lingo实验报告材料
LINGO软件学习入门实验报告

LINGO 实验报告一.实验目的1、熟悉LINGO 软件的使用方法、功能;2、学会用LINGO 软件求解一般的线性规划问题。
二.实验内容1、求解线性规划:12121212max z x 2x 2x 5x 12s.t.x 2x 8x ,x 0=++≥⎧⎪+≤⎨⎪≥⎩2、求解线性规划:12121212min z 20x 10x 5x 4x 24s.t.2x 5x 5x ,x 0=++≤⎧⎪+≥⎨⎪≥⎩3、假设现在一个计算机厂商要生产两种型号的PC :标准型(standard)和增强型(turbo),由于生产线和劳动力工作时间的约束,使得标准型PC 最多生产100台。
增强型PC 最多生产120台;一共耗时劳动力时间不能超过160小时。
已知每台标准型PC 可获利润$100,耗掉1小时劳动力工作时间;每台增强型PC 可获利润$150,耗掉2小时劳动力工作时间。
请问:该如何规划这两种计算机的生产量才能够使得最后获利最大?三. 模型建立1、求解线性规划:12121212max z x 2x 2x 5x 12s.t.x 2x 8x ,x 0=++≥⎧⎪+≤⎨⎪≥⎩2、求解线性规划:12121212min z 20x 10x 5x 4x 24s.t.2x 5x 5x ,x 0=++≤⎧⎪+≥⎨⎪≥⎩3、设生产标准型为1x 台;生产增强型2x 台,则可建立线性规划问题数学模型为12121212max z 100x 150x x 100x 120s.t.x 2x 160x ,x 0=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩四. 模型求解(含经调试后正确的源程序)1、求解线性规划:model:max=x1+2*x2;2*x1+5*x2>12;x1+2*x2<8;end结果显示:2、求解线性规划:model:min=20*x1+10*x2;5*x1+4*x2<24;2*x1+5*x2>5;End结果显示:3、求解线性规划:model:mAX=100*x1+150*x2; x1+2*x2<160;x1<100;x2<120;end结果显示:五.结果分析对于第一题中我们得出最优解:x1=0;x2=4;最优值max=8;第二题中我们得出最优解:x1=0;x2=1;最优值min=10;第三题中我们得出最优解:x1=1000;x2=30;最优值max=14500;即:生产标准型100台,生产增强型30台时,使得最后获利达最大,为14500。
实验11 Lingo中数据的导入与导出

X( 1955, X4) 61465.00 0.000000
X( 1955, X5) 22328.00 0.000000
X( 1955, X6) 98.00000 0.000000
X( 1956, X1) 825.0000 0.000000
选择 使Q达到最小,即可求得财政收入的预测模型。
请用lingo求解 。要求:分别使用@file函数和@ole函数实现数据的导入,并将结果 用@text导出到result.txt文件中。
实验指导
1、文件输入输出函数
输入:@file('filename')
输出:@text('filename')
2、Lingo中的变量默认都是非负的,使用@free(x)可取消x的非负限制。
X( 1953, X5) 21364.00 0.000000
X( 1953, X6) 89.00000 0.000000
X( 1954, X1) 707.0000 0.000000
X( 1954, X2) 520.0000 0.000000
X( 1954, X3) 491.0000 0.000000
X( 1958, X5) 26600.00 0.000000
X( 1958, X6) 256.0000 0.000000
X( 1959, X1) 1114.000 0.000000
X( 1959, X2) 1681.000 0.000000
X( 1959, X3) 509.0000 0.000000
实验报告(11)
学生姓名
学号
指导老师
郑成勇
实验时间
运筹学实验报告lingo

二. 实验题目
1、求解线性规划:
max
z x 1 2x
2
2x 1 5x 2 12 s.t. x 1 2x 2 8 x , x 0 2 1
并对价值系数、右端常量进行灵敏度分析。
2、已知某工厂计划生产I,II,III三种产品,各 产品需要在A、B、C设备上加工,有关数据如下:
Allowable Decrease:允许减少量
Current RHS :当前右边常数项
结论1:
该线性规划问题的最优解为:X*=(35,10,0)T 最优值为:z*=215
结论2:
c1=5 c1在(4,8)内原最优解不变,但最优值是要变的 c2=4 c2在(2.7,5)内原最优解不变,但最优值是要变的 c3=3 c3在(-∞ ,7)内原最优解,最优值都是不变的 b1=45 b1在(40, 50)内原最优基不变,但最优解和最优值是要变的 b2=80 b2在(67.5, 90)内原最优基不变,但最优解和最优值是要变的 b3=90 b3在(65, ∞ )内原最优基不变,但最优解和最优值是要变的
Row 1 2 3 4 Slack or Surplus 215.0000 0.000000 0.000000 25.00000 Dual Price 1.000000 3.000000 1.000000 0.000000
激活灵敏度计算功能
法一:打开command window,输入range;
