第二章练习习题及参考解答
机械制造(第2版)第二章课后习题解答

Fc
C a f v K x Fc pFc
yFc n
c Fc
sFc
900 31 0.4 0.75 80 0 1.0 1358N
Fp
xFp
yFp nFp
CFpap f vc K sFp
530 3 0.9 0.4 0.75 80 0 1.5 1075N
Ff
xFf
yFf nFf
CFf ap f vc K sFf
450 31 0.4 0.4 80 0 0.75 702N
再根据 p38公式(2-17),可得切削功率 P c Fcvc 10 3 1358 80/ 60 10 3 1.81 KW
2-11 影响切削力的主要因素有哪些?试论述其影响规律。 答:(P41-42)影响切削力的主要因素有工件材料、切削用量、刀具几何参数、刀具 磨损、切削液和刀具材料。 工件材料的影响:工件材料强度、硬度越高,切削力越大; 切削用量的影响:背吃刀量 ap影响最大,几乎成正比; f 次之,v 最小。
2-13 试分析刀具磨损四种磨损机制的本质与特征,它们各在什么条件下产生? 答:(P47)刀具磨损四种磨损机制的本质和特征: 硬质点划痕:工件材料有硬质点,造成机械磨损,有划痕、划伤。 冷焊磨损:即粘接磨损,在高压高温作用下,刀具材料被粘接、撕裂,导致磨损。 扩散磨损:在高温下刀具材料中金属原子扩散,导致材料软化磨损。 化学磨损:由于化学腐蚀、氧化作用产生的磨损。
2-6 怎样划分切削变形区?第一变形区有哪些变形特点? 答:切削形成过程分为三个变形区。第一变形区切削层金属与工件分离的剪切滑移 区域,第二变形区前刀面与切屑底部的摩擦区域;第三变形区刀具后刀面与已加工表面 的摩擦区域。 第一变形区的变形特点主要是:金属的晶粒在刀具前刀面推挤作用下沿滑移线剪切 滑移,晶粒伸长,晶格位错,剪切应力达到了材料的屈服极限。
第二章-整式练习题(含答案)

2.1整 式一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a - C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、b a s + C 、b s a s + D 、b s a s s +29.下列单项式次数为3的是( )abc×3×4 C.41x 3y2x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy45, 0.5 , aD.7个11.下列整式中,单项式是( )a +1x -yD.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是3114.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2D .-23,3 17.下列说法正确的是( )A 、x 的指数是0B 、x 的系数是0C 、-10是一次单项式D 、-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ;3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ; 17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________. 29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
电工第二章习题及答案

一、选择题1、如图所示,其节点数、支路数、回路数及网孔数分别为(C )。
A、2、5、3、3B、3、6、4、6C、2、4、6、32、如图所示,I=(B )A。
A、2B、7C、5D、63、如图所示,E=(B )V。
A、3B、4C、—4D、—3/4、如图所示电路中,I1和I2的关系为(C )。
A、I1<I2B、I1>I2C、I1=I2D、不确定5、如图所示,求I1和I2的大小。
解:对于左边节点:I1=10+3+5=18A对于右边节点:I2=10+2-5=7A6、基尔霍夫第一定律的依据是(D )A.欧姆定律B.全电流定律C.法拉第定律D.电荷守恒定¥7、理想电压源和理想电流源间(C )A.有等效变换关系B.没有等效变换关系C.有条件下的等效关系D.无法判定8、下列说法错误的是(D )A.在电路节点处,各支路电流参考方向可以任意设定。
B.基尔霍夫电流定律可以扩展应用于任意假定的封闭面。
C.基尔霍夫电压定律应用于任意闭合路径。
D.∑I=0式中各电流的正负号与事先任意假定的各支路电流方向无关9、实际电压源和电流源模型中,其内阻与理想电压源和电流源之间的正确连接关系是(C)A.理想电压源与内阻串联,理想电流源与内阻串联"B.理想电压源与内阻并联,理想电流源与内阻串联C.理想电压源与内阻串联,理想电流源与内阻并联D.理想电压源与内阻并联,理想电流源与内阻并联10、79.下面的叙述正确的是(B )。
A.理想电压源和理想电流源是不能等效变换的B.理想电压源和理想电流源等效变换后内部是不等效的C.理想电压源和理想电流源等效变换后外部是不等效的D.以上说法都不正确二、填空题1、不能用电阻串、并联化简的电路称为__复杂电路_______。
;2、电路中的_____每一分支_______称为支路,____3条或3条以上支路___所汇成的交点称为节点,电路中__________闭合的电路______________都称为回路。
微观经济学第二章习题答案

《微观经济学》(高鸿业第四版)第二章练习题参考答案1. 已知某一时期内某商品的需求函数为Q d=50-5P,供给函数为Q s =-10+5p。
(1) 求均衡价格Pe 和均衡数量Q e ,并作出几何图形。
(2) 假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd =60-5P 。
求出相应的均衡价格Pe 和均衡数量Q e,并作出几何图形。
(3) 假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p 。
求出相应的均衡价格P e 和均衡数量Q e,并作出几何图形。
(4) 利用(1)(2)(3),说明静态分析和比较静态分析的联系和区别。
(5) 利用(1)(2)(3),说明需求变动和供给变动对均衡价格和均衡数量的影响.解答:(1)将需求函数d Q = 50-5P和供给函数s Q =-10+5P代入均衡条件d Q = s Q ,有:50- 5P= -10+5P 得: Pe=6以均衡价格Pe =6代入需求函数 d Q =50-5p ,得: Q e=50-5206=⨯或者,以均衡价格 Pe =6 代入供给函数 s Q =-10+5P ,得: Qe=-10+5206=⨯所以,均衡价格和均衡数量分别为Pe =6 , Q e=20 ...如图1-1所示.Q sQ dQd(2) 将由于消费者收入提高而产生的需求函数d Q =60-5p和原供给函数s Q =-10+5P , 代入均衡条件d Q =s Q ,有:60-5P=-10=5P 得7=Pe以均衡价格 7=Pe 代入d Q =60-5p ,得 Qe=60-5257=⨯或者,以均衡价格7=Pe 代入s Q =-10+5P, 得 Qe=-10+5257=⨯所以,均衡价格和均衡数量分别为7=e P ,25=Qe (3) 将原需求函数d Q =50-5p 和由于技术水平提高而产生的 供给函数Qs =-5+5p ,代入均衡条件d Q =s Q ,有: 50-5P=-5+5P 得 5.5=e P以均衡价格5.5=e P 代入d Q =50-5p ,得5.225.5550=⨯-=e Q或者,以均衡价格5.5=e P 代入s Q =-5+5P ,得5.225.555=⨯+-=e Q所以,均衡价格和均衡数量分别为5.5=e P ,5.22=Qe .如图1-3所示. (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)Pe-为例,在图1-1中,均衡点E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数 s Q =-10+5P 和需求函数d Q =50-5p 表示,均衡点E具有的特征是:均衡价格6=e P 且当6=e P 时,有d Q =s Q =20=Qe ;同时,均衡数量 20=Qe ,切当20=Qe 时,有e s d P P P ==.也可以这样来理解静态分析:在外生变量包括需求函数的参数(50,-5)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为6=e P ,20=Qe 依此类推,以上所描素的关于静态分析的基本要点,在(2)及其图1-2和(3)及其图1-3中的每一个单独的均衡点()2,1i E 都得到了体现.而所谓的比较静态分析是考察当所有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新旧均衡状态.也可以说,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以(2)为例加以说明.在图1-2中,由均衡点 变动到均衡点 ,就是一种比较静态分析.它表示当需求增加即需求函数发生变化时对均衡点的影响.很清楚,比较新.旧两个均衡点 和 可以看到:由于需求增加由20增加为25.也可以这样理解比较静态分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由50增加为60,从而使得内生变量的数值发生变化,其结果为,均衡价格由原来的6上升为7,同时,均衡数量由原来的20增加为25. 类似的,利用(3)及其图1-3也可以说明比较静态分析方法的基本要求.(5)由(1)和(2)可见,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了,均衡数量增加了.由(1)和(3)可见,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增加了.总之,一般地有,需求与均衡价格成同方向变动,与均衡数量成同方向变动;供给与均衡价格成反方向变动,与均衡数量同方向变动. 2 假定表2—5是需求函数Q d =500-100P在一定价格范围内的需求表:某商品的需求表(1)求出价格2元和4元之间的需求的价格弧弹性。
