生物信息学论文
生物信息学(五篇范例)

生物信息学(五篇范例)第一篇:生物信息学生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。
它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。
其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。
基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。
从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。
目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。
生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。
1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。
对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。
这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。
诺贝尔奖获得者W.Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。
生物信息技术论文

生物信息技术论文二十一世纪是生命科学高速发展的时代,生物信息技术对人类的影响之大将不可预料。
下面是小编精心推荐的生物信息技术论文,希望你能有所感触!生物信息技术论文篇一信息技术改变生物教学摘要:随着新课改的不断深入,信息技术与学科课程的整合是当前基础教育改革的一个新视点。
在生物学科的教学中,新教材教学难度增加了,对教师的要求也更高了。
生物教学课本中涉及的图、文、形、像很多,这要求学生在学习过程中发挥主观能动性,去看、去听、去想。
信息技术可以化静为动,化抽象为直观,吸引学生注意,降低理解难度。
信息技术与生物教学整合,可以创新教学模式、增大课堂容量、突出重点、解决难点,可以增强学生学习兴趣,提高教学效果,优化教学过程,培养学生能力。
本文就信息技术与生物课程整合的本质、方法和意义等做了一定的阐述。
关键词:信息技术生物教学课程改革二十一世纪是生命科学高速发展的时代,生命科学对人类的影响之大将不可预料。
生物学是生命科学的基础课程,生物老师在这次教育教学改革中应该积极探索,大胆尝试。
教师在教学中,必须深入研究和恰当地设计、开发、运用信息,从努力实践到积极创新,开发制作适用于课堂教学的优质教育资源,优化课堂教学,力求最大限度地提高教学效率,学生能够应用现代信息技术更好地掌握生物学知识,获取更多的生物学信息。
今天的教师,不能满足于一支粉笔、一张利口,博闻强记、引经据典的传统教学,而应不断努力、不断探索、不断尝试将生物课堂教学与信息技术达到有效整合。
所谓整合就是根据学科教学需要,充分发挥计算机的工具性功能,使计算机溶入学科教学中,从而提高教学质量,促进教学改革,培养具有创造能力和创新精神的中学生。
整合并非是计算机与生物学科的简单结合,也并不能够解决生物教学中的所有问题,而是从实际出发,寻找最佳结合点,突出教学重点,解决难点,探索规律,启发思维,从而提高生物学科的教育教学质量。
但是现在的一些老师和学生对于信息技术与生物学科教学的整合认识存在着很多误区:有的认为直接照搬网络上下载的课件上课就是整合课了;有的认为课堂上只要用了多种电教媒体就是整合课;有的认为在机房上课,网络环境下上课,就是整合课。
生物信息学论文

生物信息学论文生物信息学在现代生物学研究中扮演着至关重要的角色。
它以信息技术为基础,利用计算机和统计学的方法来处理生物学数据,并从中提取有关生物系统和生物过程的有价值信息。
本文将探讨生物信息学在基因组学、蛋白质组学和转录组学领域的应用和挑战。
一、基因组学和生物信息学基因组学是研究生物体基因组的学科。
随着高通量测序技术的不断发展,获取大量基因组数据已经成为可能。