法二:LINGO——options —— General Solver —Dual Computations——Prices & Ranges
LINGO
Outline
一.熟悉LINDO软件的灵敏度分析功能
lingo上机实验报告

lingo上机实验报告
一、实验目的
本实验的目的是通过使用 Lingo 软件学习并实践线性规划的基础知识,掌握 Lingo 软件的使用方法,以及掌握如何建立并求解线性规划问题。
二、实验内容
本次实验的内容主要包括以下几个部分:
1. Lingo 软件的安装及简单的使用操作。
2. 线性规划模型的建立与求解。
3. Lingo 软件在解决线性规划问题中的应用。
三、实验步骤
2. 运行 Lingo 软件后,打开一个新的工作表。
假设现有三种纸张,它们的价格分别为 10 元,15 元和 20 元。
在不超过 100 元的总预算下,现在需要购买这些纸张,使得纸张的总重量不少于 100 万克。
要求建立模型并求解。
4. 打开工具栏,分别输入模型所需的变量及约束条件,并设定好各个变量的范围。
5. 在“Lingo”界面上显示得到最优解。
6. 查看结果,进行分析。
四、实验结果
在 Lingo 软件中建立了一个线性规划模型,并成功求解。
将模型的结果输出,得到以下结果:
总共需要购买 25 万克的第一种纸张,50 万克的第二种纸张和 25 万克的第三种纸张。
总共花费 1100 元。
五、实验分析
本实验采用 Lingo 软件来完成线性规划问题的建立和求解。
在输入变量和约束条件后,Lingo 软件能够直观地展示出问题,并能够方便地求解出最佳解。
通过本实验,我们
可以看出 Lingo 软件在解决线性规划问题上的优势,它不仅简单易用,而且在速度上较为快捷,能够有效提高解决问题的效率。
lingo上机实验报告

lingo上机实验报告重庆交通大学学生实验报告实验课程名称专业综合实验Ⅰ开课实验室交通运输工程实验教学中心学院交通运输年级二年级专业班交通运输1班学生姓名学号631205020开课时间2013 至2014 学年第 2 学期总评成绩教师签名实验名称运筹学上机实验(一)实验类型上机实验实验时间2014.5.9—6.16 实验地点BO1机房实验目的:了解LINGO软件的基本入门知识,学习使用LINGO软件对线性规划问题进行灵敏度分析。
仪器、设备名称:LINGO9.0软件实验要求及注意事项:1.写出数学模型;2.在Lingo中输入求解的程序;3.求解得到解报告;4.写出最优解和最优值。
实验内容、操作步骤:一、数学模型:求解线性规划问题max=5*x1+4*x2+3*x3x1+x2+2*x3<=452*x1+x2+x3<=80 S.tx1+3*x2+x3<=90x1,x2,x3>=0并进行灵敏度分析。
二、模型求解:1、在lingo中输入模型如下:2、得出求解报告:(4)选择Dual Computation: Prices & Range;(5)点击OK退出;(6)在键盘上按下ctrl + R。
如图所示:2、灵敏度分析结果如下:Current coefficient—目标函数中变量系数Allowable Increase—允许增加量Allowable Decrease—允许减少量Current RHS—对偶问题系数实验结果分析(含数据、图表整理):结论:(1)该线性规划问题的最优解为:X*=(35,10,0),最优值为Z*=215.(2) c1=5c1在(4,8)内原最优解不变,但最优值是要变的c2=4c2在(2.7,5)内原最优解不变,但最优值是要变的c3=3c3在(-∞,7)内原最优解,最优值都是不变的b1=45b1在(45,50)内原最优基不变,但最优解和最优值是要变的b2=80b2在(67.5,90)内原最优基不变,但最优解和最优值是要变的b3=90b3在(65,∞)内原最优基不变,但最优解和最优值是要变的实验收获、心得及建议:通过对lingo软件的学习和使用,使我初步掌握了用lingo求解最优问题和灵敏度分析的基本方法。
lingo实验报告

lingo实验报告以下是为大家整理的lingo实验报告的相关范文,本文关键词为lingo,实验,报告,实验,名称,推销员,指派,问题,目的,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
一、实验名称:推销员指派问题二、实验目的及任务:1、掌握Lingo软件的使用方法2、编写简单的Lingo程序3、解决Lingo中的最优指派问题三、实验内容1、问题描述一个公司要分派5个推销员去5个地区推销某种产品,5个推销员在各个地区推销这种产品的预期利润如下表所示。
若每个推销员只能去一个地区。
应如何分派这5个推销员才能使公司的利润为最大?2、模型建立?1指派第i个人去第j个地区决策变量:设xij??(i,j=1,2,3,4,5)0不指派第i个人去第j个地区?目标函数:设总利润为z,第i 个人去第j个地区的利润为A(,iji,j=1,2,3,4,5)假设Aij为指派矩阵,则maxz???Aijxiji?1j?155约束条件:1.第j个地区只有一个人去:?xi?15ij?1(j=1,2,3,4,5)2.