激光原理第二章习题解答

《激光原理》习题解答 第二章习题解答1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。
共焦腔分为实共焦腔和虚共焦腔。
公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。
两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。
) 根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知:L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T 共轴球面腔的稳定判别式子()1211<+<-D A 如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。
本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。
经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T 坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。
2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。
解答如下:共轴球面腔的()21221222121R R L R L R L D A +--≡+,如果满足()1211<+<-D A ,则腔是稳定腔,反之为非稳腔,两者之间存在临界腔,临界腔是否是稳定腔,要具体分析。
高数(高等教育出版社)第一版,第二章习题详解参考

第二章习题解答参考习 题 2-11.设()=8f x x ,试按定义求(1)f '. 解 ()()()0011818(1)=limlim 8x x f x f x f x x∆→∆→+∆-+∆-'==∆∆. 2.设2()=f x ax bx c ++,其中,,a b c 为常数.按定义求()f x '. 解 ()()()0=limx f x x f x f x x∆→+∆-'∆()()()220limx a x x b x x c ax bx c x∆→+∆++∆+-++=∆()202lim 2x ax x a x b x ax b x∆→∆+∆+∆==+∆. 3.证明 (sin )=cos x x '. 证 设()sin f x x =,则()()()sin sin 2cos sin 22x x f x x f x x x x x ∆∆⎛⎫+∆-=+∆-=+ ⎪⎝⎭ ()()()002cos sin 22lim lim x x x x x f x x f x f x x x∆→∆→∆∆⎛⎫+ ⎪+∆-⎝⎭'==∆∆0sin2lim cos cos 22x xx x x x ∆→∆∆⎛⎫=+⋅= ⎪∆⎝⎭, 所以 (sin )=cos x x '.4.下列说法可否作为()f x 在0x 可导的定义 (1)000()()limh f x h f x h h→+--存在;解 不能.因为从极限式中不能判断()0f x 存在,也不能判断000()()limh f x h f x h→+-存在.例如()f x x =在0x =点不可导,但00(0)(0)limlim 0h h h h f h f h h h→→--+--==却存在.(2)000()()lim h f x h f x h +→+-和000()()lim h f x h f x h+→---存在且相等;解 可以.因为()0000()()lim h f x h f x f x h++→+-'=,()0000000()()()()lim lim h h f x h f x f x h f x f x h h+--→-→----'==--,根据导数存在的充要条件,可知()0f x '存在.5.求下列函数的导数:(1)5y x =; (2)y =; (3)y x =; (4)13log y x = ; (5)y =(6)lg y x =.解 (1)51455y x x -'==;(2)132212y x x --'⎛⎫'==-= ⎪⎝⎭(3)221577222277y x x x '⎛⎫'=== ⎪⎝⎭(4)111ln 3ln3y x x '==-; (5)25152326616y x x x +--''⎛⎫⎛⎫'==== ⎪ ⎪⎝⎭⎝⎭;(6)1ln10y x '=. 6.已知物体的运动规律为3s t =(米),求这物体在2t =(秒)时的速度. 解 因为3s t =,23dsv t dt==,所以2t =时,()223212v =⨯=. 7.如果()f x 为偶函数,且(0)f '存在,证明(0)=0f '.证 因为()()0(0)=lim x f x f f x∆→∆-'∆,而()f x 为偶函数,故()()f x f x -∆=∆,所以()()()()000(0)limlim (0)x x f x f f x f f f x x∆→∆→-∆--∆-''==-=-∆-∆, 所以(0)=0f '.8.抛物线2y x =在哪一点的切线平行于直线45y x =-在哪一点的切线垂直于直线2650x y -+=解 由2y x =,可得2y x '=,若切点为()200,x x ,则依题设024x =,即02x =时,切线平行于直线45y x =-;01213x ⋅=-,即032x =-时,切线垂直于直线2650x y -+=;所以抛物线2y x =在点()2,4的切线平行于直线45y x =-在点39,24⎛⎫- ⎪⎝⎭的切线垂直于直线2650x y -+=.9.在抛物线2y x =上取横坐标为11x =及23x =的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线解 由题设可知2y x '=,所取的两点为()1,1,()3,9,连接两点的直线斜率为4k =,依题设,应有24x =,即2x =,所以所求点为()2,4.10.如果()y f x =在点()4,3处的切线过点()0,2,求()4f '. 解 依题设,曲线在点()4,3处的切线为()()344y f x '-=-,满足()()23404f '-=-,从而()144f '=.11.讨论下列函数在0x =处的连续性与可导性:(1)y = (2)21sin ,0,0,0.x x y xx ⎧≠⎪=⎨⎪=⎩ 解(1)因为()000x y →==,所以y =0x =点连续,而20031lim x x x →→==+∞,所以y =0x =点不可导;(2)因为()201lim sin 00x x y x →==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点连续, 又 2001sin1limlim sin 0x x x x x x x →→==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点可导. 12.设sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,求,a b 的值.解 因为sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,所以()0lim ()0x f x f →=,且()()00f f -+''=,又0lim ()0x f x -→=,0lim ()x f x b +→=,()0f b =,故0b =,()00f =, 从而()()()000sin 0lim lim 1x x f x f xf x x---→→-'===, ()()()0000lim lim x x f x f ax f a xx +++→→-'===,所以1a =. 13.已知2,0(),0x x f x x x ⎧≥=⎨-<⎩,求(0)f +',(0)f -'和(0)f '.解 因为2,0(),0x x f x x x ⎧≥=⎨-<⎩,所以()200()0(0)lim lim 0x x f x f x f x x +++→→-'===, ()00()0(0)lim lim 1x x f x f xf x x---→→--'===-,所以(0)f '不存在. 14.设函数33,0()=,0x x f x x x ⎧≥⎨-<⎩,求()f x '.解 当0x >时,2()3f x x '=,当0x <时,2()3f x x '=-,当0x =时,()()3000(0)limlim 0x x f x f x f xx +++→→-'===, ()()3000(0)lim lim 0x x f x f x f xx ---→→--'===,所以(0)0f '=,所以 223,0()=3,0x x f x x x ⎧≥'⎨-<⎩.15.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数; (2)周期函数的导函数仍是周期函数. 