高考三角函数

合集下载

(完整版)高中高考数学三角函数公式汇总(最新整理)

(完整版)高中高考数学三角函数公式汇总(最新整理)

1
四、和角公式和差角公式
sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin tan( ) tan tan
六、万能公式(可以理解为二倍角公式的另一种形式)
sin 2
2 tan 1 tan2
, cos 2
1 1
tan2 tan2
, tan 2
2 tan 1 tan2

万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
七、和差化积公式2sin来自sin2 sin
cos
…⑴
2
2
sin
sin
⑴ 2k (k Z ) 、 、 、 、 2 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数
名不变,符号看象限)



3

3
的三角函数值,等于 的异名函数
2
2
2
2
值,前面加上一个把 看成锐角时原函数值的符号。(口诀:函数名改变,符
号看象限)
2
y
y
sin cos
sin cos 0
sin cos
sin cos 0
x y 0
o
x
As(in2,2)cos
o
x
sin cos 0
A(2,2)
xy 0
4
十三诱导公式
公式一: 设 α 为任意角,终边相同的角的同一三角函 数的值相等 k 是整数
公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三 角函数值之间的关系

高考数学 三角函数

高考数学 三角函数

tan 例、已知 1, 求 tan 1 sin 3 cos 2 ( 1 ) , (2) sin sin cos 2 sin cos
一、概念
1.3、诱导公式
k k sin( ), cos( ) 2 2
奇变偶不变,符号看象限
一、概念
f ( x) f (2a x) : 函数关于直线x a轴对称 f ( x) f (2a x) : 函数关于点(a, 0)中心对称
(2)变形
ab f (a x) f (b x) : 函数关于直线x 轴对称 2 ab f (a x) f (b x) : 函数关于点( , 0)中心对称 2
O
M
Ax
正弦线:MP 余弦线:OM 正切线:AT
例、若x (0, ), 求证: sin x x tan x 2

一、概念
1.2、任意角的三角函数——同角三角函数关系
sin tan cos
sin cos 1
2 2
一、概念
1.2、同角三角函数关系——切割化弦


三、图像
1.2、y=Asin(ω x+ψ )——图像变换
三、图像
1.3、y=Asin(ω x+ψ )——图像的向量变化
特别关注:向量
设函数图像按向量
平移后:
m (a, b) 进行平移
x
y
( x a)
( y b)
三、图像
1.3、y=Asin(ω x+ψ )——图像的向量变化
一、概念
1.3、诱导公式
例、y sin(x )( [0,2 ])是偶函数,则 () 例、y sin(x )( [0,2 ])是奇函数,则 () 例、y sin(x )是偶函数,则 () 例、y sin(x )是奇函数,则 ()

高中生高考常用三角函数公式

高中生高考常用三角函数公式

(一) 诱导公式:sin()sin αα-=- cos()cos αα-= tan()tan αα-=-sin(2)sin k παα+= c o s (2)c o s k παα+= t a n (2)t a nk παα+= sin()sin παα+=- c o s ()c o s παα+=- t a n ()t a n παα+= sin()cos 2παα-=c o s ()s i n 2παα-= tan()cot 2παα-= sin^2(α)+cos^2(α)=1*只需抓住以下三个特点,即可由左边写出右边:(1) 诱导公式右边都是角α的三角函数; (2) 判断函数名是否改变。

判断依据:括号内与α相加减的角,若为2π的偶数倍,则函数名不变;若为2π的奇数倍,则正变余,余变正(只能弦、切、割内部变换。

如,只能正弦变余弦,余弦变正弦,不能由弦变切或割);(3) 判断正、负号。

判断依据:将α看作锐角时,左边的函数值该取什么符号(正号或负号),就在右边的函数名前加上同样的符号。

(二) 和差的三角函数s i n()s i n c o s c o s s αβαβαβ±=± c o s ()c o s c o ss i n αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±= (三) 倍角公式 sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan ααα=-(四) 辅助角公式22sin cos sin()a b a b αααϕ+=++,其中tan b aϕ=,ϕ的象限由,a b 的符号确定。