生物信息学通过开发算法和工具来分析基因组数据,以揭示基因组的结构和功能。
例如,生物信息学可以帮助我们鉴定基因组中的基因,寻找编码蛋白质的开放阅读框架(ORFs),并预测非编码RNA。
此外,生物信息学还可以用于比较基因组学研究,以识别不同物种之间的共享与特异的基因序列。
二、蛋白质组学和生物信息学蛋白质组学研究生物体中的蛋白质组成及其功能。
蛋白质是生物活动的重要分子,对于理解生物体内各种生物学过程起着关键作用。
生物信息学在蛋白质组学中具有广泛应用。
通过比对蛋白质序列数据库,生物信息学可以帮助我们识别新的蛋白质,并预测其生物功能。
此外,生物信息学还可以用于分析蛋白质相互作用网络,以揭示蛋白质之间的复杂关系。
三、转录组学和生物信息学转录组学研究生物体中的转录组,即所有mRNA分子的总和。
转录组分析可以帮助我们了解基因组中哪些基因在特定条件下被表达,以及这些表达基因的水平。
生物信息学在转录组学中发挥着重要作用。
通过分析转录组测序数据,生物信息学可以帮助我们识别差异表达基因,以及特定条件下基因的调控机制。
此外,生物信息学还可以用于构建转录因子调控网络,以揭示基因的调控网络关系。
生物信息学的应用和挑战尽管生物信息学在基因组学、蛋白质组学和转录组学中具有广泛的应用,但仍面临一些挑战。
首先,生物信息学需要大量的高质量生物学数据作支持,而这些数据的获取和处理是一项复杂而费时的任务。
其次,生物信息学需要不断发展和改进的算法和工具来处理越来越复杂的生物学数据。
此外,生物信息学还需要更多的跨学科研究和合作,以应对日益增长的生物学挑战。
生物信息 毕业论文

生物信息毕业论文生物信息毕业论文引言:生物信息学是一门蓬勃发展的学科,它将计算机科学与生物学相结合,通过对生物数据的收集、存储、分析和解释,为生物学研究提供了强有力的工具。
本文将探讨生物信息学在生物学领域中的应用和发展,以及其对生物科学的重要意义。
一、生物信息学的定义和发展生物信息学是一门跨学科的学科,它利用计算机科学、数学和统计学的方法来研究生物学问题。
生物信息学的发展可以追溯到上世纪50年代,随着DNA测序技术的突破和计算机技术的进步,生物信息学得以迅速发展。
现如今,生物信息学已成为生物学研究中不可或缺的一部分,其应用范围涵盖了基因组学、蛋白质组学、转录组学等多个领域。
二、生物信息学在基因组学中的应用基因组学是生物信息学的一个重要分支,它研究的是生物体的基因组结构和功能。
生物信息学通过对基因组数据的分析,可以揭示基因之间的相互作用、基因调控网络以及基因与疾病之间的关联。
例如,通过比对人类基因组与其他物种基因组的差异,可以发现与人类疾病相关的基因;通过对基因表达数据的分析,可以识别出与特定疾病相关的信号通路。
这些研究成果对于疾病的早期诊断和治疗提供了重要的依据。
三、生物信息学在蛋白质组学中的应用蛋白质组学是研究生物体内所有蛋白质的组成、结构和功能的学科。
生物信息学在蛋白质质谱数据的处理和分析中发挥着重要作用。
通过生物信息学工具的辅助,可以对大规模的质谱数据进行蛋白质鉴定和定量分析,从而揭示蛋白质在细胞过程中的功能和相互作用。
此外,生物信息学还可以预测蛋白质的结构和功能,并为药物设计提供指导。
四、生物信息学在转录组学中的应用转录组学是研究生物体所有基因的转录产物的学科。
生物信息学通过对转录组数据的分析,可以识别出与特定生物过程相关的基因,揭示基因调控网络的结构和功能。
例如,通过对肿瘤样本的转录组数据分析,可以鉴定出与肿瘤发生和发展相关的基因,并为肿瘤治疗提供新的靶点。
此外,生物信息学还可以预测转录因子结合位点和转录因子调控的信号通路,为基因调控机制的研究提供重要线索。
生物信息学综述论文3900字_生物信息学综述毕业论文范文模板

生物信息学综述论文3900字_生物信息学综述毕业论文范文模板生物信息学综述论文3900字(一):计算机算法在生物信息学中的应用综述论文摘要:在人类基因组计划的推动下,生物信息学得到了人们的广泛关注,并呈现出数量多、计算量大等鲜明特征,因此要求在生物信息学中采用计算机算法,以提高生物信息学处理问题的效率。
