圆周运动经典题型归纳

合集下载

圆周运动题型总汇 超全

圆周运动题型总汇   超全

圆周运动练习题1.下列关于圆周运动的说法正确的是A.做匀速圆周运动的物体,所受的合外力一定指向圆心B.做匀速圆周运动的物体,其加速度可能不指向圆心C.作圆周运动的物体,其加速度不一定指向圆心D.作圆周运动的物体,所受合外力一定与其速度方向垂直2.关于匀速圆周运动,下列说法正确的是A.匀速圆周运动就是匀速运动B.匀速圆周运动是匀加速运动C.匀速圆周运动是一种变加速运动D.匀速圆周运动的物体处于平衡状态3.下列关于离心现象的说法正确的是A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动4.下列关于向心力的说法中,正确的是A.做匀速圆周运动的质点会产生一个向心力B.做匀速圆周运动的质点所受各力中包括一个向心力C.做匀速圆周运动的质点所受各力的合力是向心力D.做匀速圆周运动的质点所受的向心力大小是恒定不变的5.关于物体做圆周运动的说法正确的是A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量6.关于向心力的说法正确的是A.向心力不改变做圆周运动物体速度的大小B.做匀速圆周运动的物体受到的向心力即为物体受到的合力C.做匀速圆周运动的物体的向心力是不变的D.物体由于做圆周运动而产生了一个向心力7.下列说法正确的是A.因为物体做圆周运动,所以才产生向心力B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C.因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D.向心力是圆周运动物体所受的合外力8.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。

圆周运动归纳、总结、训练(含答案)

圆周运动归纳、总结、训练(含答案)

圆周运动归纳、总结、训练(含答案)圆周运动归纳、总结、训练(含答案)匀速圆周运动归纳、总结、训练(含答案)【知识回顾、方法点拨】考点一、基本概念匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动理想化模型。

1.线速度(矢量):(1)vs/t(比值法定义)单位m/s (2)方向:圆周轨迹的切线方向2.角速度:(1)/t(比值法定义)单位弧度/秒,(rad/s)3.周期T(s)频率f(Hz)T=1/f转速n(r/s或r/min):当单位时间取秒时,转速n与频率f在数值上相等关系:T=1/n4.关系:vts2T2R2n2RnRtTvR,同一转动物体上,角速度相等;同一皮带轮连接的轮边缘上线速度相等。

匀速圆周运动速率大小不变,并不是匀速运动而是变速运动。

匀速圆周运动中,角速度是恒定不变的.匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。

条件:(1)初速度v0;2(2)F合v,F合F向mRm5、向心加速度、向心力av2v2Rm4T22Rm4nRmv22rr24T22r(2f)r2Fmamv2rmrm24T22rm(2f)r2向心加速度是描述线速度方向变化快慢的物理量,产生向心加速度的力叫向心力。

向心力和向心加速度方向都时刻在改变(圆周运动一定是非匀变速运动)。

ar,ω相同时,a与r成正比;a2v2r,v相同时,a与r成反比;r相同时,a与ω成2正比,与v2成反比。

(1)因为v、ω的大小均不变,所以向心加速度的大小也就不变,但由于a的方向始终垂直于速度在旋转变化,所以向心加速度不是恒量而是变量.匀速圆周运动不是匀加速运动而是变加速运动.(2)向心力只改变速度的方向,不改变速度的大小。

(向心力永远不做功)向心力是变力,而不是恒力.向心力是物体受的某一个力或某几个力的合力产生的一种效果.并不是说做圆周运动的物体又受到了另外一个新的特殊的力.温馨提示:在匀速圆周运动中,向心力是由物体受到的合外力,反之,做圆周运动的物体合力指向圆心,则是匀速圆周运动。

高中物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.如下图,在水平桌面上离桌面右边沿 3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N 作用于铁球,作用一段时间后撤去。