证 (1)设()f x 为奇函数,则()()f x f x -=-, 而()()()limh f x h f x f x h→+-'=,()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----+'-== ()()0lim h f x h f x h →--=-()()()0lim h f x h f x f x h→--'==-,所以()f x '为偶函数;相似地,若()f x 为偶函数,则()()f x f x -=,于是()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----'-== ()()()0limh f x h f x f x h→--'=-=--,所以()f x '为奇函数.(2)设()f x 为周期函数,则存在T ,使()()f x T f x +=,则()()()0limh f x T h f x T f x T h →++-+'+=()()()0lim h f x h f x f x h→+-'==, 所以()f x '也是以T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间[0,]x 上细棒的质量m 是x 的函数()m m x =.应怎样确定细棒在点0x 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)解 设在0x 处的线密度为()0x ρ,给0x 以x ∆的增量, 则在区间00[,]x x x +∆上细棒的平均线密度为()()00m x x m x x+∆-∆,故()()()()00000limx m x x m x x m x xρ∆→+∆-'==∆.17.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证 由2xy a =可得2,0a y x x =≠,于是22,0a y x x '=-≠,若切点为200,a x x ⎛⎫ ⎪⎝⎭,则该点处的切线为()220200a a y x x x x -=--,它与两坐标轴的交点分别为()02,0x ,2020,a x ⎛⎫ ⎪⎝⎭,所以所求三角形的面积为220012222a S x a x =⨯⨯=. 18.设函数()f x 在0x =处可导,试讨论函数|()|f x 在0x =处的可导性. 解 因为函数()f x 在0x =处可导,所以()()0()0lim0x f x f f x→-'=存在, 而()()()0limx x f x f f x x=→-'=,故(1)若(0)0f =,由()()0()0lim 0x f x f f x →-'=可知:()()0f x f xα'=+,其中lim 0x α→=,从而()()0f x x f α'=+⎡⎤⎣⎦,此时()()()000limlim 0x x x x f xf x f xxαα=→→'+⎡⎤⎣⎦''==⋅+, 因此|()|f x 在0x =点的左导数为()0f '-,右导数为()0f ', 所以|()|f x 在0x =处可导的充要条件是()00f '=;(2)若(0)0f ≠,设(0)0f >,则()0lim ()00x f x f →=>,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x >, 此时有()()()()0()0()0limlim0x x x f x f f x f f x f xx=→→--''===,相似地, 若(0)0f <,则()0lim ()00x f x f →=<,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x <,此时有()()()()00()0()0limlim 0x x x f x f f x f f x f x x=→→---⎡⎤⎣⎦''===-; 总之,若()f x 在0x =处可导,则当(0)0f ≠时,|()|f x 在0x =处可导;当(0)0f =时,|()|f x 在0x =处可导的充要条件是()00f '=.习 题 2-21.求下列函数的导数: (1)3cos2y x =;(2)4sin(31)y t =-;(3)32e 4cos2x y x =+; (4)5(1)y x =+;(5)43e 1x y -=+; (6)y =(7)1ln y x x=; (8)23(1)(1)y x x x =++-;(9)3e sin xy x x =;(10)322ln 3ln x x y x x +=+.解(1)()()()()3sin 223sin 226sin 2y x x x x ''=⋅-=-⋅=-; (2)()4cos(31)3112cos(31)y t t t ''=-⋅-=-;(3)()()()()332e 34sin 226e 8sin 2x x y x x x x '''=+-=-; (4)()445(1)15(1)y x x x ''=++=+; (5)()443e 4012e x x y x --''=-+=-;(6)y '==(7)()()()()2221ln ln ln 1ln ln ln x x x x x x y x x x x x x +⋅'+'=-=-=-; (8)()()3222221(1)(1)3(1)(1)522y x x x x x x x x '=+-+++⋅-=-++; (9)()23323e sin e sin e cos e 3sin sin cos x x x x y x x x x x x x x x x x x '=++=++;(10)()()()()()2234222222333ln 2ln 294ln 323ln 3ln x x x x x x x x x x x xx x y x x x x ⎛⎫⎛⎫++-++ ⎪ ⎪-+-+⎝⎭⎝⎭'==++2.证明:(1)2(cot )csc x x '=-; (2) (csc )csc cot x x x '=- .证 (1)22cos sin sin cos cos (cot )csc sin sin x x x x x x x x x '-⋅-⋅⎛⎫'===- ⎪⎝⎭; (2)21cos 1cos (csc )csc cot sin sin sin sin x x x x x x x x x '⎛⎫'==-=-⋅=- ⎪⎝⎭. 3.证明:(1)(arccos )x '= (2)21(arccot )1x x '=-+. 证 (1)设arccos y x =,则其反函数为cos x y =,,22y ππ⎡⎤∈-⎢⎥⎣⎦,由于sin x y '=-,由反函数求导法则,()1arccos sin x y '=-== (2)设arccot y x =,则其反函数为cot x y =,()0,y π∈, 由于2csc x y '=-,由反函数求导法则,()222111arccos csc 1cot 1x y y x'=-=-=-++. 4.求下列函数在给定点处的导数:(1)2cos 3sin y x x =-,求π4x y ='; (2)2233x y x =+-,求(2)f '. 解 (1)因为2sin 3cos y x x '=--,所以π4ππ2sin3cos 442x y ='=--=-; (2)因为()()()22212223333x xy x x ⋅-'=-+=+--,所以()22222103332x y =⋅'=+=-.5.写出曲线122y x x=-与x 轴交点处的切线方程. 解 令0y =,得曲线122y x x =-与x 轴交点为1,02⎛⎫ ⎪⎝⎭和1,02⎛⎫- ⎪⎝⎭, 而2122y x '=+,所以142y ⎛⎫'±= ⎪⎝⎭, 所以所求切线有两条,方程分别为42y x =+,42y x =-.6.求下列函数的导数: (1)25(23)y x =+;(2)2sin (52)y x =-;(3)2321e xx y -++=;(4)2sin ()y x =; (5)2cos y x =;(6)y =(7)()arctan x y e =; (8)2(arccos )y x =; (9)lnsin y x =;(10)3log (1)a y x =+.解 (1)242245(23)(23)20(23)y x x x x ''=⋅+⋅+=+; (2)222cos(52)(52)4cos(52)y x x x x ''=-⋅-=--; (3)()()223212321e 32162e xx x x y x x x -++-++''=⋅-++=-+;(4)222cos()()2cos()y x x x x ''=⋅=;(5)()()2cos cos 2cos sin sin 2y x x x x x ''==-=-; (6)()22y a x ''=-==(7)()()221e e 1e 1e xxxx y ''==++; (8)2(arccos )(arccos )2(arccos )y x x x ⎛⎫''=== ⎝ (9)()1cos sin cot sin sin xy x x x x''===; (10)233313(1)(1)ln (1)ln x y x x a x a''=+=++.7.求下列函数的导数:(1)arccos(12)y x =-; (2)1arcsin y x=;(3)1ln 1ln xy x-=+;(4)ln (y x =;(5)sin cos n y x nx =⋅; (6)y =(7)e y =;(8)[]ln ln(ln )y x =;(9)y =(10)1arccot tan 22x y ⎛⎫= ⎪⎝⎭.