以生物信息学中常用的计算机算法为切入点,进一步从基因表达数据分析、基因组序列信息分析、生物序列差异和相似性分析、遗传数据分析以及蛋白质结构与功能预测5个方面,论述了计算机算法在生物信息学中的典型应用。
关键词:生物信息学;基因;计算机算法;数据分析0引言生物信息学(Bioinformatics)作为一门新兴的交叉学科,是随着生命科学和计算机科学的高速发展而出现的。
它通过充分利用生物学、信息学、数学、物理学、统计学以及计算机网络等工具或手段,对大量生物数据信息进行有效的阐明和分析,使之成为具有相应生物意义的生物数据信息。
其涵盖了基因组信息的获取、处理、分配、存储等多个方面,通过对生物信息的比较和分析,从而获取基因编码以及核酸和蛋白质结构功能等信息,是最具活力和发展前景的学科之一。
然而,生物信息学在我国由于起步较晚,加之其自身呈现出的数量多、计算量大等特征,使生物信息学面临着计算瓶颈。
基于此,笔者结合自己的工作实践,对计算机算法在生物信息学中的应用进行探讨,以期为在生物信息学中进行有效的数据挖掘提供理论支持。
1生物信息学中常用的计算机算法算法作为计算机科学的一个重要分支,在计算机科学中居于核心地位。
在信息时代,算法作为解决问题的重要工具之一,其通过输入符合规范的信息,从而在短时间内快速获取所需要的输出,现已在各个领域得到了广泛应用。
在生物信息学中,计算机算法的应用也对生物信息学的发展起着积极推动作用。
生物信息学中常用的计算机算法主要包括以下几种:(1)分治法。
分治法即在解决大的问题实例时,通过将该问题实例分解为具有相同问题的几个小的问题实例,再采用递归方法依次对这些小的问题实例求解,然后将所得的解合并,从而得出大的问题实例的解。
生物信息学导论论文2900字_生物信息学导论毕业论文范文模板

生物信息学导论论文2900字_生物信息学导论毕业论文范文模板生物信息学导论论文2900字(一):运筹学课程在生物信息学专业中的教学探索论文摘要:生物信息学是现代生命科学发展过程中,生物医学与数理科学、计算机技术相结合而形成的新兴前沿交叉学科。
运筹学在生物信息学中有着广泛应用,可为学生后续专业课学习和应用研究提供指导。
文章结合生物信息学专业特点,对于如何提高运筹学在生物信息学专业中的教学质量和培养具有创新能力的生物信息学人才,探讨了运筹学在生物信息学专业教学中的教学目的、教学内容以及教学方法和手段。
关键词:生物信息学;运筹学;教学方法一、前言生物信息学是随着人类基因组计划的完成而兴起的一门前沿交叉学科,在采集、处理、分析各种生物学数据如蛋白质组、代谢组、基因组、转录组所包含的重大生物学意义方面起着重要作用。
运筹学是一门广泛应用于自然科学、社会科学、工程技术生产实践、经济建设及现代化管理的学科,具有很强的实践性和应用性。
运筹学中很多方法已被广泛地运用到生物信息学中,比如基于凸规划问题的支持向量机用于疾病诊断和分类;基于动态规划模型的局部比对和全局比对算法被广泛应用于DNA和蛋白质序列的比对;基于图的最短路径算法则可被用于对生物网络的分析研究等。
因此,运筹学被列为生物信息学专业的专业基础课。
然而目前相关教材大多是为经济管理学编写,很少有专门从生物信息学角度出发编写的运筹学教材,这样书中的例题也都是以管理和经济类为基础。
因此,本文针对生物信息学专业的特色,探讨了运筹学在生物信息学专业中的教学目的、教学内容、教学方法及考核形式,这将有助于提高运筹学在生物信息学专业中的教学质量,有利于培养具有创新和实践能力的生物信息学人才。
二、根据专业的需要确定教学目的和教学内容生物信息学是在现代生命科学发展过程中,生物医学与数理科学、计算机技术相结合而形成的新兴前沿交叉学科,主要研究如何对海量生物医学数据进行获取、加工、存储和分析,进而理解和阐明海量数据中所包含的重大生物学意义和医学价值。
生物信息学进展论文4600字_生物信息学进展毕业论文范文模板
生物信息学进展论文4600字_生物信息学进展毕业论文范文模板生物信息学进展论文4600字(一):FOS蛋白的研究进展及生物信息学分析论文摘要:FOS蛋白作为一类核蛋白转录因子,在调控细胞生长、分裂、增殖、分化乃至程序性死亡等方面具有重要的作用,它的表达影响了许多生命活动和过程,引起了人们的广泛关注,并在学习记忆及射精的标记方面吸引了学者的眼球。