铁球持续运动,抵达水平桌面边沿 A 点飞出,恰巧落到竖直圆弧轨道 BCD的 B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰巧能经过圆弧轨道的最高点 D.已知∠ BOC=37°, A、 B、 C、 D 四点在同一竖直平面内,水平桌面离 B 端的竖直高度 H=0.45m ,圆弧轨道半径R=0.5m ,C 点为圆弧轨道的最低点,求:(取sin37 °=0.6,cos37 =0°.8)(1)铁球运动到圆弧轨道最高点 D 点时的速度大小v D;(2)若铁球以 v C=5.15m/s 的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小F C;(计算结果保存两位有效数字)(3)铁球运动到 B 点时的速度大小v B;(4)水平推力 F 作用的时间t 。

【答案】 (1)铁球运动到圆弧轨道最高点 D 点时的速度大小为 5 m/s;(2)若铁球以 v C=5.15m/s 的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小为6.3N;(3)铁球运动到 B 点时的速度大小是5m/s ;(4)水平推力 F 作用的时间是0.6s。

【分析】【详解】(1)小球恰巧经过 D 点时,重力供给向心力,由牛顿第二定律可得:mv D2 mgR可得:v D5m / s(2)小球在 C 点遇到的支持力与重力的协力供给向心力,则:代入数据可得:F=6.3N由牛顿第三定律可知,小球对轨道的压力:F C=F=6.3N F mgmv C2R(3)小球从 A 点到 B 点的过程中做平抛运动,依据平抛运动规律有:2gh v y2得: v y=3m/sv y3小球沿切线进入圆弧轨道,则:v B5m/ssin370.6(4)小球从 A 点到 B 点的过程中做平抛运动,水平方向的分速度不变,可得:v A v B cos3750.8 4m / s小球在水平面上做加快运动时:F mg ma1可得: a18m / s2小球做减速运动时:mg ma2可得: a22m / s2由运动学的公式可知最大速度:v m a1t ; v A v m a2t2又: x vm t v mvA t2 22联立可得: t0.6s2.如下图 ,半径 R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律22mv B = mv c +2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为N ,依据牛顿第二定律 : N-mg=m解得: N=45N(3)设滑块从 A 点开始运动时的速度为 22v A ,依据动能定理 ; -μ mgs 2= mv B - mv A解得: v A =16.1m/s设滑块在 A 点遇到的冲量大小为 I ,依据动量定理 I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.3. 如下图,水平长直轨道AB 与半径为 R=0.8m 的圆滑1竖直圆轨道 BC 相切于 B , BC4与半径为 r=0.4m 的圆滑1竖直圆轨道 CD 相切于 C ,质量 m=1kg 的小球静止在 A 点,现用4F=18N 的水平恒力向右拉小球,在抵达AB 中点时撤去拉力,小球恰能经过D 点.已知小球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:( 1)小球在 D 点的速度 v D 大小 ; ( 2)小球在 B 点对圆轨道的压力 N B 大小;( 3) A 、B 两点间的距离 x .【答案】 (1) v D 2m / s ( 2)45N (3)2m【分析】 【剖析】 【详解】(1)小球恰巧过最高点 D ,有:2 mgmv Dr解得: v D2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 22 2设小球在 B 点遇到轨道支持力为N ,由牛顿定律有:2 N mgmv BRN B =N联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1 mv B2 22解得: x 2m故此题答案是: (1) v D 2m / s ( 2) 45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,4. 如下图,质量 m=3kg 的小物块以初速度秽 v 0=4m/s 水平向右抛出,恰巧从 A 点沿着圆弧的切线方向进入圆弧轨道。

圆周运动题型整理

圆周运动题型整理

圆周运动水平面圆周运动1.如图所示,在一个水平圆盘上有一个木块P 随圆盘一起绕O 点的竖直轴匀速转动,下面说法正确的是( )A. 圆盘匀速转动的过程中,P 受到的静摩擦力的方向指向O 点B. 圆盘匀速转动的过程中,P 受到的静摩擦力为0C. 在转速一定的条件下,P 受到静摩擦力的大小与P 到O 点的距离成正比D. 在P 到O 点的距离一定的条件下,P 受到的静摩擦力的大小与圆盘匀速转动的角速度成正比2.如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g ,若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度.下列说法正确的是( ) A. b 一定比a 先开始滑动B. a 、b 所受的摩擦力始终相等C. ω=是b 开始滑动的临界角速度 D. 当ω=时,a 所受摩擦力的大小为kmg3.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动。

