带电粒子在电场中做类平抛运动的时间为 t,加速度为 a,
则: q U ma 解得: a qU 3 1010 m / s2
d
md 3
t L 1105 s v0
O1Q sin37O 5L 在 y 轴左侧磁场中做匀速圆周运动,半径为 R1 ,
R1 O1Q QC
qvB m v2 R1
解得: v 8qBL ; m
(2)由公式 qvB
m
v2 R2
得:
R2
mv qB
,解得:
R2
4L
由 R2 4L 可知带电粒子经过 y 轴右侧磁场后从图中 O1 占垂直于 y 轴射放左侧磁场,由对
竖直方向 d=1·Eq·t2 2m
得 t 2md qE
代入数据解得 t=1.0×10-6s 水平位移 x=v0t 代入数据解得 x=0.80m 因为 x 大于 L,所以粒子不能进入磁场,而是从 P′M′间射出,
L 则运动时间 t0= v0 =0.5×10-6s,
竖直位移 y=12·Emq·t02 =0.0125m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在磁场中做匀速圆周运动题型归类(2009、5)带电粒子在有界磁场中运动的分析方法:1.圆心的确定因为洛伦兹力F 指向圆心,根据F ⊥v ,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v 的方向再确定F 的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角ϕ等于转过的圆心角α,并等于AB 弦与切线的夹角(弦切角)θ的2倍,如图2所示,即ϕ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,即Bq mt α=,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t 越长,注意t 与运动轨迹的长短无关。

4.注意圆周运动的对称性与特殊性(1)从一直线边界射入的粒子从同一直线边界射出时,速度与边界的夹角相等;(2)在圆形磁场区域内,粒子射入时的速度方向过圆心,射出时的速度方向也过圆心;(3)圆形磁场区域的半径与粒子轨道半径相等时,出射方向一定垂直入射点与磁场圆心的连线。

(此结论解题很难想到,也较难证明,利用几何知识。

)问题一:磁场边界问题有界磁场的两种典型模型:1.穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

(1)带电粒子在穿过磁场时的偏向角由sin θ=L /R 求出;(θ、L 和R见图标)(2)带电粒子的侧移由R 2=L 2-(R-y )2解出;(y 见所图标) (3)带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。

1。

矩形边界磁场题型1-1-1:如图7所示,矩形匀强磁场区域的长为L,宽为L/2。

磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。

当速率最小时,粒子恰好从d点射出,由图可知其半径R1=L/4,再由R1=mv1/eB,得:当速率最大时,粒子恰好从c点射出,由图可知其半径R2满足,即R2=5L/4,再由R2=mv2/eB,得:电子速率v的取值范围为:。

在处理这类问题时重点是画出临界状态粒子运动的轨迹图,再根据几何关系确定对应的轨迹半径,最后求解临界状态的速率。

2.圆形边界磁场题型1-2-1:在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。

如图11所示,粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又, 则粒子的荷质比为 。

(2)粒子从D 点飞出磁场速度方向改变了60°角,故AD 弧所对圆心角60°,粒子做圆周运动的半径,又,所以 ,粒子在磁场中飞行时间:。

在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,利用轨迹半径与几何关系确定对应的出射点的位置,由于线速度的方向始终与半径垂直,线速度改变了60°角,故圆心角为60°,解题中充分应用这一特点是关键。

题型1-2-2:核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。

如图9-19所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。

设环状磁场的内半径为R1=0.5m ,外半径R2=1.0m ,磁场的磁感强度B=1.0T ,若被束缚带电粒子的荷质比为q/m=4×710C/㎏,中空区域内带电粒子具有各个方向的速度。

试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。

(2)所有粒子不能穿越磁场的最大速度。

分析与解答:本题也属于极值类问题,寻求“临界轨迹”是解题的关键。

要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切;要使所有粒子都不穿越磁场,应保证沿内圆切线方向射出的粒子不穿越磁场,即运动轨迹与内、外圆均相切。

(1)轨迹如图9-20所示由图中知2122121)(r R R r -=+,解得m r 375.01= 由1211r V m BqV =得s m m Bqr V /105.1711⨯==所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为 s m V /105.171⨯=。