对FOS蛋白的作用进行了综述,并对人、大鼠及小鼠FOS蛋白进行了生物信息学分析,旨在为FOS蛋白在生理学方面的研究提供参考依据。
关键词:FOS蛋白;转录因子;生物信息学FOS是c-fos基因转录产生的成熟mRNA编码的一个核磷蛋白。
c-fos基因是人或动物细胞中固有的正常基因,属于即刻早期应答基因(Immediateearlyre sponsegenes,IEG),FOS作为一类核蛋白转录因子,在调控细胞生长、分裂、增殖、分化乃至程序性死亡等方面具有重要作用。
FOS蛋白和c-fos基因受到广泛的关注,研究不断深入。
本文就FOS蛋白的作用及其在性行为方面的研究进行了论述,对人、大鼠及小鼠的FOS蛋白进行了生物信息学分析。
1FOS蛋白c-fos基因高度保守,属多基因家族,与其同族的还有fos-B,fos-1和fros -2。
c-fos可在多种因素诱导下迅速地表达,其转录激活在5min内即可产生,一般维持15~20min,c-fosmRNA的蓄积在刺激后30~45min可达高峰,半衰期为12min。
FOS蛋白合成后即刻转入细胞核内,一般在刺激后20~90min即可检出,60~90min达峰值,可持续2~5h,半衰期为2h[1]。
2FOS蛋白的作用在原癌基因的研究中对IEG产物的研究提示FOS蛋白可能是神经元被刺激激活的一种标志[2]。
现代学者认为,FOS蛋白参与细胞的正常分化、生长以及学习、记忆等过程,在脑内与皮层、海马、边缘系统、背海马、纹状体内FOS蛋白的表达密切相关[3-7]。
生物信息学应用论文3200字_生物信息学应用毕业论文范文模板
生物信息学应用论文3200字_生物信息学应用毕业论文范文模板生物信息学应用论文3200字(一):应用生物信息学方法筛选食管鳞癌的关键基因论文[摘要]目的筛选食管鳞癌的关键基因,为肿瘤的发病机制研究提供新的思路。
方法检索GEO数据库中食管鳞癌基因表达芯片,分析差异表达基因并获得共同差异基因;利用在线数据库DAVID进行GO和KEGG通路富集分析;通过String数据库和Cytoscape软件分析获取链接度最高的10个关键基因,并在TCGA数据库中验证。
结果共筛选出204个差异表达基因。
GO分析显示其生物学过程富集在细胞分裂、细胞器断裂和细胞周期等163个条目中;细胞学组分富集在细胞外、细胞质和细胞器腔内等48个条目中;分子功能富集在调控肽酶活性、与细胞外基质结合等46个条目中。
KEGG通路富集在局部黏附、p53信号通路、错配修复等12个条目中。
筛选出10个链接度最高的Hub基因,且通过TCGA数据库验证其全部在食管鳞癌组织中高表达(P<0.01)。
结论CDK1、CCNA2、RFC4、CCNB1、TOP2A、AURKA、CDC6、BUB1、BUB1B、PLK1是食管鳞癌的关键基因,可能是食管鳞癌的生物标志和治疗靶点。
[关键词]食管鳞癌;关键基因;生物信息学;基因芯片根據WHO统计,全世界每年约有40万人死于食管癌,其中我国约20万人,占世界的一半[1]。
食管癌主要有两个亚型——食管鳞癌和腺癌,我国食管癌患者主要为鳞癌。
目前食管癌的发生发展及转移机制尚不清楚,因此进一步研究其发病机制,建立有效的预防和诊疗方法,是迫切需要解决的问题。
本研究通过分析GEO数据库[2]中食管鳞癌的相关芯片数据,旨在挖掘食管鳞癌的关键基因,利用生物信息学方法探讨其可能的发病机制,为进一步的基础与临床研究提供方向。
1资料与方法1.1一般资料资料来源GEO在线数据库,下载食管鳞癌全基因组表达谱芯片数据集。
入选条件:①全基因组RNA表达谱芯片;②人食管鳞癌组织与配对的癌旁正常组织。
生物信息学专业毕业论文
生物信息学专业毕业论文生物信息学是一门涉及生物学和计算机科学的交叉学科,在生物信息学专业的学习中,学生将学习如何应用计算机科学的原理和技术来处理和分析生物学数据。
毕业论文是对学生在大学期间所学知识的总结和应用的展示,也是评估学生科研能力和专业素养的重要依据。
在进行生物信息学专业毕业论文的撰写之前,首先需要选择一个具体的研究课题。
选择研究课题时,可以关注当前研究热点,选择一个有创新性和实际应用价值的课题,或者选择一个对已有研究成果进行深入分析和改进的课题。