开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( ) A.当ω>时,A 、B 会相对于转盘会滑动 B.当ω>C. 0ωω<<在B 所受摩擦力一直变大D. 0ωω<<在范围内增大时,A 所受摩擦力一直变大10.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,设最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好要发生滑动时,则下列说法正确的是( ) A. 此时绳子张力为1.5μmg B.C. 此时A 所受的摩擦力方向沿半径指向圆内D. 此时烧断绳子,A 仍相对盘静止,B 将做离心运动 4.如图所示,粗糙水平圆盘上,可视为质点的木块A 、B 叠放在一起,放在水平转台上随转台一起绕固定转轴匀速转动,A 的质量为 ,B 的质量为 。

高中物理第六章圆周运动题型总结及解题方法(带答案)

高中物理第六章圆周运动题型总结及解题方法(带答案)

高中物理第六章圆周运动题型总结及解题方法单选题1、下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒答案:CA.汽车行驶过程中,乘客要系好安全带是为了防止车辆急停急转身体脱离座椅而发生伤害,A不符合题意;B.厢式电梯张贴超载标识是为了防止超载引起电梯不能正常运行而发生以外,B不符合题意;C.火车拐弯处设置限速标志,是防止火车转弯时速度过大出现离心现象而出现脱轨,C符合题意;D.酒后人的反应变慢,开车容易导致交通事故,D不符合题意;故选C。

2、某玩具可简化为如图所示的模型,竖直杆上同一点O系有两根长度均为l的轻绳,两轻绳下端各系一质量为m的小球,两小球间用长为l的轻绳相连,轻绳不可伸长。

当球绳系统绕竖直杆以不同的角速度匀速转动时,小球A、B关于杆对称,关于OA绳上的弹力F OA与AB绳上的弹力F AB大小与角速度平方的关系图像,正确的是()A.B.C.D.答案:B在AB绳绷直前AB绳上弹力为零,OA绳上拉力大小为F OA,设OA绳与竖直杆间的夹角为θ,有F OA sinθ=mω2lsinθ得F OA=mω2l当AB绳恰好绷直时,OA绳与竖直杆间的夹角为30°,有mgtan30∘=mω2lsin30∘得ω2=2√3g 3l当ω2>2√3g3l时,竖直方向有F OA cos30∘=mg 得F OA=2√33mg水平方向有F OA sin30∘+F AB=mω2lsin30∘解得F AB=12mω2l−√33mg综上可知:F OA先与角速度平方成正比,后保持不变;F AB开始为零,当角速度平方增大到一定值后与角速度平方成一次增函数关系。

故选B。

3、火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是()A.轨道半径R=v 2gB.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外C.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内D.当火车质量变大时,安全速率应适当减小答案:BAD.火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)F合=mgtanθ合力等于向心力,故mgtanθ=m v2 R解得R=v2 gtanθv=√gRtanθ安全速率与火车质量无关,故AD错误;B.当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,故B正确;C.当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,故C错误。

高中物理 圆周运动典型例题详解

高中物理    圆周运动典型例题详解

B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN

mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN

FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,

圆周运动常见题型分析

圆周运动常见题型分析

圆周运动常见题型分析圆周运动常见题型分析1.向心加速度:a = = = =2.向心力公式:F 向=ma 即F= = = =3.向心力特点:方向始终与V ,指向;方向时刻发生变化,是变力。

? 专题训练1.在匀速圆周运动中,下列物理量不变的是()A .向心加速度B .线速度C .向心力D .角速度2.如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是()A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。