第i个人只去一个地区:?xj?15ij?1(i=1,2,3,4,5)由此得基本模型:maxz???Aijxiji?1j?155s,t,5?xi?15ij?1(j=1,2,3,4,5)?xj?1ij?1(i=1,2,3,4,5)xij?0或1(i,j=1,2,3,4,5)3、Lingo程序(一)常规程序Lingo输入:model:max=1*x11+8*x12+9*x13+2*x14+1*x15+5*x21+6*x22+3*x23+10*x24+ 7*x25+3*x31+10*x32+4*x33+11*x34+3*x35+7*x41+7*x42+5*x43+4*x4 4+8*x45+4*x51+2*x52+6*x53+3*x54+9*x55;x11+x12+x13+x14+x15=1;x 21+x22+x23+x24+x25=1;x31+x32+x33+x34+x35=1;x41+x42+x43+x44+x4 5=1;x51+x52+x53+x54+x55=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x4 2+x52=1;x13+x23+x33+x43+x53=1;x14+x24+x34+x44+x54=1;x15+x25+x3 5+x45+x55=1;endLingo输出:globaloptimalsolutionfound.objectivevalue:45.00000Infeasibilities:0.000000Totalsolveriterations:8 VariableValueReducedcostx117.000000x120.000000x130.000000x140.0000000.0000001.0000000.0000007.000000x158.000000x214.000000 x223.000000 x237.000000 x240.000000 x253.000000 x317.000000 x320.000000 x337.000000 x340.000000 x358.000000 x410.000000 x420.000000 x433.000000 x444.000000 x450.000000 x514.000000 x520.0000000.0000000.0000000.0000001.0000000.0000000.0000001.0000 000.0000000.0000000.0000001.0000000.0000000.0000000.0000000.00 00000.0000000.0000006.000000x530.0000003.000000x540.0000006.000000x551.0000000.000000RowslackorsurplusDualprice11.00000029.000000310.00000411.0000058.00000069.0000007-1.0000008-1.00000090.000000100.000000110.000000(二)集合函数程序Lingo输入:model:sets:person/1..5/;area/1..5/;assign(person,area):A,x;endsetsdata:A=1,8,9,2,15,6,3,10,73,10,4,11,345.000000.0000000.0000000.0000000.0000000.0000000.0000000.0000 000.0000000.0000000.0000007,7,5,4,84,2,6,3,9;enddatamax=@sum(assign:A*x);@for(person(i):@sum(area(j):x(i,j))=1);@for(area(j):@sum(person(i):x(i,j) )=1);@for(assign(i,j):@bin(x(i,j)));endLingo输出:globaloptimalsolutionfound.objectivevalue:45.00000objectivebound:45.00000Infeasibilities:0.00000 0extendedsolversteps:0Totalsolveriterations:0VariablecostA(1,1)0.000000A(1,2)0.000000A(1,3)0.000000A(1,4)0.000000A(1,5)0.000000A(2,1)0.000000A(2,2)0.000000A(2,3)0.000000A(2,4)0.000000A(2,5)0.000000A(3,1)0.000000A(3,2)0.000000A(3,3)Reduced1.0000008.0000009.0000002.0000001.0000005.0000006. 0000003.00000010.000007.0000003.00000010.000004.000000 Value最后,小编希望文章对您有所帮助,如果有不周到的地方请多谅解,更多相关的文章正在创作中,希望您定期关注。
运筹学lingo实验报告

运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。
实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。
lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。
二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。
实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。
•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。
以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。
