电力电子仿真图

合集下载

multisim电路仿真图

multisim电路仿真图

一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。

二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。

图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。

图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。

图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。

结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。

三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。

图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。

四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。

图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。

电力电子技术仿真实训

电力电子技术仿真实训

电力电子技术仿真实训2009年仿真实训1——桥式整流电路仿真研究 (2)仿真实训2——直流降压变换器仿真研究 (10)仿真实训3——单相逆变器仿真研究 (14)仿真实训4——单相交流调压器仿真研究 (17)仿真实训1——桥式整流电路仿真研究一、准备工作1、预习Matlab/simulink 仿真软件;2、预习整流电路的几种形式和原理,重点预习单相桥式全控整流电路。

有能力的同学也可以预习其他各种形式的整流电路。

二、操作方法1、带电阻性负载的仿真实验启动MATLAB7.0(或6.5), 进入SIMULINK后建新文档,绘制单相全波可控整流器结构模型图,如图1所示。

双击各模块,在出现的对话框内设置相应的参数。

图1带电阻负载单相桥式全控整流电路模型(1)晶闸管元件参数设置双击晶闸管模块,本例元件参数对话框如图2所示。

a)晶闸管元件内电阻R on,单位为Ω。

b)晶闸管元件内电阻L on,单位为H。

注意,电感不能设置为0。

图2 可关断晶闸管元件的参数设置对话框c)晶闸管元件的正向管压降V f,单位为V。

d)电流下降到10%的时间t f,单位为秒(s)。

e)电流拖尾时间T q,单位为秒(s)。

f)初始电流I C,单位为A,与晶闸管元件初始电流的设置相同。

通常将I C 设置为0。

g)缓冲电阻R s,单位为Ω,为了在模型中消除缓冲电路,可将缓冲电阻R s 设置为inf。

h)缓冲电容C s,单位为F,为了在模型中消除缓冲电路,可将缓冲电容C s 设置为0。

为了得到纯电阻R s,可将电容C s参数设置为inf。

(2)单个电阻、电容、电感元件的参数设置。

双击RLC模块,整个电阻、电容、电感元件的参数设置对话框如图3所示。

本例中设置电阻R=10Ω,电感L=0H,电容C为inf。

串联RLC分支与并联RLC 分支的设置方法见表1。

图3 单个电阻、电容、电感元件的参数设置对话框表1 单个电阻、电容、电感元件的参数元件串联RLC分支并联RLC分支类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R 0 inf R inf 0单个电容0 L inf inf L 0单个电感0 0 C inf inf C(3)固定时间间隔的脉冲发生器参数设置双击脉冲发生器模块(pulse),固定时间间隔的脉冲发生器参数设置对话框如图4所示。

电力电子技术 仿真实验 实验一 单相桥式全控整流电路

电力电子技术 仿真实验 实验一  单相桥式全控整流电路

《电力电子技术》仿真实验实验一单相桥式全控整流电路说明:1、为选修《电力电子技术》的工科本科生编写的实验指导书;2、课前安排了一节Matlab、Simulink入门课,让同学们仿真了单相桥式不可控整流电路;3、本指导书适用于新版本Matlab。

实验一单相桥式全控整流电路一、实验目的1、掌握单相桥式全控整流电路的工作原理;2、掌握单相桥式全控整流电路的仿真方法;3、了解不同类型负载输出波形的差异。

二、实验环境及器件仿真软件:Simulink所用器件如下表1所示(以Matlab2019b版本为例)。

表1 实验器件三、实验原理(a )电阻负载(b )阻感负载图1 单相桥式全控整流电路单相桥式全控整流电路是常用的单相整流电路之一,主电路由两对桥臂构成,晶闸管VT 1和VT 4组成一对桥臂,VT 2和VT 3组成另一对桥臂。

认为输入电压u2正半周时上端电压为正。

1、电阻负载如图1(a )所示,以一个电流周期为例,在正半周时某一时刻t ,触发VT 1和VT 4可导通流过电流,若交流电周期为T ,则VT 1和VT 4在T/2时刻,电压过零变负时关断。

在T/2+t 时刻触发VT 2和VT 3可以导通,VT 2和VT 3在T 时刻电压过零变正时关断。

整流电压的平均值为:2211cos sin d()0.92d U t t U πααωωπ+==⎰ 其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,α的变化范围为0~180°。

2、电感电阻负载如图1(b )所示,VT 1和VT 4导通后,电压过零变负时,由于电感的作用,仍有电流流过VT 1和VT 4,VT 1和VT 4不会关断,直到在T/2+t 时刻触发VT 2和VT 3导通,反向电压使VT 1和VT 4关断。

同理,VT 2和VT 3导通后,电压过零变正时不会关断,直到VT 1和VT 4导通时承受反向电压关断。

整流电压的平均值为:d 221sin d()0.9cos U t t U παωωαπ+==⎰其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,L 极大时,α的变化范围为0~90°。