(2)当粒子以V2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以V1速度沿各方向射入磁场区的粒子都不能穿出磁场边界,如图9-21所示。

由图中知m R R r 25.02122=-=图9-21 OO2图9-20 r 1由2222r V m BqV =得s m m Bqr V /100.1722⨯==所以所有粒子不能穿越磁场的最大速度s m V /100.172⨯= 带电粒子在有界磁场中运动时,运动轨迹和磁场边界“相切”往往是临界状态,对于解题起到关键性作用。

3.组合边界磁场题型1-3-1:如图9-24所示,空间分布着有理想边界的匀强电场和匀强磁场。

左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向外。

一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。

求:(1)中间磁场区域的宽度d;(2)带电粒子从O 点开始运动到第一次回到O 点所用时间t.分析与解答:带电粒子在电场中经过电场加速,进入中间区域磁场,在洛伦兹力作用下做匀速圆周运动,又进入右侧磁场区域做圆周运动,根据题意,粒子又回到O 点,所以粒子圆周运动的轨迹具有对称性,如图9-25画出粒子运动轨迹。

(1)带电粒子在电场中加速,由动能定理,可得: 221mV qEL = 带电粒子在磁场中偏转,由牛顿第二定律,可得: R V m BqV 2= 由以上两式,可得q mEL B R 21=。

可见在两磁场区粒子运动半径相同,三段圆弧的圆心组成的三角形ΔO1O2O3是等边三角形,其边长为2R 。

所以中间磁场区域的宽度为q mELB R d 62160sin 0==(2)在电场中qE mL qE mV a V t 22221===, 在中间磁场中运动时间qB 3m 26T 2t 2π== 图9-25B B 图9-24在右侧磁场中运动时间qB m T t 35653π==, 则粒子第一次回到O 点的所用时间为qB m qE mL t t t t 3722321π+=++=。

带电粒子从某一点出发,最终又回到该点,这样的运动轨迹往往具有对称性,由此画出运动的大概轨迹是解题的突破点。

题型1-3-2:如图所示,边长为L 的等边三角形ABC 为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B ,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B 。

把粒子源放在顶点A 处,它将沿∠A 的角平分线发射质量为m 、电荷量为q 、初速度为v 0的带电粒子(粒子重力不计)。

若从A 射出的粒子①带负电,0qBL v m=,第一次到达C 点所用时间为t 1 ②带负电,02qBL v m=,第一次到达C 点所用时间为t 2 ③带正电,0qBL v m=,第一次到达C 点所用时间为t 3 ④带正电,02qBL v m =,第一次到达C 点所用时间为t 4 则下列判断正确的是(B ) A 、t 1= t 3< t 2= t 4 B 、t 1< t 2< t 4 < t 3 C 、t 1< t 2< t 3< t 4 D 、t 1< t 3< t 2< t 4分析与解答:根据带电粒子在磁场中运动的半径公式:R =mv 0Bq 可知,当速度v 0=BqL m时,半径为L ,当速度v 0=BqL 2m时,半径为0.5L 。

如图所示,分别为四种情况下粒子运动的轨迹。

①:粒子从A 点经过60°的圆心角的圆弧向右偏转运动到C 点,时间为t 1=16T ,其中T 为粒子在磁场中圆周运动的周期; ②:粒子从A 点经过60°的圆心角的圆弧后进入三角形外面的磁场中,再经过60°的圆心角的圆弧到达C 点,时间为t 2=13T ; ③:粒子从A 点经过60°的圆心角的圆弧向左偏转运动到B 点,再从B 点经过300°的圆心角的圆弧到达C 点,总时间为t 3=T ;④:粒子从A 点经过60°的圆心角的圆弧向左进入三角形外面的磁场中,再经过60°的圆心角的圆弧向右到达B 点,从B 点经过60°的圆心角的圆弧向上进入三角形内部CA B v 0的磁场中,最后经过60°的圆心角的圆弧向下运动到C 点,总时间为t 4=23T 。

因此B 选项正确。

4.确定磁场的边界范围题型1-4-1:如图12所示,一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。

为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场。

若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。

重力忽略不计。

解析:质点在磁场中作半径为R 的圆周运动,qvB=(Mv 2)/R ,得:R=(MV )/(qB )。

相关文档
最新文档