解 (1)2)y x ''=-==;(2)211y x x '⎫⎫'==-=⎪⎪⎭⎭; (3)()()()()22111ln 1ln 21ln 1ln x x x x y x x x -+--'==-++; (4)y x ''=+==;(5)()()()1sin sin cos sin sin n n y n x x nx x nx nx -'''=⋅+-()1sin cos cos sin sin n n x x nx x nx -=⋅-()1sin cos 1n n x n x -=+⎡⎤⎣⎦;(6)1sin 21sin 2x y x '-⎛⎫'=⎪+⎝⎭()()()22cos 21sin 21sin 22cos 21sin 2x x x x x -+--=+2cos 21sin 2xx-=+()2cos 2cos 21sin 2x x x =-+;(7)(1ee1y x'''===+ (8)()()()1111ln (ln )ln ln (ln )ln (ln )ln ln ln (ln )y x x x x x x x x '''==⋅=; (9)y'====;(10)211tan 2211tan 22x y x '⎛⎫'=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭2241sec 2224tan 2x x x '⎛⎫=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭ 222sec 1213cos 4tan 22xx x =-=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 8.设1cos ,0()ln (1)cos ,0x x f x x x x x -<⎧=⎨+-≥⎩,求()f x '.解 当0x ≠时,sin ,0()1cos sin ,01x x f x x x x x x<⎧⎪'=⎨-+>⎪+⎩,当0x =时,20002sin sin1cos 022(0)lim limlim sin 022x x x x xx x f xxx ----→→→--'===⋅=,()()100ln 1cos 0(0)lim lim ln 1cos ln 10x x x x x x f x x e x +++→→+--⎡⎤'==+-=-=⎢⎥⎣⎦, 所以()00f '=,从而sin ,0()1cos sin ,01x x f x x x x x x <⎧⎪'=⎨-+≥⎪+⎩.9.求函数cos (sin )x y x =的导函数. 解法1 因为cos cos lnsin (sin )x x x y x e ==,所以()()cos cos lnsin cos cos ln sin sin sin ln sin cos sin x x x x y e x x x x x x x ⎛⎫''=⋅=-+ ⎪⎝⎭()2cos cos sin sin ln sin sin xx x x x x ⎛⎫=-+ ⎪⎝⎭.解法2 对数求导法,由cos (sin )x y x =,得ln cos ln (sin )y x x =, 两边同时对x 求导,得cos sin ln sin cos sin y x x x x y x'=-+, 所以()2cos cos sin sin ln sin sin xx y x x x x ⎛⎫'=-+ ⎪⎝⎭.10.设()sin f x x =,3()x x ϕ=,求[()]f x ϕ',[()]f x ϕ',{[()]}f x ϕ'.解 因为()sin f x x =,3()x x ϕ=,所以()cos f x x '=,2()3x x ϕ'=, 所以()()22[()]3sin 3f x f x x ϕ'==,[]()3[()]cos ()cos f x x x ϕϕ'==,()()()()33323{[()]}sin cos 3cos f x x x x x x ϕ''⎡⎤'===⎣⎦. 11.设()f x '存在,求下列函数的导数: (1)(cos )n f x ; (2)cos [()]n f x .解 (1)[]()11(cos )(cos )(cos )(cos )(cos )cos nn n f x nf x f x nf x f x x --''''⎡⎤==⎣⎦1sin (cos )(cos )n n xf x f x -'=-;(2){}{}{}()11cos [()]cos [()]cos[()]cos [()]sin[()]n n n f x n f x f x n f x f x f x --'''==-()1sin[()]cos [()]n n f x f x f x -'=-⋅⋅.12. 求曲线()22sin sin f x x x =+所有具有水平切线的点. 解 因为()2cos 2sin cos f x x x x '=+,令()0f x '=,得()cos 1sin 0x x +=,于是cos 0x =,或sin 1x =-, 推得 ,2x k k Z ππ=+∈,或32,2x k k Z ππ=+∈, 所以所求的点为2,32k ππ⎛⎫+ ⎪⎝⎭,32,12k ππ⎛⎫+- ⎪⎝⎭,其中k Z ∈. 习 题 2-31.求下列函数的二阶导数: (1)35e x y -= ;(2)e sin t y t -= ; (3)2sin ln y x x = ;(4)tan y x = ;(5)ln(y x = ; (6)2(1)arctan y x x =+ . 解 (1)353e x y -'=,359e x y -''=;(2)()e sin e cos e cos sin t t t y t t t t ---'=-+=- ,()()e cos sin e sin cos 2e cos t t t y t t t t t ---''=--+--=-;(3)()221sin 2sin cos ln sin ln sin 2xy x x x x x x x x'=+⋅=⋅+,()()22sin 22sin cos sin ln 2cos 2x x x x xy x x x x ⋅-''=+⋅+ ()()222sin 2sin 2cos 2ln x xx x x x=+⋅-;(4)2sec y x '=,22sec sec tan 2sec tan y x x x x x ''=⋅⋅=⋅;(5)1y ⎛⎫'=+= ⎝ ()3221422y x x -''=-+⋅=;(6)2arctan 1y x x '=+,22arctan 1x y x x ⎛⎫''=+ ⎪+⎝⎭. 2.3e x y x = ,求(5)(0)y . 解 设3u x =,x v e =,则23u x '=,6u x ''=,6u '''=,()0,4n u n =∀≥;(),nx v e n N +=∀∈, 代入莱布尼兹公式,得 ()()()()5445(5)510105y u v u v u v u v u v uv ''''''''''''=+++++2310610653x x x x e xe x e x e =⋅+⋅+⋅+,所以 (5)(0)60y =.3.22e x y x =,求(20)y . 解 设2u x =,2x v e =,则2u x '=,2u ''=,()0,3n u n =∀≥;()22,nn x v e n N +=∀∈,代入莱布尼兹公式,得 ()()20(20)200n k k k k yC u v -==∑()()()181920210202020C u v C u v C uv '''=++ 182119202202202019022222x x x e C x e C x e =⋅⋅+⋅+⋅()202229520x e x x =++.4.试从d 1d x y y='导出:(1)223d d ()x y y y ''=-';(2)3235d 3()d ()x y y y y y ''''''-='.解 因为d 1d x y y =',所以()()2232d 111d x d d dx y y y dy y dx y dy y y y ''''⎛⎫⎛⎫==⋅=-⋅=- ⎪ ⎪'''''⎝⎭⎝⎭, ()()3333d d x d y d y dx y dy dx dyy y ⎛⎫⎛⎫''''=-=-⋅ ⎪ ⎪ ⎪ ⎪''⎝⎭⎝⎭ ()()()()()32265331y y y y y y y y y y y '''''''''''''''-⋅-=-⋅='''. 5.证明:函数12e e x x y C C λλ-=+(12,,C C λ是常数)满足关系式20y y λ''-=. 解 因为12e e x x y C C λλ-=+,所以()1212e e e e x x x x y C C C C λλλλλλλλ--'=+-=-,2212e e x x y C C λλλλ-''=+, 所以()22221212e e e e 0x x x x y y C C C C λλλλλλλλ--''-=+-+=. 6. 求常数λ的值,使得函数x y e λ=满足方程560y y y '''+-=.解 因为x y e λ=,所以x y e λλ'=,2x y e λλ''=,代入方程560y y y '''+-=, 得()2560x e λλλ+-=,因为0,x e x R λ≠∀∈,所以2560λλ+-=, 解得16λ=-,21λ=.7. 设()()sin f x x a =+,()sin cos g x b x c x =+,求常数,b c 的值,使得()()00f g =,且()()00f g ''=.解 因为()()sin f x x a =+,()sin cos g x b x c x =+, 所以()()cos f x x a '=+,()cos sin g x b x c x '=-,所以由()()00f g =,()()00f g ''=,可得sin c a =,且cos b a =. 8.求下列函数的n 阶导数.(1)12121n n n n n y x a x a x a x a ---=+++++L (12,,n a a a L 是常数); (2)e x y x =; (3)2sin y x =; (4)2156y x x =-+.