Matlab电力电子仿真教程ppt课件

Matlab电力电子仿真教程ppt课件

第5章 电力电子电路仿真分析
(a)
(b)
图5-7 晶闸管模块的电路符号和静态伏安特性 (a) 电路符号;(b) 静态伏安特性
第5章 电力电子电路仿真分析 SimPowerSystems库提供的晶闸管模块一共有两种:一 种是详细的模块(Detailed Thyristor),需要设置的参数较多; 另一种是简化的模块(Thyristor),参数设置较简单。晶闸管 模块的图标如图5-8。
解:(1) 按图5-5搭建仿真电路模型,选用的各模块的名 称及提取路径见表5-1。
第5章 电力电子电路仿真分析 图5-5 例5.1的仿真电路图
第5章 电力电子电路仿真分析
表5-1 例5.1仿真电路模块的名称及提取路径
模块名 功率二极管模块 D1、D2、D3、D4 交流电压源 Vs 串联 RLC 支路 R 电压表模块 VR 电流表模块 IR 信号分离模块 Demux 示波器 Scope
7所示为晶闸管模块的电路符号和静态伏安特性。当晶闸管 承受正向电压(Vak>0)且门极有正的触发脉冲(g>0)时,晶闸 管导通。触发脉冲必须足够宽,才能使阳极电流Iak大于设定 的晶闸管擎住电流I1,否则晶闸管仍要转向关断。导通的晶 闸管在阳极电流下降到0(Iak=0)或者承受反向电压时关断, 同样晶闸管承受反向电压的时间应大于设置的关断时间,否 则,尽管门极信号为0,晶闸管也可能导通。这是因为关断 时间是表示晶闸管内载流子复合的时间,是晶闸管阳极电流 降到0到晶闸管能重新施加正向电压而不会误导通的时间。
(9) “测量输出端”(Show measurement port)复选框:选 中该复选框,出现测量输出端口m,可以观测晶闸管的电流 和电压值。
【例5.2】如图5-10所示,构建单相桥式可控整流电路, 观测整流效果。晶闸管模块采用默认参数。

电力电子技术应用实例MATLAB仿真_图文

电力电子技术应用实例MATLAB仿真_图文

目录摘要 (1关键词 (11.引言 (12.单相半波可控整流电路 (1 2.1实验目的 (12.2实验原理 (12.3实验仿真 (23.单相桥式全控整流电路 (8 3.1实验目的 (83.2实验原理 (83.3实验仿真 (94.三相半波可控整流电路 (10 4.1实验目的 (104.2实验原理 (114.3实验仿真 (125. 三相半波有源逆变电路 (14 5.1实验目的 (145.2实验原理 (145.3实验仿真 (156.三相桥式半控整流电路 (176.1 实验目的 (176.2实验原理 (17`6.3 实验仿真 (177.小结 (19致谢 (19电力电子技术应用实例的MATLAB 仿真摘要本文是用MATLAB/SIMULINK 实现电力电子有关电路的计算机仿真的毕业设计。

论文给出了单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相半波有源逆变电路、三相桥式全控整流电路的实验原理图、MATLAB 系统模型图、及仿真结果图。

实验过程和结果都表明:MATLAB 在电力电子有关电路计算机仿真上的应用是十分广泛的。

尤其是电力系统工具箱-Power System Blockset (PSB 使得电力系统的仿真更加方便。

关键词 MATLAB SIMULINK PSB 电力电子相关电路1.引言MATLAB 是由Math Works 公司出版发行的数学计算软件,为了准确建立系统模型和进行仿真分析,Math Works 在MATLAB 中提供了系统模型图形输入与仿真工具一SIMULINK 。