无论选择何种类型的课题,都要确保有足够的数据和文献资源来支持研究。
一般来说,生物信息学专业的毕业论文可以从以下几个方面展开研究:1. 基因组学研究基因组学是生物信息学中的一个重要方向,研究基因组序列和功能注释等方面的问题。
可以选择某个物种的基因组作为研究对象,分析其基因组序列的特点和结构,以及基因的功能注释和调控网络等方面。
可以通过基因组比对、蛋白质编码区分析、非编码RNA分析等方法来研究。
2. 蛋白质组学研究蛋白质组学是研究蛋白质组中所有蛋白质的结构和功能的学科,可以选择某个生物体的蛋白质组作为研究对象,通过质谱分析、蛋白质结构预测等方法来研究蛋白质的功能和相互作用网络,以及与疾病相关的蛋白质标志物的发现等。
3. 转录组学研究转录组学是研究细胞中所有RNA分子的转录和表达的学科,可以选择某个生物体或某个组织的转录组作为研究对象,通过RNA测序技术和生物信息学算法来研究基因的表达调控、RNA修饰、剪接和可变剪接等方面的问题。
4. 生物网络研究生物网络研究是研究生物体内分子相互作用网络的学科,可以选择某个生物体的蛋白质相互作用网络、基因调控网络等作为研究对象,通过生物信息学方法和网络分析算法来研究网络的拓扑结构和功能模块等方面的问题,并探索其中的关键基因或蛋白质。
以上只是生物信息学专业毕业论文的一些研究方向,具体选择课题要根据自己的兴趣和实际情况来确定。
生物信息学的论文
生物信息学一、我对生物信息学的认识1、什么是生物信息学生物信息学从事对基因组研究相关生物信息的获取、加工、储存、分配、分析和解释。
包括了两层含义,一是对海量数据的收集、整理与服务,也就是管好这些数据;另一个是从中发现新的规律,也就是用好这些数据。
具体地说,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语文规律;在此基础上,归纳、整理与基因组遗传语文信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。
2、、生物信息学的重要性生物信息学不仅仅是一门科学学科,它更是一种重要的研究开发工具。
从科学的角度来讲,它是一门研究生物和生物相关系统中信息内容物和信息流向的综合系统科学,只有通过生物信息学的计算处理,我们才能从众多分散的生物学观测数据中获得对生命运行机制的详细和系统的理解。
从工具的角度来讲,它是今后几乎进行所有生物(医药)研究开发所必需的舵手和动力机,只有基于生物信息学通过对大量已有数据资料的分析处理所提供的理论指导和分析,我们才能选择正确的研发方向,同样,只有选择正确的生物信息学分析方法和手段,我们才能正确处理和评价新的观测数据并得到准确的结论。
可见生物信息学在今后的无论是生物(医药)科研还是开发中都具有广泛而关键的应用价值;而且,由于生物信息学是生物科学与计算科学、物理学、化学和计算机网络技术等密切结合的交叉性学科,使其具有非常强的专业性,这就使得专业的生物(医药)科研或开发机构自身难以胜任它们所必需的生物信息学业务,残酷的市场竞争及其所带来的市场高度专业化分工的趋势,使得专业的生物(医药)开发机构不可能在自身内部解决对生物信息学服务的迫切需求,学术界内的生物(医药)科研机构也是如此,而这种需求,仅靠那些高度分支化和学术化的分散的生物信息学科研机构是远远不能满足的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学的进展综述
韩雪晴
(生物工程1201班,学号:201224340124)
摘要:生物信息学是一门研究生物和生物相关系统中信息内容和信息流向的综合性系统科学。
80年代以来新兴的一门边缘学科,信息在其中具有广阔的前景。
伴随着人类基因组计划的胜利完成与生物信息学的发展有着密不可分的联系,生物信息学的发展为生命科学的发展为生命科学的研究带来了诸多的便利,对此作了简单的分析。
关键词:生物信息学;进展;序列比对;生物芯片
A review of the advances in Bioinformatics
Han Xueqing
(Bioengineering, Class1201,Student ID:201224340124)