(五) 正弦定理和余弦定理 任意ABC ∆中,A ∠,B ∠,C ∠所对的边分别为,,a b c ,则正弦定理:2sin sin sin a b c R A B C===(R 为ABC ∆外接圆半径)余弦定理:2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 推论:222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-= ***半角公式 1cos sin22αα-∴=± 1cos cos 22αα+=± 1cos 1cos sin tan =21cos sin 1cos ααααααα--=±=++ 万能公式 22tan sin 1tan ααα=+ 221tan cos 1tan ααα-=+ 21cos tan 21cos ααα-=+诱导公式sin()cos 2παα+=c o s ()s i n 2παα+=- t a n ()c o t 2παα+=- 标有*的内容可以由基本公式推导出来,不要求掌握。

高考数学复习必备公式:三角函数公式

高考数学复习必备公式:三角函数公式
普通说来,〝教员〞概念之构成阅历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕«春秋谷梁传疏»曰:〝师者教人以不及,故谓师为师资也〞。这儿的〝师资〞,其实就是先秦然后历代对教员的别称之一。«韩非子»也有云:〝今有不才之子……师长教之弗为变〞其〝师长〞当然也指教员。这儿的〝师资〞和〝师长〞可称为〝教员〞概念的雏形,但仍说不上是名副其实的〝教员〞,由于〝教员〞必需要有明白的教授知识的对象和自身明白的职责。
宋以后,京师所设小学馆和武学堂中的教员称谓皆称之为〝教谕〞。至元明清之县学一概循之不变。明朝中选翰林院的进士之师称〝教习〞。到清末,学堂兴起,各科教员仍沿用〝教习〞一称。其实〝教谕〞在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管束育生员者那么谓〝教授〞和〝学正〞。〝教授〞〝学正〞和〝教谕〞的副手一概称〝训导〞。于官方,特别是汉代以后,关于在〝校〞或〝学〞中教授经学者也称为〝经师〞。在一些特定的讲学场所,比如书院、皇室,也称教员为〝院长、西席、讲席〞等。cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+-cos(a-b)]/2
5.积化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
高考数学复习必备公式:三角函数公式
三角函数公式:
1.万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

高考数学之三角函数知识点总结

高考数学之三角函数知识点总结

高考数学之三角函数知识点总结高考数学中,三角函数是一个重要的知识点。

它在解三角形、解三角方程和求极限等方面都有广泛应用。

下面是对高考数学中三角函数的知识点进行总结:一、基本概念和性质:1.三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的定义。