解 (1)()()12312112n n n n y nx n a x n a x a ----'=+-+-++L ,()()()()()23412211223n n n n y n n x n n a x n n a x a ----''=-+--+--++L ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故()!ny n =.(2)()e e e 1x x x y x x '=+=+,()()e 1e e 2x x x y x x ''=++=+,()()e 2e e 3x x x y x x '''=++=+,由此可见,每求一次导数,增加一个e x , 所以()()e n x y x n =+,n N +∀∈; (3)()()21cos 211sin cos 2222x y x x -===-, ()2sin cos sin 2cos 22y x x x x π⎛⎫'===-+ ⎪⎝⎭,()2cos 22cos 222y x x π⎛⎫''==-+⋅ ⎪⎝⎭,()222sin 22cos 232y x x π⎛⎫'''=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, ()()4332cos 22cos 242y x x π⎛⎫=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, 所以()12cos 22nn y x n π-⎛⎫=-+⋅ ⎪⎝⎭,n N +∀∈.(4)因为 21115632y x x x x ==--+--, 而()2133x x -'⎛⎫=-- ⎪-⎝⎭,()()()311233x x -''⎛⎫=--- ⎪-⎝⎭, ()()()()4112333x x -'''⎛⎫=---- ⎪-⎝⎭, 可见,()()()()()()1112333n n n x x --⎛⎫=----- ⎪-⎝⎭L ()()11!3n n n x --=--,同理,()()()()()()()()11112321!22n n nn n x n x x ----⎛⎫=-----=-- ⎪-⎝⎭L ,所以()()()()()()()1111111!321!32nn n nn n n y n x x n x x ----++⎛⎫⎡⎤=----=-- ⎪⎣⎦ ⎪--⎝⎭.习 题 2-41.求由下列方程所确定的隐函数的导数d d y x: (1)e 0xy x y +-=;(2)22320x y xy y -+=;(3)e ln sin 2xy y x x +=;(4= (0a >的常数).解 (1)将方程两边同时对x 求导,得1e 0xy dy dy y x dx dx ⎛⎫+-+= ⎪⎝⎭,变形得:e 11e xy xydy y dx x -=-;(2)将方程两边同时对x 求导,得22222230dy dy dy xy x y x y y dx dx dx ⎛⎫⎛⎫+-+⋅+= ⎪ ⎪⎝⎭⎝⎭,变形整理得:2224223dy xy y dx x xy y -+=-+; (3)将方程两边同时对x 求导,得 e ln 2cos 2xy dy dy y y x x x dx dx x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,变形整理得:22cos 2e ln exyxy dy x x y xy dx x x x --=+;(4)将方程两边同时对x 求导,得0+=,变形整理得:()0dy x dx =>. 2.求曲线2520x y xy +-=在点(1,1)处的切线方程. 解 将方程两边同时对x 求导,得:42520dy dy x y y x dx dx ⎛⎫+-+= ⎪⎝⎭, 将1x =,1y =代入,解得:()1,10dydx=,所以曲线在点(1,1)处的切线方程为:1y =.3.已知sin cos()0y x x y -+=,求隐函数()y y x =在点π0,2⎛⎫⎪⎝⎭的导数值.解 将方程两边同时对x 求导,得:sin cos sin()10dy dy x y x x y dx dx ⎛⎫⎛⎫++++= ⎪ ⎪⎝⎭⎝⎭,将0x =,2y π=代入,解得:0,212dydxππ⎛⎫ ⎪⎝⎭=--.4.求下列方程所确定的隐函数的二阶导数22d d yx.(1)tan()y x y =+; (2)1e y y x =+;(3)ln y y x y =+; (4)arctan yx=. 解 (1)将方程两边同时对x 求导,得:2sec ()1dy dy x y dx dx ⎛⎫=++ ⎪⎝⎭, 解得2csc ()dyx y dx=-+, 再求导,得:()222csc()csc()cot 1d y dy x y x y x y dx dx ⎛⎫=-+-+++⎡⎤ ⎪⎣⎦⎝⎭, 将2csc ()dy x y dx=-+代入,整理得:()22322csc ()cot d y x y x y dx =-++;(2)将方程两边同时对x 求导,得:e e y ydy dyx dx dx=+, 解得:e 1e y y dy dx x =-,再求导,得:()()222e 1e e e e 1e yy y y y y dy dy x x dx dx d ydxx ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=-,将e 1e y y dy dx x =-代入,整理化简得:()()()()222332e 2e e 321e yyyy x y d y dx y x --==--; (3)将方程两边同时对x 求导,得:ln 1dy dy dyy dx dx dx+=+, 解得:1ln dy dx y =,再求导,得:()2221ln dyd yy dxdx y =-, 将1ln dy dx y =代入,整理化简得:()2321ln d y dx y y =-;(4)将方程两边同时对x 求导,得:2222221121dy dy x y x ydx dx x x y y x -+⋅=⋅+⎛⎫+ ⎪⎝⎭, 解得:dy x y dx x y +=-,再求导,得:()()()22211dy dy x y x y d y dx dx dx x y ⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭=-, 将dy x ydx x y +=-代入,整理化简得:()()222322x y d y dx x y +=-. 5.用对数求导法求下列函数的导数: (1)cos (sin )x y x =;(2)(tan 2)x y x =;(3)1xx y x ⎛⎫= ⎪+⎝⎭;(4)(2y x =-解 (1)两边取自然对数,得:ln cos ln(sin )y x x =, 两边同时对x 求导,得:()1cos sin ln sin cos sin dy xx x x y dx x=-+⋅, 整理化简得:()cos (sin )sin ln sin cos cot x dyx x x x x dx=-+⋅⎡⎤⎣⎦; (2)两边取自然对数,得:ln ln(tan 2)y x x =,两边同时对x 求导,得:()2sec 221ln(tan 2)tan 2x dyx x y dx x ⋅=+⋅, 整理化简得:4(tan 2)ln(tan 2)sin 4x dy x x x dx x ⎡⎤=+⎢⎥⎣⎦; (3)两边取自然对数,得:()ln ln ln ln 11x y x x x x x ⎛⎫==-+⎡⎤ ⎪⎣⎦+⎝⎭, 两边同时对x 求导,得:()111ln ln 11dy x x x y dx x x ⎛⎫=-++-⎡⎤ ⎪⎣⎦+⎝⎭整理化简得:1ln 111xdy x x dx x x x ⎛⎫⎡⎤=+ ⎪⎢⎥+++⎝⎭⎣⎦; (4)两边取自然对数,得:()111ln ln(21)ln ln(31)ln 1248y x x x x =-++++-,两边同时对x 求导,得:()121312124(31)81dy y dx x x x x =+++-+-,整理化简得:()2131(22124(31)81dy x dx x x x x ⎤=-+++⎢⎥-+-⎦6.求下列参数方程所确定的函数的导数d d yx: (1)cos sin sin cos x a bt b at y a bt b at =+⎧⎨=-⎩(,a b 为常数); (2)22221(1)1at x t a t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(a 为常数). 解 (1)因为()()sin cos dx ab bt ab at dt =-+,()()cos sin dyab bt ab at dt=+, 所以()()()()()()()()cos sin cos sin d d sin cos sin cos ab bt ab at bt at y x ab bt ab at bt at ++==-+-+; (2)因为()()()()22222221222111a t at t a t dx dt t t +-⋅-==++, ()()()22222221(1)2411at t a t t dy atdt t t -+--⋅-==++ 所以22d 22d 11y t tx t t =-=--. 7.求曲线2e 1(2)ettx t y t t --⎧=+⎪⎨=-⎪⎩在0t =处的切线方程与法线方程. 解 因为e e t t dx t dt --=-,()222e (2)e t t dy t t t dt--=---, 所以221dy t dx t +=-,02t dy dx==,又01,0t t xy====故所求切线为:()21y x =-,法线为:()112y x =--. 8.