Abstract: Bioinformatics is the science of comprehensive system of information content and information flows to a study on the biological and bio related in the system. The edge of an emerging discipline since 80, has broad prospects in which information. With the human genome project was completed and the development of bioinformatics are inextricably linked, for the life science research development of bioinformatics for the development of life science has also brought a lot of convenience, has made the simple analysis.
Keywords: bioinformatics;progress;Sequence alignment;biochip
1、生物信息学的产生背景
生物信息学是20世纪80年代末开始,随着基因组测序数据迅猛增加而逐渐兴起的一门学科[1]。
应用系统生物学的方法认识生物体代谢、发育、分化、进化以及疾患发生规律的不可或缺的工具[2]。
及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。
2、生物信息学研究内容
主要是利用计算机存储核酸和蛋白质序列,通过研究科学的算法,编制相应的软件对序列进行分析、比较与预测,从中发现规律。
白细胞介素-6(IL-6)是机体重要的免疫因子,但在两栖类中未见报道。
采用生物信息学方法对两栖类模式动物非洲爪蟾IL-6进行分析[3]。
以人IL-6基因对非洲爪蟾数据库进行搜索、分析,并采用RT-PCR方法对所得序列进行验证。
结果表明,非洲爪蟾IL-6基因位于scaffold_52基因架上,具有保守的IL-6家族基序[4]。
采用生物信息新方法进行不同物种的免疫基因挖掘、克隆,是一种有效的方法[5]。
2.1序列比对
比较两个或两个以上符号序列的相似性或不相似性。
序列比对是生物信息学的基础。
两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA[6]。
序列数据库搜索最著名且最常用的工具之一便是BLAST算法。
FASTA算法是另一族常用的序列比对及搜索工具[7]。
2.2结构比对
比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。
2.3蛋白质结构预测
从方法上来看有演绎法和归纳法两种途径。
前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。
分子力学和分子动力学属这一范畴。
后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构[8]。
3、生物信息学的新技术
3.1 Lipshutz(Affymetrix,Santa clara,CA,USA)
描述了一种利用DNA探针阵列进行基因组研究的方法,其原理是通过更有效有作图、表达检测和多态性筛选方法,可以实现对人类基因组的测序[9]。
光介导的化学合成法被应用于制造小型化的高密度寡核苷酸探针的阵列,这种通过软件包件设计的寡核苷酸探针阵列可用于多态性筛查、基因分型和表达检测[10]。
3.2基因的功能分析
Overton(University of Pennsylvania School of Medicine,Philadelphia,PA,USA)论述了人类基因组计划的下一阶段的任务基因组水平的基因功能分析。
4生物信息学前沿
4.1生物芯片技术
4.1.1生物芯片的简介
生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、细胞芯片和组织芯片。
