华南实验学校七年级数学竞赛训练题(1)

合集下载

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。

7. 圆的周长公式是C=__。

8. 如果一个数的立方等于它本身,那么这个数可能是____。

9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。

10. 一个数的倒数是1/这个数,那么1的倒数是____。

三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。

12. 什么是质数?请列出前5个质数。

13. 描述如何使用勾股定理来计算直角三角形的斜边长度。

四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。

15. 解下列方程:2x + 5 = 13。

五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。

求男生、女生和教师的人数。

答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。

12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

初一数学计算能力竞赛题

初一数学计算能力竞赛题

初一数学计算能力竞赛题计算题1:计算下列各题。

(每题5分,共20分)1. $3 \times (8 - 2)$2. $(7 - 4)^2$3. $15 \div 3 \times 4$4. $12 + (3 \times 2) - 5$解答:1. $3 \times (8 - 2) = 3 \times 6 = 18$2. $(7 - 4)^2 = 3^2 = 9$3. $15 \div 3 \times 4 = 5 \times 4 = 20$4. $12 + (3 \times 2) - 5 = 12 + 6 - 5 = 13$计算题2:求解下列方程。

(每题10分,共40分)1. $x + 6 = 18$2. $3x - 4 = 11$3. $2(2x + 3) = 20$4. $5x - 8 = 32 - x$解答:1. $x + 6 = 18$,移项得 $x = 18 - 6 = 12$2. $3x - 4 = 11$,移项得 $3x = 15$,再除以3得 $x = 5$3. $2(2x + 3) = 20$,去括号得 $4x + 6 = 20$,再移项得 $4x = 20 - 6 = 14$,最后除以4得 $x = 3.5$4. $5x - 8 = 32 - x$,移项得 $6x = 40$,再除以6得 $x = 40/6 = 20/3 ≈ 6.67$计算题3:一辆汽车从A地到B地,全程120公里,平均时速60公里/小时。

请计算从A地到B地需要多长时间。

(10分)解答:根据速度等于路程除以时间的公式,可得 $\frac{120}{t} = 60$,其中t表示时间,解方程得 $t = \frac{120}{60} = 2$,因此从A地到B地需要2小时。

思维题:两种水果按比例混合小明有10个苹果和5个橙子,小红有6个苹果和12个橙子。

若小明和小红想按照苹果和橙子的比例混合他们的水果,问他们各自需要拿出多少个苹果和橙子?解答:小明有10个苹果和5个橙子,小红有6个苹果和12个橙子。

江苏丹阳市华南实验学校数学知识竞赛试卷

江苏丹阳市华南实验学校数学知识竞赛试卷

江苏丹阳市华南实验学校数学知识竞赛试卷
佚名
【期刊名称】《小学教学:数学版》
【年(卷),期】2008(000)002
【总页数】2页(P50-51)
【正文语种】中文
【中图分类】G620
【相关文献】
1.江苏丹阳市华南实验学校2016年七年级分班测试数学试卷 [J],
2.江苏丹阳市华南实验学校2013年七年级新生数学测试卷 [J],
3.江苏丹阳市华南实验学校2016年七年级分班测试数学试卷 [J], ;
4.江苏丹阳市华南实验学校2013年七年级新生数学测试卷 [J],
5.江苏丹阳市华南实验学校2011年七年级新生数学测试卷 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

七年级数学竞赛题精选和参考答案

七年级数学竞赛题精选和参考答案

七年级数学竞赛题精选_______一.填空题1.一辆汽车车牌在地面积水中的倒影为 ,请写出该车牌2.已知:|x+3|+|x -2|=5,y=-4x+5,则 y 的最大值是。

3.已知a 、b 为△ABC 的两边,且满足ab b a 222=+,你认为△ABC 是三角形。

4.在一个5×5 的方格盘中共有个正方形。

5.已知ab x b a x b x a x +++=++)())((2,观察等式,试分解因式:=+-232x x 。

6.若a 3m =3 b 3n =2,则(a 2m )3+(b n )3-b n b 2n =7.如图,把⊿ABC 绕点C 顺时针旋转o25,得到⊿C B A '', B A ''交AC 于D ,已知∠DC A '=o 90,则∠A 的度数是;8.已知012=-+x x ,则2004223++x x =;一、选择题:1.下列属平移现象的是( )A ,山水倒映。