lingo实验报告

lingo实验报告Lingo实验报告引言:在当今全球化的时代,语言的学习和掌握对于个人和社会的发展起着至关重要的作用。
为了更好地理解和应用语言,人们不断探索和研究各种学习方法和工具。
本实验报告将介绍一种被广泛使用的语言学习应用程序——Lingo,并通过实验结果分析其效果和优势。
一、Lingo的背景和特点Lingo是一款基于智能手机的语言学习应用程序,它提供了多种语言学习功能和资源,旨在帮助用户提高语言能力。
与传统的语言学习方法相比,Lingo具有以下几个突出特点:1. 多样化的学习资源:Lingo提供了丰富的学习资源,包括词汇、语法、听力、口语和阅读等方面的练习材料。
用户可以根据自己的需求和兴趣选择不同的学习内容,以提高自己的语言技能。
2. 个性化学习计划:Lingo根据用户的语言水平和学习目标,为每个用户制定个性化的学习计划。
通过分析用户的学习进度和反馈,Lingo能够自动调整学习内容和难度,使学习过程更加高效和有针对性。
3. 互动学习体验:Lingo提供了各种互动学习方式,如语音识别和对话模拟等。
用户可以通过与应用程序进行对话和互动,提高自己的口语表达能力和听力理解能力。
二、实验设计和方法为了评估Lingo的效果和优势,我们进行了一项实验。
实验对象为一群初学者级别的英语学习者,他们被随机分为两组,一组使用Lingo进行语言学习,另一组使用传统的教材和课堂学习。
在实验期间,我们对两组学习者进行了多次测试,包括词汇测试、语法测试和听力测试等。
同时,我们还收集了学习者的学习反馈和满意度调查数据,以了解他们对Lingo的使用体验和效果评价。
三、实验结果分析通过对实验数据的分析,我们得出以下结论:1. 学习成绩提升:与传统学习方法相比,使用Lingo进行语言学习的学习者在词汇、语法和听力等方面的成绩有明显提升。
这表明Lingo在帮助学习者提高语言能力方面具有一定的优势。
2. 学习动力增强:使用Lingo的学习者普遍表现出更高的学习动力和积极性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验名称:推销员指派问题 二、实验目的及任务:1、掌握Lingo 软件的使用方法2、编写简单的Lingo 程序3、解决Lingo 中的最优指派问题三、实验容1、问题描述一个公司要分派5个推销员去5个地区推销某种产品,5个推销员在各个地区推销这种产品的预期利润如下表所示。
若每个推销员只能去一个地区。
应如何分派这5个推销员才能使公司的利润为最大?2、模型建立决策变量:设⎩⎨⎧=个地区个人去第不指派第个地区个人去第指派第j i 0j i 1ij x (i,j=1,2,3,4,5)目标函数:设总利润为z ,第i 个人去第j 个地区的利润为A ij (i,j=1,2,3,4,5),假设A ij 为指派矩阵,则Max ∑∑===5151i j ij ij x A z约束条件:1.第j 个地区只有一个人去:151=∑=i ijx(j=1,2,3,4,5)2.第i 个人只去一个地区:151=∑=j ijx(i=1,2,3,4,5)由此得基本模型:Max ∑∑===5151i j ij ij x A zS,t, 151=∑=i ij x (j=1,2,3,4,5)151=∑=j ijx(i=1,2,3,4,5)10或=ij x (i,j=1,2,3,4,5)3、Lingo 程序 (一)常规程序 Lingo 输入:model :max =1*x11+8*x12+9*x13+2*x14+1*x15+5*x21+6*x22+3*x23+10*x24+7*x25+3*x31+10*x32+4*x33+11*x34+3*x35+7*x41+7*x42+5*x43+4*x44+8*x45+4*x51+2*x52+6*x53+3*x54+9*x 55;x11+x12+x13+x14+x15=1; x21+x22+x23+x24+x25=1; x31+x32+x33+x34+x35=1; x41+x42+x43+x44+x45=1; x51+x52+x53+x54+x55=1; x11+x21+x31+x41+x51=1; x12+x22+x32+x42+x52=1; x13+x23+x33+x43+x53=1; x14+x24+x34+x44+x54=1; x15+x25+x35+x45+x55=1; endLingo 输出:Global optimal solution found.Objective value: 45.00000 Infeasibilities: 0.000000 Total solver iterations: 8Variable Value Reduced CostX11 0.000000 7.000000X12 0.000000 0.000000X13 1.000000 0.000000X14 0.000000 7.000000X15 0.000000 8.000000X21 0.000000 4.000000X22 0.000000 3.000000X23 0.000000 7.000000X24 1.000000 0.000000X25 0.000000 3.000000X31 0.000000 7.000000X32 1.000000 0.000000X33 0.000000 7.000000X34 0.000000 0.000000X35 0.000000 8.000000X41 1.000000 0.000000X42 0.000000 0.000000X43 0.000000 3.000000X44 0.000000 4.000000X45 0.000000 0.000000X51 0.000000 4.000000X52 0.000000 6.000000X53 0.000000 3.000000X54 0.000000 6.000000X55 1.000000 0.000000Row Slack or Surplus Dual Price1 45.00000 1.0000002 0.000000 9.0000003 0.000000 10.000004 0.000000 11.000005 0.000000 8.0000006 0.000000 9.0000007 0.000000 -1.0000008 0.000000 -1.