已知曲线2e 2e tx t mt n y p ⎧=++⎪⎨=-⎪⎩在0t =时过原点,且在该点处的切线与2350x y +-=平行,求常数,,m n p .解 因为2dx t m dt =+,e tdy p dt=,故e 2t dy p dx t m =+,由题设可知:00t xn ===,02e 0t yp ==-=,23t dy p dxm ===-, 所以所求常数为:0n =,2e p =,3e m =-. 注:此题的书后答案有误.9.求下列参数方程所确定的函数的二阶导数22d d yx:(1)231x t y t t⎧=-⎪⎨=-⎪⎩; (2)e cos e sin t t x t y t ⎧=⎨=⎩; (3)()2ln 1arctan x t y t t⎧=+⎪⎨=-⎪⎩; (4)()()()x f t y tf t f t '=⎧⎨'=-⎩(()f t ''存在且不为零).解 (1)因为2dx t dt =-,213dy t dt=-,所以21313222dy t t dx t t -==-+-, 于是 22223131313222224d y d t dt t t dx dt t dx t t ++⎛⎫=-+⋅==- ⎪-⎝⎭;(2)因为e cos e sin t t dx t t dt =-,e sin e cos t t dyt t dt=+, 所以e sin e cos sin cos e cos e sin cos sin t t t tdy t t t t dx t t t t++==--,于是 ()()()22222cos sin sin cos sin cos 1cos sin e cos e sin cos sin t tt t t t d y d t t dt dx dt t t dx t t t t -+++⎛⎫==⋅ ⎪--⎝⎭- ()32e cos sin tt t =-;(3)因为221dx t dt t =+,2111dy dt t =-+,所以22111221dy t t t dx t -+==+, 于是2222112241d y t t dx t t+==+; (4)因为()dx f t dt ''=,()()()()dy f t tf t f t tf t dt ''''''=+-=,所以dy t dx=,于是221()d y dx f t =''.10.将水注入深8米、上顶直径8米的正圆锥形容器中,注水速率为4吨/分钟.当水深为5米时,其表面上升的速率为多少解 如图所示,设在t 时刻容器中水面的高度为()h t (米),此时水面的半径为()r t (米),则依题意应有()()2143r t h t t π=,而()()84h t r t =, 所以()31412h t t π=,两边同时对时间t 求导, 可得()2144dh h t dt π=,当()5h t =时,可求得1625dh dt π=, 所以当水深为5米时,其表面上升的速率为16min 25m π. 11.汽车A 以50公里/小时的速度向西行驶,汽车B 以60公里/小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶.当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以什么速率接近解 如图所示,设在t 时刻,汽车A 距离交叉路口()x t ,汽车B 距离交叉路口()y t ,则两车之间的直线距离为()()()22s t x t y t =+t 求导,可得()()()()22dx dy x t y t ds dt dt dtx t y t +=+50dx dt =,60dy dt =,故当()0.3x t =,()0.4y t =时,22780.30.4ds dt ==+,即当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以78/km h 的速率接近.12.一个路灯安装在15英尺高的柱子上,一个身高为6英尺的人从柱子下以5英尺/秒的速度沿直线走离柱子,当他距离柱子40英尺时,他身影的顶端以多快的速率移动解 如图所示,设在t 时刻,此人离灯柱的水平距离为()x t ,身影的顶端离灯柱的水平距离为()y t ,则依题意有:5dx dt =,()()()615y t x t y t -=,可见()()53y t x t =, 两边同时对时间t 求导,得52533dy dx dt dt ==, 所以他身影的顶端以25feet /3s 的速率移动,与他离灯柱的水平 距离无关,只与他的前进速度、身高、灯柱高有关.习 题 2-51.函数2y x =,求当1x =,而0.1x ∆=,0.01时,y ∆与d y 之差是多少 解 当1x =,0.1x ∆=时,21.110.21y ∆=-=,d 20.2y x x =∆=, 所以 0.01y dy ∆-=;当1x =,0.01x ∆=时,21.0110.0201y ∆=-=,d 20.02y x x =∆=, 所以 0.0001y dy ∆-=;2.求函数2y x x =+在3x =处,x ∆等于0.1,0.01时的增量与微分. 解 因为2y x x =+,所以()21dy x x =+∆,当3x =,0.1x ∆=时,223.1 3.1330.71y ∆=+--=,0.7dy =; 当3x =,0.01x ∆=时,223.01 3.01330.0701y ∆=+--=,0.07dy =.3.函数3y x x =-,求自变量x 由2变到1.99时在2x =处的微分. 解 因为3y x x =-,所以()231dy x x =-∆,当2x =,0.01x ∆=-时,()()23210.010.11dy =⨯-⨯-=-.4.求下列函数的微分(1)234123y x x x x =+-+;(2)2e x y x -=; (3)21xy x =- ; (4)22tan (1)y x =+; (5)ln cos 3x y = ;(6)e sin ax y bx =.解 (1)()23144dy x x x dx =+-+;(2)()()()2222222e e e e 2e 12x x x x x dy dx x d x dx x x dx x dx -----=+-=+-=-;(3)()()()()()()()222222222211121111x dx xd x x dx x x dx xdy dx x x x ------+===---;(4)2222222tan(1)tan(1)2tan(1)sec (1)(1)dy x d x x x d x =++=+++2224tan(1)sec (1)x x x dx =++;(5)()()ln cos ln cos 13ln 3ln cos 3ln 3cos cos x x dy d x d x x==⋅lncos 3ln 3tan x xdx =-⋅;(6)()()()()()()e sin e cos e sin cos ax ax ax dy d ax bx bx d bx a bx b bx dx =+=+⎡⎤⎣⎦. 5.将适当的函数填入下列括号内,使等式成立: (1)d()sin d t t ω=; (2)2d()sec 3d x x =; (3)d()x =;(4)22d d()xx a =+; (5)2d()e d x x x =;(6)ln d()d xx x=. 解 (1)()1cos t ωω-; (2)()1tan 33x ; (3; (4)1arctan x a a ; (5)21e 2x ; (6)21ln 2x .6.某扩音器的插头为圆柱形,其截面半径r 为0.15厘米,长度L 为4厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为0.001厘米的铜,问每个插头约需要多少克纯铜(铜的密度为8.9克/立方厘米, 3.1416π≈)解 因为圆柱形的扩音器插头的体积为2V r L π=,侧面镀层的体积约为2V dV rL r π∆≈=∆,当0.15r =,0.001r ∆=,4L =时,32 3.14160.1540.001 3.7699210V -∆≈⨯⨯⨯⨯≈⨯, 故所需铜的重量约为33.76992108.90.03355m -≈⨯⨯≈克.7.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为2h ,若h 比R 小得多,试证明透镜的厚度22h D R≈.解 如下图所示,镜面半径R 、镜面口径2h 、透镜厚度D 之间有关系:()222h R D R +-=,化简得:2220h RD D -+=,得:22222441R R h h D R R --==--若h 比R 小得多,则2222112h h R R-≈-,故222221122h h h D R R R R R R R⎛⎫=--≈--= ⎪⎝⎭.8.利用微分求下列函数值的近似值(1)cos59o ;(2)tan 46o ;(3)lg11; (4) 1.01e ;(526;(63996解 (1)()00cos59cos 601cos cos sin 318033180πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-≈-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭o130.51512180π⎫=-≈⎪⎝⎭; (2)()002tan 46tan 451tan tan sec 418044180πππππ⎛⎫⎛⎫⎛⎫=+=+≈+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭o 12 1.0349180π=+⨯≈;(3)()1lg11lg 101lg101 1.043410ln10=+≈+⨯≈;(4) 1.0110.010.01 2.7455e e e e +=≈+⨯≈; (526251251 5.1225=+≈=; (6()233331996100041000100049.98673-=-≈⨯⨯-≈.9.