3.如图所示,一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A ,它随圆盘一起做匀速圆周运动。

则关于木块A 的受力,下列说法正确的是()A .木块A 受重力、支持力和向心力B .木块A 受重力、支持力和静摩擦力,静摩擦力的方向指向圆心C .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相反D .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相同4、如图所示,在匀速转动的圆筒内壁上,紧靠着一个物体随圆筒一起运动,物体所受的向心力是由下列哪个力提供( ) A .重力 B .弹力 C .静摩擦力 D .滑动摩擦力5、如图所示的两轮以皮带传动,没有打滑,A 、B 、C 三点的位置关系如图,若r 1>r 2,O 1C =r 2,则三点的向心加速度的关系为() A.a A =a B =a C B .a C >a A >a B C.a C a A6.如图所示,长为L 的悬线固定在O 点,在O 点正下方2L处有一钉子C ,把悬线另一端的小球m 拉到跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子,则()A .线速度突然增大B .角速度突然增大C .向心加速度突然增大D .悬线拉力突然增大7.如图所示。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆周运动基本物理量与传动装置
1共轴传动
例1.如图所示,一个圆环以竖直直径AB为轴匀速转动,则环上M、N两
点的角速度之比为_____________,周期之比为___________,线速度之比
为___________.
2皮带传动
例二.图示为某一皮带传动装置。

主动轮的半径为r1,从动轮的半径为r2。

已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。

下列说法正确的是
A.从动轮做顺时针转动 B.从动轮做逆时针转动
C.从动轮的转速为n D.从动轮的转速为n
3齿轮传动
例3如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在
过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转
速为n1.求:
(1)B齿轮的转速n2;
(2)A、B两齿轮的半径之比;
(3)在时间t内,A、B两齿轮转过的角度之比
4、混合题型
图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两
轮用皮带传动,三轮半径关系是rA=rC=2rB;若皮带不打滑,则A、B、
C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc= ;
线速度之比va:vb:vc=
二、向心力来源
1、由重力、弹力或摩擦力中某一个力提供
例1:洗衣机的甩干桶竖直放置.桶的内径为20厘米,工作被甩的衣物
贴在桶壁上,衣物与桶壁的动摩擦因数为.若不使衣物滑落下去,甩干
桶的转速至少多大
2、在匀速转动的水平盘上,沿半径方向放着三个物体A,B,C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。

他们到转轴的距离的关系为Ra<Rb<Rc,当转盘的转速逐渐增大时,哪个物体先开始滑动,相对盘向哪个方向滑
A. B先滑动,沿半径向外 B B先滑动,沿半径向内
C C先滑动,沿半径向外
D C先滑动,沿半径想内
3、一质量为的小球,用长的细线拴住在竖直面内作圆周运动,(1)当小球恰好能通过最高点时的速度为多少(2)当小球在最高点速度为4m/s时,细线的拉力是多少(取g=10m/s 2 )
2、向心力由几个力的合力提供
(1)由重力和弹力的合力提供
例1:半径为R的半球型碗底的光滑内表面,质量为m的小球正
以角速度ω,在一水平面内作匀速圆周运动,试求此时小球离碗
底的高度h
(2)由弹力和摩擦力提供
例2:如图所示,用细绳一端系着的质量为 M =的物体 A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔 O 吊着质量为 m =的小球 B , A 的重心到 O 点的距离为.若 A 与转盘间的最大静摩擦力为 f =2N,为使小球 B 保持静止,求转盘绕中心 O 旋转的角速度ω的取值范围.(取 g =10m/s 2 )
(3)由拉力一个分力提供
例3:升降机内悬挂一圆锥摆,摆线长为1m,小球质量为,当升降机以2m/s 2 的加速度匀加速上升时,摆线恰好与竖直方向成θ=37°角,试求:(1)小球的转速;(2)摆线的拉力.(g取10m/s 2 )
(4)由重力、支持力、拉力的合力提供
例4:用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是()
3圆周问题的周期性
例1圆周运动与直线运动
如图所示,直径为d的圆形纸筒以角速度ω绕轴心O匀速转
动.一子弹沿直径射入圆筒.若圆筒旋转不到半周时,子弹在
圆筒上先后留下a,b两个弹孔,且∠aOb=θ,则子弹的速度为
多少
例2圆周运动与匀加速运动
一个水平放置的圆桶正绕中轴匀速转动,桶上有一小孔,桶壁
很薄,当小孔运动到桶的上方时,在孔的正上方H处有一小球
由静止开始下落,已知孔半径大于球半径,为了让小球下落时
不受任何阻碍,桶半径R与H应是什么关系
例3:圆周运动与曲线运动
如图所示,有A、B球绕同一恒星O做圆周运动,运转方向相同,A
的周期为T1,B的周期为T2,在某一时刻两球第一次相遇(即相
距最近),则经过时间多长时间两球又相遇
4圆锥摆模型
例1:一个半径为R的内壁光滑的半球形碗固定在水平地面上,
若使质量为m的小球贴着碗的内壁在水平面内以角速度ω做
匀速圆周运动,如图所示。