2.三角函数的周期性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的周期性。

3.三角函数的奇偶性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的奇偶性。

4.三角函数的范围:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的范围。

二、基本公式和恒等变换:1.三角函数的和差化积公式。

2.三角函数的倍角公式。

3.三角函数的半角公式。

4.三角函数的和差化积公式的逆运算。

三、极坐标与三角函数:1.极坐标下的坐标转换。

2.极坐标下的两点间距离公式。

四、三角函数的解析式:1.任意角的解析式。

2.一些特殊角的解析式。

五、三角函数的图像与性质:1.正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的图像和性质。

2.三角函数图像的平移、伸缩和翻转。

3.三角函数的性态。

六、三角函数的应用:1.三角函数在测量中的应用:测量高度、测量角度、计算地理位置等。

2.三角函数在力学中的应用:力的合成、平衡条件等。

3.三角函数在电路中的应用:交流电的正弦表达式等。

4.三角函数在几何中的应用:解三角形、求面积等。

5.三角函数在物理中的应用:波动现象、振动现象等。

以上是高考数学中三角函数的主要知识点总结。

掌握这些知识点,对于解答相关题目、理解相关概念都有很大帮助。

在备考高考数学时,应不断强化基础知识,多进行题目练习和真题训练,同时注重理解和巩固基本概念和性质,提高解题的能力和技巧。

高考三角函数知识点总结

高考三角函数知识点总结

高考三角函数知识点总结一、基本概念:1.弧度与角度:弧度是角度的一种衡量方式,1弧度等于所对应的圆心角的半径长所对应的线段长度。

角度是以度为单位的,一个圆等分360度.2.单位圆:半径为1的圆,圆心到任一点所对应的弧长为该点的角度。

二、常用三角函数:1. 正弦函数(sin):在单位圆上,对于一个角的弧度值对应的弧长与半径的比值。

2. 余弦函数(cos):在单位圆上,对于一个角的弧度值对应的横坐标与半径的比值。

3. 正切函数(tan):在单位圆上,对于一个角的弧度值对应的纵坐标与横坐标的比值。

4. 余切函数(cot)、正割函数(sec)、余割函数(csc)的定义与相关计算。

三、三角函数的性质:1. 基本关系式:sin^2x + cos^2x = 1,1 + tan^2x = sec^2x,1 + cot^2x = csc^2x。

2. 函数的周期性:sin(x+2π) = sinx,cos(x+2π) = cosx,tan(x+π) = tanx。

3. 函数的奇偶性:sin(-x) = -sinx,cos(-x) = cosx,tan(-x) =-tanx。

4. 函数的限制性:,sinx,≤ 1,cosx,≤ 1,tanx,< +∞。

5. 函数的单调性:在一个周期内,sinx、cosx、tanx的单调性。

四、三角函数的图像:1.正弦函数的图像特点:在0≤x≤2π内,图像从[0,1]上升至[1,-1],再回升至[-1,0]。

2.余弦函数的图像特点:在0≤x≤2π内,图像从[1,0]下降至[-1,0],再上升至[0,1]。

3.正切函数的图像特点:在0≤x≤2π内,图像在每个π的奇数倍处有垂直渐近线。

五、三角函数的运算:1. 三角函数的和差化积:sin(x±y)、cos(x±y)的展开公式。

2. 三角函数的倍角化简:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x。

高考考纲三角函数公式(含万能公式)

高考考纲三角函数公式(含万能公式)

一、三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinαcos(α+k*2π)=cosαtan(α+k*2π)=tanα公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2-α) = cosαcos(π/2-α) =sinα由于π/2+α=π-(π/2-α),由公式四和公式五可得公式六:sin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα诱导公式记背诀窍:奇变偶不变,符号看象限。

二、和(差)角公式三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tan γ-tanα·tanγ)(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)三、万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC四、特殊三角函数值sin30°=1/2 sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1 tan60°=√3cot30°=√3cot45°=1 cot60°=√3/3sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。

高考数学三角函数公式

高考数学三角函数公式

高考数学三角函数公式一、基本公式:1. 三角函数的定义:正弦函数:sinθ = 对边/斜边余弦函数:cosθ = 邻边/斜边正切函数:tanθ = 对边/邻边2. 三角函数的基本关系:sinθ/cosθ = tanθsin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ3. 三角函数的正负关系:在单位圆上,角度θ对应的坐标(x, y),则:sinθ的正负由y的正负决定;cosθ的正负由x的正负决定;tanθ的正负由y的正负决定,x为0时,tanθ不存在。