4.1.2生物芯片的基本内容
生物芯片技术通过微加工工艺在厘米见方的芯片上集成有成千上万个与生命相关的信息分子,它可以对生命科学与医学中的各种生物化学反应过程进行集成,从而实现对基因、配体、抗原等生物活性物质进行高效快捷的测试和分析。
4.1.3生物芯片的发展
生物芯片将会给21世纪整个人类生活带来一场“革命”。
生物芯片产业也有望与“微电子芯片”并列成为21世纪最大的产业之一。
4.1.4与生物芯片相关的技术
平面微加工技术、微机械技术、CCD成像技术、基因芯片技术等。
4.2药物设计与生物信息学
药物基因组学可以说是基因功能学与分子药理学的有机结合,在很多方面这种结合是非常必要的。
药物基因组学以药物效应及安全性为目标,研究各种基因突变与药效及安全性的关系。
4.3基因治疗
基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异常引起的疾病,达到治疗目的[11]。
也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病[12]。
通过对miR-29a进行靶基因预测及相关生物信息学分析,为miR-29a靶基因的实验验证提供数据支持,以期为深入研究miR-29a的生物学功能和调控机制提供理论指导[13]。
从广义说,基因治疗还可包括从DNA 水平采取的治疗某些疾病的措施和新技术。
在基因治疗中迄今所应用的目的基因转移方法可分为两大类:病毒方法和非病毒方法[14]。
4.4虚拟细胞--人工生命的模型
虚拟细胞是应用信息科学的原理和技术,通过数学的计算和分析,对细胞的结构和功能进行分析、整合和应用,以模拟和再现细胞和生命的现象的一门新兴学科。
虚拟细胞亦称人工细胞或人工生命[15]。
目前,国际上已有两个虚拟细胞问世,一个是日本的原核虚拟细胞模型,一个是美国的真核虚拟细胞模型。
参考文献
张阳德,生物信息学(第二版)科学出版社,2010,21世纪高等院校教材ISBN978-7-03-023931-0迈克尔R.巴恩斯(Barnes.M.R.),遗传学工作者的生物信息学,科学出版社2010年10月1日出版ISBN9787030254900
齐志涛; 张启焕; 王资生; 许伟; 黄贝; 王爱民,非洲爪蟾IL-6基因的克隆及生物信息学分析出版日期: 2010
齐志涛;张启焕;黄贝;王资生;仇明;黄金田;许伟;王爱民.非洲爪蟾BAFF及其信号通路相关基因的比较生物信息学分析,生物技术,2011,(4):
廖明帜,生物背景学生的《生物信息学》课程教学思考与探索,教育教学论坛,2014年第36期
Dan E.Krane&Michael L.Raymer,生物信息学概论,清华大学出版社2010年出版
Eddy S R. Profile Hidden Markov Models. Bioinformatics,1998,14(9):755~763
Coombes KR,Fristche HA,Clarke,et al.Qutility control and peak finding for proteomics data collected from nipple aspirate fluid by surface-en-hanced laser desorption and ionization.Clin Chem,2013,49(10):1615~1623
Lim HA,Batt tR.TIBTECH,1998;16(3)):104.
Williams n.Science,1997;277(5328):902.
顾健人,曹雪涛,基因治疗,北京:科学出版社,2011
余国膺,生物信息学,中国心脏起博与心电生理杂志,2014年01期
施伟杰曾玉姚纯曹笑梅童华,miR-29a靶基因预测及其相关生物信息学分析,现代生物医学进展,2014年32期
安冬姜涛张翠丽殷玉玲曹雪姣辛毅,臧师竹利用生物信息学研究肥胖与2型糖尿病患者肝组织基因表达变化,《现代生物医学进展》2014年30期
孙冬泳,汤健,虚拟细胞-人工生命的模型,中华医学杂志,2011,21(81):1342~1344。