B.时钟的时针运转。

C.扩充照片的底片为不同尺寸的照片。

D .人乘电梯上楼。

2.如图,在边长为a 的正方形中挖去一个边长为b 的小正方形,把余下的部分剪拼成一个矩形,通过计算两个阴影部分的面积,验证了一个等式,此等式是()A.a 2-b 2=(a +b)(a -b)B.(a +b)2=a 2+2a b+b 2C.(a -b)2=a 2-2a b+b 2 D .(a +2b)(a -b)=a 2+a b -b 23.已知实数a 、b 满足:1=ab 且b a M +++=1111, bb a a N +++=11,则M 、N 的关系为( )(A )N M > (B )N M < (C )N M = (D )M 、N 的大小不能确定 4.若x 2-2(m -3)x +9是一个多项式的平方,则m =( )A 6B 12C 6或0D0或5.一枚硬币连抛5次,出现3次正面向上的机会记做P 1;五枚硬币一起向上抛,出现3枚正面向上的机会记做P 2,你认为下面结论正确的是()A.P 1 > P 2B. P 1 < P 2C. P 1 = P 2D. 不能确定6.若M=3x 2-8xy +9y 2-4x +6y +13(x ,y 是实数),则M 的值一定是( )A.正数B.负数C.零D.整数三.解答题1.因式分解:2..已知 的值。

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案【测试题一】题目:计算下列表达式的值:\[ 2^3 + 3^2 - 4 \times 5 \]【答案】首先,按照运算顺序,先计算乘方和乘法,再计算加法和减法。

\[ 2^3 = 8 \]\[ 3^2 = 9 \]\[ 4 \times 5 = 20 \]然后进行加减运算:\[ 8 + 9 - 20 = 17 - 20 = -3 \]所以,表达式的值为 -3。

【测试题二】题目:如果一个数的平方等于这个数本身,这个数是什么?【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = x \]这个方程可以重写为:\[ x^2 - x = 0 \]\[ x(x - 1) = 0 \]根据零乘律,\( x = 0 \) 或 \( x - 1 = 0 \),所以 \( x = 0 \) 或 \( x = 1 \)。

【测试题三】题目:一个长方体的长、宽、高分别是 8 厘米、6 厘米和 5 厘米,求这个长方体的体积。

【答案】长方体的体积可以通过长、宽、高的乘积来计算:\[ \text{体积} = 长 \times 宽 \times 高 \]\[ \text{体积} = 8 \times 6 \times 5 = 240 \text{ 立方厘米} \]【测试题四】题目:一个圆的半径是 7 厘米,求这个圆的周长和面积。

【答案】圆的周长公式是 \( C = 2\pi r \),面积公式是 \( A = \pi r^2 \)。

将半径 \( r = 7 \) 厘米代入公式中:\[ C = 2 \times \pi \times 7 \approx 44 \text{ 厘米} \]\[ A = \pi \times 7^2 \approx 153.94 \text{ 平方厘米} \]【测试题五】题目:一个班级有 40 名学生,其中 2/5 是男生,3/5 是女生。

如果班级里增加了 10 名男生,那么班级里男生和女生的比例是多少?【答案】首先,计算原有男生和女生的人数:男生:\( 40 \times \frac{2}{5} = 16 \) 人女生:\( 40 \times \frac{3}{5} = 24 \) 人增加 10 名男生后,男生总数变为 \( 16 + 10 = 26 \) 人,女生人数不变。