当||x 较小时,证明下列近似公式: (1)sin x x ≈;(2)(1)1x x αα+≈+;(3)ln(1)x x +≈.解 (1)设()sin f x x =,则()cos f x x '=,当||x 较小时,()sin sin0cos0f x x x x =≈+⋅=,所以sin x x ≈;(2)设()(1)f x x α=+,则()1(1)f x x αα-'=+图2-11当||x 较小时,()()()(1)111f x x f f x x αα'=+≈+=+,所以(1)1x x αα+≈+;(3)设()ln(1)f x x =+,则()11f x x'=+, 当||x 较小时,()()()ln(1)11f x x f f x x '=+≈+=,所以ln(1)x x +≈.习 题 2-61.一飞机在离地面2000米的高度,以200公里/小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设t 时刻飞机离B 点的水平距离为()x t ,摄影机镜头C 与A 点连线与飞机的水平飞行方向成θ夹角,则()cot 2000x t θ=,()()20000003600x t x t =-,两边同时对时间t求导,可得()211csc 200036dx t d dt dt θθ-==-,即21sin 36d dt θθ=,当飞机飞至该目标上方时,2πθ=, 代入解得:()13605/362d rad s dt θππ=⨯=. 2.一架飞机着陆的路径如图2-11所示,并且满足下列条件: (ⅰ)降落点为原点,飞机开始降落时水平距离为l ,飞行高度为h .(ⅱ)在整个降落过程中,飞行员必须使飞机保持恒定的水平速度v .(ⅲ)垂直方向的加速度的绝对值不能超过常数k (必须比重力加速度小很多).(1) 求一个三次多项式()32P x ax bx cx d =+++,通过在开始降落和着陆的点对()P x 和()P x '施加一定的条件限制,使它满足条件(ⅰ);(2) 根据条件(ⅱ)和(ⅲ),试证明:226hv k l≤;(3) 假设一条航线不允许飞机的垂直加速度超过2860k =哩小时.如果 一架飞机的飞行高度为35000呎,速度为300哩小时,飞机应从距离飞机场多远处开始降落(4) 画出满足问题(3)中条件的航线图.解 假设从飞机开始着陆时计时,飞行时间为t ,飞机位置为(),x y . (1)如要满足条件(ⅰ),应有0t =时,,x l y h ==,0t dy dt==;t T =(T 为着陆时刻)时,0x y ==,0t Tdydt==,因为()32y P x ax bx cx d ==+++,于是()()232dy dx dxP x ax bx c dt dt dt'==++, 所以应有 32h al bl cl d =+++,2320al bl c ++=,0d =,0c =, 解得3223,,0h h a b c d l l =-===,所以()323223h h P x x x l l=-+; (2)由条件(ⅱ)和(ⅲ)可知:dxv dt =,22d y k dt ≤,由()323223h h y P x x x l l==-+,可得:23266dy h h dx x x dt l l dt ⎛⎫=-+ ⎪⎝⎭, 222223232212666d y h h dx h h d xx x x dt ll dt l l dt ⎛⎫⎛⎫⎛⎫=-++-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以[]0,x l ∀∈,应有232126hh x v k ll ⎛⎫-+≤ ⎪⎝⎭, 故226hv k l ≤;(3)当2860k =哩,0.62135000350000.305 6.62921000h ==⨯⨯≈呎哩,300v =哩小时,由226hv k l ≤,可解得64.52l ≥≈(哩),即飞机应从距离飞机场约64.52哩的水平距离处开始降落.(4)满足条件(3)的航线为()3232322350003350000.260625.223264.5264.52P x x x x x ⨯⨯=-+≈-+(呎)(注:式中x 的单位哩,图略).本章复习题A1、填空题(1)()f x 在点0x 可导是()f x 在点0x 连续的_____条件,()f x 在点0x 连续是()f x 在点0x 可导的______条件.解 因为()f x 在点0x 可导,则()f x 在点0x 连续,故第一个空应填“充分”,第二个空应填“必要”.(2)()f x 在点0x 可导是()f x 在点0x 可微的______条件. 解 应填“充分必要”. (3)若假定0()f x '存在,则000()()limh f x h f x h h→+--=______.解 因为()()00000000()()()()limlim h h f x h f x f x f x h f x h f x h h h→→+-+--+--= ()()00000()()lim h f x h f x f x h f x h h →+---⎡⎤=+⎢⎥-⎣⎦()02f x '=, 所以应填“()02f x '”.(4)若()(1)(2)f x x x x =++,则(0)_______f '=.解 因为()(1)(2)(2)(1)f x x x x x x x '=++++++,故(0)2f '=,应填“2”.(5)曲线231x t y t⎧=+⎨=⎩在2t =处的切线方程为________. 解 因为23322t t y dy t t dx x t '===',所以2t =时,23t dy dx ==,5x =,8y =,切线方程为()835y x -=-,即370x y --=,所以应填“370x y --=”.2、选择题(1)()f x 在点0x 的左导数0()f x -'及右导数0()f x +'都存在且相等是()f x 在点0x 可导的( ).A .充分条件B .充分必要条件C .必要条件D .既非充分条件也非必要条件 解 选B .(2)设101()n n n f x a x a x a -=+++L ,则()(0)n f =( ).A .n aB .0aC .0!n aD .0 解 选C .因为()0()!n f x n a =.(3)设函数()y f x =二阶可导,(ln )y f x =,则22d d yx等于( ).A .1(ln )f x x 'B .21[(ln )(ln )]f x f x x '''- C .21[(ln )(ln )]xf x f x x '''- D .21(ln )f x x' 解 选B .因为1(ln )(ln )f x y f x x x'''=⋅=, 则221(ln )(ln )(ln )(ln )f x x f x f x f x x y x x '''⋅⋅-'''-''==. (4)若函数()y f x =有01()2f x '=,则当0x ∆→时,该函数在0x x =处的微分d y 是( ).A .与x ∆等价的无穷小B .与x ∆同阶的无穷小C .比x ∆低阶的无穷小D .比x ∆高阶的无穷小 解 选B .因为()0012x x dyy x x x ='=∆=∆,所以001lim 2x x x dy x =∆→=∆.(5)已知方程222x y R +=确定了函数()y y x =,则22d d yx 等于( ).A .xy- B .23R y C .33R y - D .23R y -解 选D .由222x y R +=可得220x y y '+⋅=,。
电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习

第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。
若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻84R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA u i s 10100212===V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。
因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)

P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) . 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
1lili(x) b 2
i 1 i
p
i1
1
i
yi2ห้องสมุดไป่ตู้
b2
.
21
第二章 多元正态分布及参数的估计
y1b122y2b222ypb2 p2 1
故概率密度等高面 f(x;μ,Σ)= a是一个椭球面.
(2)当p=2且
2
1
1
(ρ>0)时,
||4(12).
由 |Ip|22 22(2)242
(22)(22)0
2
1
1
(ρ>0)时,
概率密度等高面就是平面上的一个椭圆,试求该椭圆
的方程式,长轴和短轴.
证f( 明x ; (1), :任 ) 给 a>a 0 ,记a ( 0x (2)) p/ 2| 1 ( |1/x 2, 当 ) 0a b a12 0时
其 b 2 2 中 la n ( 2 ) p / [ 2 . | |1 / 2 ] 2 la n 0 ] 0 a [ ,20
所以 X(1)X(2)~Np((1)(2),2(12)); X(1)X(2) ~Np((1)(2),2(12)).