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.000000(二)集合函数程序Lingo输入:model:sets:person/1..5/;area/1..5/;assign(person,area):A,x;endsetsdata:A=1,8,9,2,15,6,3,10,73,10,4,11,37,7,5,4,84,2,6,3,9;enddatamax=sum(assign:A*x);for(person(i):sum(area(j):x(i,j))=1);for(area(j):sum(person(i):x(i,j))=1);for(assign(i,j):bin(x(i,j)));endLingo输出:Global optimal solution found.Objective value: 45.00000 Objective bound: 45.00000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostA( 1, 1) 1.000000 0.000000A( 1, 2) 8.000000 0.000000A( 1, 3) 9.000000 0.000000A( 1, 4) 2.000000 0.000000A( 1, 5) 1.000000 0.000000A( 2, 1) 5.000000 0.000000A( 2, 2) 6.000000 0.000000A( 2, 3) 3.000000 0.000000A( 2, 4) 10.00000 0.000000A( 2, 5) 7.000000 0.000000A( 3, 1) 3.000000 0.000000A( 3, 2) 10.00000 0.000000A( 3, 3) 4.000000 0.000000A( 3, 4) 11.00000 0.000000A( 3, 5) 3.000000 0.000000A( 4, 1) 7.000000 0.000000A( 4, 2) 7.000000 0.000000A( 4, 3) 5.000000 0.000000A( 4, 4) 4.000000 0.000000A( 4, 5) 8.000000 0.000000 A( 5, 1) 4.000000 0.000000 A( 5, 2) 2.000000 0.000000 A( 5, 3) 6.000000 0.000000 A( 5, 4) 3.000000 0.000000 A( 5, 5) 9.000000 0.000000 X( 1, 1) 0.000000 -1.000000 X( 1, 2) 0.000000 -8.000000 X( 1, 3) 1.000000 -9.000000 X( 1, 4) 0.000000 -2.000000 X( 1, 5) 0.000000 -1.000000 X( 2, 1) 0.000000 -5.000000 X( 2, 2) 0.000000 -6.000000 X( 2, 3) 0.000000 -3.000000 X( 2, 4) 1.000000 -10.00000 X( 2, 5) 0.000000 -7.000000 X( 3, 1) 0.000000 -3.000000 X( 3, 2) 1.000000 -10.00000 X( 3, 3) 0.000000 -4.000000 X( 3, 4) 0.000000 -11.00000 X( 3, 5) 0.000000 -3.000000 X( 4, 1) 1.000000 -7.000000 X( 4, 2) 0.000000 -7.000000 X( 4, 3) 0.000000 -5.000000 X( 4, 4) 0.000000 -4.000000 X( 4, 5) 0.000000 -8.000000 X( 5, 1) 0.000000 -4.000000 X( 5, 2) 0.000000 -2.000000 X( 5, 3) 0.000000 -6.000000 X( 5, 4) 0.000000 -3.000000 X( 5, 5) 1.000000 -9.000000Row Slack or Surplus Dual Price1 45.00000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.0000004、求解结果通过上面的lingo程序求解,得出结论:甲去C地区,乙去D地区,丙去B地区,丁去A地区,茂去E地区,此时公司的利润最大。
四、实验总结在该实验中,我对lingo软件有了一些基本的了解,学会了用lingo软件求解指派问题的方法,并且能运用部分集合函数编写一些简单的程序。