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.(4分)设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q≥a>bB .q ≥a>b≥pC .q ≥p≥a>bD .p ≥a>b≥q2.(4分)下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A . 3个B . 2个C . 1个D . 0个 3.(4分)a 为有理数,下列说法中,正确的是()A .(a+)2是正数B . a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于4.(4分)a ,b ,c 均为有理数.在下列:甲:若a >b ,则ac 2>bc 2.乙:若ac 2>bc 2,则a >b .两个结论中()A .甲、乙都真B .甲真,乙不真C .甲不真,乙真D .甲、乙都不真5.(4分)若a+b=3,ab=﹣1,则a 3+b 3的值是()A . 24B . 36C . 27D . 306.(4分)a 、b 、c 、m 都是有理数,且a+2b+3c=m ,a+b+2c=m ,那么b 与c 的关系是()A .互为相反数B .互为倒数C .相等D .无法确定7.(4分)两个10次多项式的和是()A . 20次多项式B . 10次多项式C . 100次多项式D .不高于10次的多项式8.(4分)在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A .奇数B .偶数C .负整数D .非负整数二、填空题(共8小题,每小题5分,满分40分)9.(5分)现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是 _________ 岁.10.(5分)1.23452+0.76552+2.469×0.7655=_________ .11.(5分)已知方程组,哥哥正确地解得,弟弟粗心地把c看错,解得,则abc= _________ .12.(5分)若,则= _________ .13.(5分)已知多项式2x4﹣3x3+ax2+7x+b能被x2+x﹣2整除,则的值是_________ .14.(5分)满足的值中,绝对值不超过11的哪些整数之和等于_________ .15.(5分)若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于_________ .16.(5分)三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,,b,的形式,则a1992+b1993= _________ .三、解答题(共3小题,满分48分)17.(16分)将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.18.(16分)如果6x2﹣5xy﹣4y2﹣11x+22y+m可分解为两个一次因式的积,求m的值,并分解因式.19.(16分)设a、b、c、d都是正整数,且a2+b2=c2+d2,证明:a+b+c+d定是合数.初一奥林匹克数学竞赛训练试题集(01)参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q≥a>bB .q ≥a>b≥pC .q ≥p≥a>bD .p ≥a>b≥q考点:约数与倍数.专题:分类讨论.分析:根据两个数的最大公约数与最小公倍数的关系判定即可.解答:解:∵(a ,b )=p 且[a ,b]=q ,∴p|a 且p|b ,即a|q 且b|q .∴q≥a>b≥p.故选B .点评:本题主要考查最大公约数与最小公倍数,两个数的最大公约数最小是一,最大是其中较小的数,两个数的最小公倍数最大是他们的积,最小是其中较大的数.2.(4分)下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A . 3个B . 2个C . 1个D . 0个考点:非负数的性质:偶次方;有理数的加法;有理数的乘法;有理数的除法.专题:计算题.分析:按照两数相除商是0,则除数一定是0;两数的积是0,那么其中的一个数必为0;两数的平方和是0,那么两数必都等于0;一个数的偶次方是0,那么这个数一定为0.由此可判断出本题的答案.解答:解:∵=0,b≠0,∴a 必为0,符合题意,故正确;又∵ab=0,b=0时成立,a 未必为0,不符合题意,故错误;又∵a 2=0,a 必定=0,符合题意,故正确;又∵a 2+b 2=0,则ab 必都等于0,故正确;∴必等于0的式子共有3个,故B 、C 、D 选项错误,故选A .点评:本题主要考查有理数加法、乘法、除法中的特殊结果0的出现原因.3.(4分)a 为有理数,下列说法中,正确的是()A .(a+)2是正数B . a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于考点:有理数的乘方.分析:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0.解答:解:A、(a+)2可为0,错误;B、a2+是正数,正确;C、﹣(a﹣)2可为0,错误;D、﹣a2+的值应不大于,错误.故选B.点评:此题要注意全面考虑a的取值,特别是底数为0的情况不能忽视.4.(4分)a,b,c均为有理数.在下列:甲:若a>b,则ac2>bc2.乙:若ac2>bc2,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,乙真D.甲、乙都不真考点:不等式的性质.专题:常规题型.分析:若c=0,甲不正确.对于乙,隐含着条件c≠0,则c2>0,进而推出a>b,乙正确.解答:解:当c=0时,ac2=bc2,故甲不对;∵ac2>bc2,∴c≠0,∴c2>0,∴a>b,故乙正确.故选C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(4分)若a+b=3,ab=﹣1,则a3+b3的值是()A.24 B.36 C.27 D.30考点:立方公式.