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
. 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎共阅
第二章练习题及参考解答
2.1表2.9中是1992年亚洲各国人均寿命(Y)、按购买力平价计算的人均GDP(X1)、成人识字
率(X2)、一岁儿童疫苗接种率(X3)的数据
表2.9 亚洲各国人均寿命、人均GDP、成人识字率、一岁儿童疫苗接种率数据
序号 国家和 地区 平均寿命 Y (年) 人均GDP X1(100美元) 成人识字率X2(%) 一岁儿童疫苗接
种率X3 (%)
1 日本 79 194 99 99
2 中国香港 77 185 90 79
3 韩国 70 83 97 83
4 新加坡 74 147 92 90
5 泰国 69 53 94 86
6 马来西亚 70 74 80 90
7 斯里兰卡 71 27 89 88
8 中国大陆 70 29 80 94
9 菲律宾 65 24 90 92
10 朝鲜 71 18 95 96
11 蒙古 63 23 95 85
12 印度尼西亚 62 27 84 92
13 越南 63 13 89 90
14 缅甸 57 7 81 74
15 巴基斯坦 58 20 36 81
16 老挝 50 18 55 36
17 印度 60 12 50 90
18 孟加拉国 52 12 37 69
19 柬埔寨 50 13 38 37
20 尼泊尔 53 11 27 73
21 不丹 48 6 41 85
22 阿富汗 43 7 32 35
资料来源:联合国发展规划署《人的发展报告》
(1)分别分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系。
(2)对所建立的回归模型进行检验。
【练习题2.1参考解答】
(1) 分别设定简单线性回归模型,分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗
接种率的数量关系:
1) 人均寿命与人均GDP关系
估计检验结果:
2) 人均寿命与成人识字率关系
欢迎共阅
3) 人均寿命与一岁儿童疫苗接种率关系
(2)对所建立的多个回归模型进行检验
由人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命回归结果的参数t检验值均明
确大于其临界值,而且从对应的P值看,均小于0.05,所以人均GDP、成人识字率、一岁儿童疫苗接种
率分别对人均寿命都有显着影响.
(3)分析对比各个简单线性回归模型
人均寿命与人均GDP回归的可决系数为0.5261
人均寿命与成人识字率回归的可决系数为0.7168
人均寿命与一岁儿童疫苗接种率的可决系数为0.5379
相对说来,人均寿命由成人识字率作出解释的比重更大一些
2.2为了研究浙江省财政预算收入与全省生产总值的关系,由浙江省统计年鉴得到以下数据:
表2.10 浙江省财政预算收入与全省生产总值数据
年份 财政预算总收入 (亿元) 全省生产总值 (亿元) 年份 财政预算总收入 (亿元) 全省生产总值
(亿元)
Y X Y X
1978 27.45 123.72 1995 248.50 3557.55
1979 25.87 157.75 1996 291.75 4188.53
1980 31.13 179.92 1997 340.52 4686.11
1981 34.34 204.86 1998 401.80 5052.62
1982 36.64 234.01 1999 477.40 5443.92
1983 41.79 257.09 2000 658.42 6141.03
1984 46.67 323.25 2001 917.76 6898.34
1985 58.25 429.16 2002 1166.58 8003.67
1986 68.61 502.47 2003 1468.89 9705.02
1987 76.36 606.99 2004 1805.16 11648.70
1988 85.55 770.25 2005 2115.36 13417.68
1989 98.21 849.44 2006 2567.66 15718.47
1990 101.59 904.69 2007 3239.89 18753.73
1991 108.94 1089.33 2008 3730.06 21462.69
1992 118.36 1375.70 2009 4122.04 22990.35
1993 166.64 1925.91 2010 4895.41 27722.31
1994 209.39 2689.28
(1)建立浙江省财政预算收入与全省生产总值的计量经济模型,估计模型的参数,检验模型的显
着性,用规范的形式写出估计检验结果,并解释所估计参数的经济意义
(2)如果2011年,全省生产总值为32000亿元,比上年增长9.0%,利用计量经济模型对浙江省
2011年的财政预算收入做出点预测和区间预测
(3)建立浙江省财政预算收入对数与全省生产总值对数的计量经济模型,. 估计模型的参数,检验
模型的显着性,并解释所估计参数的经济意义
【练习题2.2参考解答】
建议学生独立完成
欢迎共阅
2.3 由12对观测值估计得消费函数为:ˆ500.6iiCX其中,C是消费支出,X是可支配收入
(元),已知800X,2()8000iXX,2300ie,0.025(10)2.23t。当1000fX时,试计
算:
(1)消费支出C的点预测值;
(2)在95%的置信概率下消费支出C平均值的预测区间。
(3)在95%的置信概率下消费支出C个别值的预测区间。
【练习题2.3参考解答】
(1)当1000fX时,消费支出C的点预测值;
ˆ
500.6iiCX
=50+0.6*1000=650
(2)在95%的置信概率下消费支出C平均值的预测区间。
已经得到:800X,1000fX,2()8000iXX,0.025(10)2.23t,2300ie
当1000fX时:
(3)在95%的置信概率下消费支出C个别值的预测区间。
2.4假设某地区住宅建筑面积与建造单位成本的有关资料如表2.11:
表2.11 某地区住宅建筑面积与建造单位成本数据
建筑地编号 建筑面积(万平方米)X 建造单位成本(元/平方米)Y
1 0.6 1860
2 0.95 1750
3 1.45 1710
4 2.1 1690
5 2.56 1678
6 3.54 1640
7 3.89 1620
8 4.37 1576
9 4.82 1566
10 5.66 1498
11 6.11 1425
12 6.23 1419
根据上表资料:
(1)建立建筑面积与建造单位成本的回归方程;
(2)解释回归系数的经济意义;
(3)估计当建筑面积为4.5万平方米时,对建造的平均单位成本作区间预测。
【练习题2.4参考解答】
欢迎共阅
建议学生独立完成
2.5 按照“弗里德曼的持久收入假说”: 持久消费Y正比于持久收入X,依此假说建立的计量
模型没有截距项,设定的模型应该为:2iiiYXu,这是一个过原点的回归。在古典假定满足时,
证明过原点的回归中2的OLS估计量2ˆ的计算公式是什么?对该模型是否仍有0ie和
0iieX
对比有截距项模型和无截距项模型参数的OLS估计有什么不同?
【练习题2.5参考解答】
没有截距项的过原点回归模型为: 2iiYXu
因为
22
2ˆ()iii
eYX
求偏导
2
22ˆ2()()2ˆiiiiii
eYXXeX
令
2
22ˆ2()()0ˆiiii
eYXX
得
22ˆiiiXYX 而有截距项的回归为2
2
ˆ
ii
i
xy
x
对于过原点的回归,由OLS原则: 0ie已不再成立, 但是0iieX是成立的。
还可以证明对于过原点的回归
2
2
2
ˆ
()iVarX
, 22ˆ1ien
而有截距项的回归为 222ˆ()iVarx , 22ˆ2ien
2.6 练习题2.2中如果将“财政预算总收入”和“全省生产总值”数据的计量单位分别或同时由”
亿元”更改为”万元”,分别重新估计参数,对比被解释变量与解释变量的计量单位分别变动和同时
变动的几种情况下,参数估计及统计检验结果与计量单位与更改之前有什么区别? 你能从中总结出
什么规律性吗?
【练习题2.6参考解答】
建议学生独立完成
2.7 联系自己所学的专业选择一个实际问题,设定一个简单线性模型,并自己去收集样本数据,
用本章的方法估计和检验这个模型,你如何评价自己所做的这项研究?
【练习题2.7参考解答】
欢迎共阅
本题无参考解答