若角速度ω增大,设圆周平面距碗
底的高度为h、回旋半径为r、向心力为F,则 [ ]
A.h变大;r变大;F变大 B.h变小;r变小;F变大
B.C.h不变;r不变;F变大 D.h变大;r变大;F变小
例2:摆线的拉力
如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖
直方向,母线与轴线之间的夹角为θ=30°.一长为L的轻绳
一端固定在圆锥体的顶点O处,另一端拴着一个质量为m的小
物体.物体以速度v绕圆锥体的轴线在水平面内做匀速圆周运
动.(结果可保留根式)
(1)当 v 1 = 时,求绳对物体的拉力;
(2)(2)当 v 2 = L时,求绳对物体的拉力.
例3:周期的计算
两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相
同,如图所示,A运动的半径比B的大,则()
A.A球周期大 B.B球周期大
B.AB球周期一样大 D.无法比较
例4:动态分析
长为L的细线,拴一质量为m的小球,一端固定于O点.让其在
水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图.求摆线L 与竖直方向的夹角为α时:若球角速度增大,则
(1)线的拉力F;
(2)小球运动的线速度的大小;
(3)小球运动的角速度及周期.
4、圆周运动经典模型
(1)轻绳模型
例1小球恰好能在竖直面内的半圆环内做圆周运动,小球从A点抛出,已知CD=2R,下列说法正确的是()
A小球落在C点左端 B小球落在C点
C小球落在C点右端 D都有可能
(2)轻杆模型
半径R=的管状轨道内,有一质量为m=的小球在做圆周运动,通过最高点时小球的速率为2m/s取g=10m/s2则()
A外轨道受到24N的压力 B外轨道受到6N的压力
C内轨道受到24N的压力 D内轨道受到6N的压力
(3)拱桥模型
在用高级沥青铺设的高速公路上,汽车的设计时速是108km/h,汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的倍.
(1)如果汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少
(2))如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少(取g=10m/s2)
5圆周运动的临界问题
(1)摩擦力引起的
如图,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同 . 当匀速转动
的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细线,
则两个物体的运动情况将是
A.两物体均沿切线方向滑动
B两物体均沿半径方向滑动,离圆盘圆心越来越远
C两物体仍随圆盘一起做匀速圆周运动,不会发生滑动
D 物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,
离圆盘圆心越来越远
(2)绳上拉力引起的
如图所示,两绳系一个质量为m=的小球.上面绳长l=2m,两绳都拉
直时与转轴的夹角分别为30°和45°,g取10m/s2.球的角速度满
足什么条件,两绳始终张紧
(3)弹簧上拉力变化引起
如图所示,有一水平放置的圆盘,上面水平放一劲度系数为k的弹簧,弹簧的一端固定于轴O上,另一端连接一质量为m的物体A,物体
与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长
度为R,设最大静摩擦力等于滑动摩擦力.则:
1)盘的转速n0多大时,物体A开始滑动
2)当转速达到2n0时,弹簧的伸长量△x是多少。

相关文档
最新文档