专题:计算题.分析:将a3+b3展开,然后代入题干中a+b及ab的值即可得出答案.解答:解:∵a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a+b)2﹣3ab]∵(a+b)=3,ab=﹣1,∴原式=3×12=36.故选B.点评:本题考查立方公式的知识,比较简单,关键是掌握立方公式的展开形式.6.(4分)a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定考点:代数式.分析:由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.解答:解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选A.点评:本题考查了代数式的换算,比较简单,容易掌握.7.(4分)两个10次多项式的和是()A.20次多项式B.10次多项式C.100次多项式D.不高于10次的多项式考点:整式的加减.分析:多项式次数的定义:多项式中各单项式次数最高的次数,就是多项式的次数,合并同类项的法则:字母和字母的次数不变,系数相加作为结果的系数;根据这两方面解答本题.解答:解:根据多项式次数的定义,多项式中各单项式次数最高的项的次数就是多项式的次数,而同类项相加减时,系数相加减,字母和字母的次数不变,故多项式相加减时,次数不会高于10次.故选D.点评:本题考查了多项式次数的定义,合并同类项的法则,需要熟练掌握.8.(4分)在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数考点:奇数与偶数.专题:计算题.分析:根据在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变的性质即可得出答案.解答:解:由于在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变,这个性质对n 个整数也是正确的,因此,1,2,3,1991,1992的每一个数前面任意添加“+”或“﹣”号,其代数和的奇偶性与﹣1+2﹣3+4﹣5+6﹣7+8﹣1991+1992=996的奇偶性相同,是偶数,故选B.点评:本题考查了整数的奇偶性,难度一般,关键是掌握在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变.二、填空题(共8小题,每小题5分,满分40分)9.(5分)现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是24 岁.考点:一元一次方程的应用.专题:应用题;年龄问题.分析:要求哥哥现在的年龄,就要先设出未知数,利用9年前两个人之间的年龄关系作为相等关系“九年前弟弟的年龄,只是哥哥年龄的”和“现在弟弟的年龄恰好是哥哥年龄的”列方程求解即可.解答:解:设哥哥现在年龄为X,弟弟现在年龄为X,那么哥哥九年前的年龄为X﹣9,弟弟九年前的年龄为X﹣9.由题意得:X﹣9=(X﹣9)解得:X=24,所以哥哥现在的年龄是24岁.故填:24.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.10.(5分)1.23452+0.76552+2.469×0.7655= 4 .考点:完全平方公式.分析:本题可根据完全平方公式,设出a,b进行计算即可.解答:解:令x=1.2345,y=0.7655,则2xy=2.469×0.7655,1.23452+0.76552+2.469×0.7655,=(x+y)2,=(1.2345+0.7655)2,=22,=4.故答案为:4点评:本题考查完全平方公式的应用,找出相应关系即可.11.(5分)已知方程组,哥哥正确地解得,弟弟粗心地把c看错,解得,则abc= ﹣40 .考点:二元一次方程组的解.专题:计算题.分析:先把正确的解代入求出c的值,然后再把解代入ax+by=2即可得出答案.解答:解:把得代入方程组?,解得:c=﹣2,再把解代入ax+by=2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南实验学校七年级数学竞赛训练题
1.在-|-3|3
,-(-3)3
,(-3)3
,-33
中,最大的是( ).
(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-33
2. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )
(A)2a+(
21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2
(c)(2a+21b)2-4(a 2+b 2) (D)(2a+2
1b)2-4(a 2+b 2)2
3.若a 是负数,则a+|-a|( ),
(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4、设2001
2000
,20001999,19991998===
c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<
5.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l
6.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离
(C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和
7.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点
8.已知m<0,-l<n<0,则m ,mn ,mn 2
由小到大排列的顺序是 ( ).
(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2
,mn
9.已知0<x<1,则x x
1
,
x ,2
的大小关系是( )。