其有两个明显功能:仿真与连接,即通过鼠标在模型窗口画出所系统的模型,然后可直接对系统仿真。

这种做法使一个复杂系统模型建立和仿真变得十分容易。

[4][2]在1998年,MathWoIks 推出了电力系统仿真的电力系统工具箱-Power System Blockset (PSB 。

其中包括了电路仿真所需的各种元件模型,包括有电源模块、基础电路模块、电力电子模块、电机模块、连线器模块、检测模块以及附加功率模块等七种模块库。

电力电子技术matlab仿真3电力电子器件模型

电力电子技术matlab仿真3电力电子器件模型

3.7.2 三相桥式可控整流电路模型
特点: 器件按导通顺序编号;采用专用的同步6脉冲发生器触发
第3章 电力电子器件模型
3-17
3.7
三相桥式整流电路模型
• 增加测量端:菜单栏 Edit ——look under mask ,将该晶闸管模型测量 端的山字型封口删除,换接上分支电路的输出端口即可。
第3章 电力电子器件模型
3-6
3.2 工作特性
晶闸管模型
导通:承受正向压降Vak>0,门极正触发g>0;触发脉冲宽 度使阳极电流Iak大于设定的擎住电流I1 关断:阳极电流Iak=0,或承受反压Vak<0,且反压时间大 于设定的关断时间 与实际不同之处,实际中阳极电流下降到维持电流
第3章 电力电子器件模型
3-7
3-12
3.5 工作特性:
绝缘栅双极型晶体管模型
集射极间电压为正(Vce> 0) ,门极信号 (g> 0) 时导通; 集射极间电压为正 (Vce>O) ,门极信号为零 (g = 0) 关断。 集射极间电压为负 (Vce <0) ,则管子处在关断状态,因其内部已并联了 反向工极管,反向导通。
第3章 电力电子器件模型
3-3
3.1
二极管模型
工作特性 承受正向电压Vak>0,导通; 电流降为零Iak=0或承受反向电压Vak<0,关断。
第3章 电力电子器件模型
3-4
3.1
二极管模型
• 参数设置:
– 电阻、电感不能同时为零 – 初始电流一般为零
第3章 电力电子器件模型
3-5
3.2
晶闸管模型
第3章 电力电子器件模型
3.3

应用PSCAD进行电力电子装置仿真ppt课件

应用PSCAD进行电力电子装置仿真ppt课件
第7页
应用PSCAD进行电力电子装置仿真
3) Band Limit Proximity Correction的含义?
调制波处于载波临界区域 时可能漏掉触发脉冲
设置该参数后可以通过插值算法 避免漏掉触发脉冲的情况出现
第8页
应用PSCAD进行电力电子装置仿真
3. 控制系统搭建(电力电子装置常用控制模块) 3.1锁相环
第1页
应用PSCAD进行电力电子装置仿真
第一部分 基本模块及功能介绍
1. 电力电子器件
模型:两状态 电阻性开关
第2页
二极管
应用PSCAD进行电力电子装置仿真
第3页
晶闸管
应用PSCAD进行电力电子装置仿真
第4页
GTR、GTO、IGBT
应用PSCAD进行电力电子装置仿真
第5页
应用PSCAD进行电力电子装置仿真
第 30 页
应用PSCAD进行电力电子装置仿真
主要内容
第一部分:基本模块及功能介绍 ➢ 电力电子器件、插值触发脉冲发生器、控制系
统的搭建、自定义模块、与MATLAB的仿真接 口 第二部分:软件自带例程介绍 ➢ Power Electronics、APF 第三部分:几个典型的应用案例分析 ➢ 模拟系统的仿真、数字系统的仿真、PWM脉冲 策略的仿真、缓冲吸收电路的仿真
效值,该模块还可以用来测量有功功率、无功功 率和相角 ④ 利用全局变量设置万用表测量时的基准频率为 60Hz
第 25 页
应用PSCAD进行电力电子装置仿真
1.2 Single-Phase GTO Half-Wave Rectifier(单相 半波全控整流电路)
知识点: ① 演示GTO全控型器件和SCR半控型器件的区别,

电力电子技术仿真

电力电子技术仿真

PSpice
总结词
电路级仿真的经典工具
详细描述
PSpice是一款由MicroSim公司出品的电路仿真软件,可以用于模拟和分析电路 性能。它支持模拟电路、数字电路和混合电路的仿真,提供了丰富的元件库和 精确的模型,能够准确地预测电路的性能。
LTSpice
总结词
专为电力电子设计者打造的电路仿真软件
详细描述
基于PSpice的电机驱动系统仿真
总结词
PSpice是一种电路仿真软件,可以用于模拟 和分析电机驱动系统的性能。电机驱动系统 通常包括电力电子开关、电机、控制器和电 源等部分。
详细描述
在PSpice中,可以使用元件库和模型库来构 建电机驱动系统的模型,并对其性能进行仿 真和分析。通过调整控制策略和电源条件, 可以观察到电机转速和电流的变化情况,以 及系统的稳定性和效率等。此外,PSpice还 可以进行故障模拟和可靠性分析,为电机驱
通过仿真可以验证和优化开关电源的控制策略,提高其输出性能和 稳定性。
电机驱动的仿真
电机驱动系统的建模
01
电机驱动系统包括电机、控制器和传动机构等部分,可以使用
电路和力学模型对其进行模拟。
电机驱动的控制策略
02
通过仿真可以验证和优化电机驱动的控制策略,提高其性能和
稳定性。
电机驱动的故障模拟
03
通过仿真可以模拟电机驱动系统在故障情况下的表现,为故障
提高仿真精度与效率
01
02
03
精细化建模
采用更精细的模型来模拟 电力电子系统的行为,提 高仿真精度。
并行仿真技术
采用并行计算技术,将仿 真过程分解到多个处理器 上同时进行,提高仿真效 率。
硬件在环仿真
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档