4. 三角函数的周期关系:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ(n为整数)5. 三角函数的特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1 cos0° = 1, cos30° = √3/2, cos45° = √2/2, cos60° = 1/2, cos90° =tan0° = 0, tan30° = √3/3, tan45° = 1, tan60° = √3, tan90°不存在二、和差化积公式:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)4. cot(A ± B) = (cotAcotB ∓ 1) / (cotB ± cotA)三、倍角公式:1. sin2θ = 2sinθcosθ2. cos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. tan2θ = (2tanθ) / (1 - tan^2θ)四、半角公式:1. sin(θ/2) = ±√[(1 - cosθ) / 2]2. cos(θ/2) = ±√[(1 + cosθ) / 2]3. tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]五、和差化方公式:1. sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]2. sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]3. cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]4. cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]六、积化和差公式:1. sinAcosB = 1/2[sin(A + B) + sin(A - B)]2. cosAsinB = 1/2[sin(A + B) - sin(A - B)]3. cosAcosB = 1/2[cos(A + B) + cos(A - B)]4. sinAsinB = -1/2[cos(A + B) - cos(A - B)]以上即为高考数学中常用的三角函数公式,掌握这些公式可以帮助你更好地解答相关题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1(2007宁夏)本小题满分12分)
如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .
解:在B C D △中,πCBD αβ∠=--.
由正弦定理得
sin sin B C C D B D C
C B D
=
∠∠.
所以sin sin sin sin()
C D BDC s BC CBD
βαβ∠=
=
∠+·.
在A B C R t △中,tan sin tan sin()
s AB BC ACB θβαβ=∠=+·.
2(12
分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值;(2)求AE .
.解: (1)因为90
60150
B C D =+=
∠,C B A C C D
==,
所以
15
CBE =
∠.
所以
62
cos cos(4530)4
C BE +=-=
∠.
(2)在A B E △中,2A B =,由正弦定理
2sin (4515)
sin(9015)
AE =
-+

故2sin 30
cos15
AE =
12262
4
⨯=
+62
=
-

3(2009宁夏)(本小题满分12分)
如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知
50AB m =,120B C m =,于A 处测得水深80A D m =,于B
处测得水深200B E m =,于C 处测得水深110C F m =,求∠DEF 的余弦值。

解:
作//D M AC 交BE 于N ,交CF 于M .
2
2
22
3017010198D F M F D M
=
+=+=,
22
22
50120130
DE DN EN
=
+=+=,
2
2
22
()90120150EF BE FC BC
=
-+=+=. .
.....6分
在D E F ∆中,由余弦定理, 2
2
2
222
130********
16cos 22130150
65
DE EF DF
DEF DE EF
+-+-⨯∠=
=
=
⨯⨯⨯.
4(2007辽宁)(本小题满分12分) 已知函数2
ππ()s i n s i n 2c o s 662
x
f x x x x ωωω⎛


⎫=+
+--
∈ ⎪ ⎪⎝⎭
⎝⎭
R
,(其中0ω>)
(I )求函数()f x 的值域;
(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2
,求函数解:
(1)解
.
1)6
sin(cos 21
)cos 2
1sin 2
3(
2)
1(cos cos 2
1sin 23cos 21sin 23)(--
=--=+--
+
+
=πx x x x x x x x f ……5分
由-1≤)6
sin(cos π-
x ≤1,得-3≤1)6
sin(cos 2--
πx ≤1。

可知函数)(x f 的值域为[-3,1].……7分
(Ⅱ)解:由题设条件及三角函数图象和性质可知,)(x f y =的周其为w ,又由w >0,得
ππw
2,即得w =2。

于是有1)6
2sin(2)(--
=πx x f ,再由Z)
(2
26
22
2∈+
≤-
≤-
k k k ππππππ,解得
Z)
(3
6
∈+
≤≤-
k k x k ππππ。

所以)(x f y =的单调增区间为[Z)
(3
,6∈-
-
k k k ππππ]
()y f x =的单调增区间.
5(2010辽宁)(本小题满分12分)
在A B C 中,a b c 、、分别为内角A B C 、、的对边,且
2sin (2)sin (2)sin a A b c B c b C =+++
(Ⅰ)求A 的大小;
(Ⅱ)若sin sin 1B C +=,是判断A B C 的形状。

6(2011辽宁)(本小题满分12分) △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos 2
A=2a 。

(I )求
b a
;(II )若c 2=b 2+3a 2
,求B 。

相关文档
最新文档