(A )2x x x 1<< (B )x x x
12
<<
(C )x x 1x 2<< (D )x x
1x 2
<<
10.a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中( )。

(A )只有(1)正确 (B )只有(2)正确 (C )(1),(2)都正确 (D )(1),(2)都不正确 11.给出两个结论:(1) |a-b|=|b-a|, (2) -
21 >-3
1
其中( ) (A)只有(1)正确 (B)只有(2)正确
(C)(1)和(2)都正确 (D)(1)和(2)都不正确
12.下列说法中,正确的是( )
(A)|-a|是正数 (B)|-a|不是负数 (C)-|-a|是负数 (D)-a 不是正数
13.在甲组图形的四个图中,每个图是由四种图形A ,B ,C ,D (不同的线段或圆)中的某两个图形组成的,例如由A ,B 组成的图形记为A*B ,在乙组图形的(a ),(b ),(c ),(d )四个图形中,表示“A*D ”和“A*C ”的是( )。

(A )(a ),(b ) (B )(b ),(c ) (C )(c ),(d ) (D )(b ),(d )
14.把足够大的一张厚度为0.1mm 的纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( )
(A)6次 (B)7次 (C)8次 (D)9次 15.如图所示,一个大长方形被两条线段AB 、CD 分成四个小长方形.如果其中图形I 、Ⅱ、Ⅲ的面积分别为8、6、5,那么阴影部分的面积为( )
(A)
29 (B)27 (C) 310 (D)8
15 16.若a>0>b>c ,a+b+c=1,M=a c b + ,N=b
c a +,P=c b
a +,则M 、N 、P 之间的大小关系
是( )
(A)M>N>P (B)N>P>M (C)P>M>N (D)M>P>N
17.某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一直线上,位置如图所示.公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在( )
18 (A)21 (B)24 (C)33 (D)37 19.计算:0.7×1
94+243×(-15)+0.7×95+4
1
×(-15)= 图2
20.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是
21.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重
22.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .
23.在数轴上,点A 、B 分别表示-
31和5
1
,则线段AB 的中点所表示的数是 . 24.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 25.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+l ; a 2=6×3+2; a 3=6×4+3; a 4=6×5+4;
则第n 个数a n = ;当a n =2001时,n = .
26.已知数轴上表示负有理数m 的点是点M ,那么在数轴上与点M 相距m 个单位的点中,与原点距离较远的点所对应的数是___________.
27.在下式的两个方框内填入同样的数字,使等式成立: □3× 6 528=8256× 3□.
28.数轴上有A 、B 两点,如果点A 对应的数是-2,且A 、B 两点的距离为3,那么点B 对应的数是 。

29.在下式的每个方框内各填入一个四则运算符号(不再添加括号),使等式成立:6□3□2□12=24.
30.如图是某月的日历,其中有阴影部分的三个数,叫
做同一竖列上相邻的三个数.现从该日历中任意圈出同一
竖列上相邻的三个数,如果设中间的一个数为n ,那么这
三个数的和为 ,
31.仓库里的钢管是逐层堆放的,上一层放满时比下一层少一根.有一堆钢管,每一层都放满了,如果最下面一层有m 根,最上面一层有n 根,那么这堆钢管共有 层.
32.如图,在六边形的顶点处分别标上数1,2,3,4,5,6,能否使任意三个相邻顶点处的三个数之和(1)大于9?(2)小于10?如能,请在图中标出来;
若不能,请说明理由
33.(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2),
(3),(4)(5)的木块。

我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),
量关系是:_______________.
(3)图(6)是用虚线画出的正方体木块,请你想象一种与图(2)~(5)
不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该
木块的顶点数为_____,棱数为____,面数为_______。

这与你(2)题中所归纳的关系是否相符?
34.有一张纸,第1次把它分割成4片,第2次把其中的1片分割成4片,以后每一次都把前面所得的其中的一片分割成4片.如果进行下去,试问:
(1)经5次分割后,共得到多少张纸片?
(2)经n次分割后,共得到多少张纸片?
(3)能否经若干次分割后共得到2003张纸片?为什么?。

相关文档
最新文档