计算智能--人工神经网络共53页文档
人工智能 Word 文档---精品管理资料

人工智能的应用领域摘要:随着社会的快速发展,人工智能得到了愈来愈广泛的关注,大家对他的研究越来越多,它的发展速度也越来越快,伴随着应用领域逐渐加大人工智能已经并且将继续不可避免地改变我们的生活。
关键字:人工智能,计算机技术,应用人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
在我们的日常生活和学习当中也有许多地方得到应用一在机械领域的应用1。
1机械设计机械设计实际上是一个模型的综合和分析的过程,它不仅包括大量的计算、分析、绘图等数值计算型工作;还包括拟定初始方案,选择最优方案,制定合理结构等方案设计工作。
目前, 有些企业已引入CAD/CAM 系统,由于CAD/CAM系统对符号推理工作需要综合运用多种科学的专门知识和丰富的实践经验才能解决,这需要CAD/CAM系统具有智能性,因此,设计智能化已成为机械设计中一个很热门的研究课题之一,它把计算机从数值处理扩展到非数值处理,包括知识与经验的集成、推理和决策,力图使机械设计过程自动化,减少人类专家在设计过程中由于个人因素造成的不足。
此外,与传统设计方法相比,专家系统在机械设计中有着不可比拟的优势,它不仅可以长期稳定工作、节省成本,还可以为专家知识特别是启发式知识提供存储手段和传授途径、易于继承。
1。
2机械制造在机械生产制造过程中,需要为工厂中所有的装配机器供应零件.目标可能由监控者提供,也可能由系统对当时状态做出评估而产生.智能系统怎样推断出适当的目标,然后构造试图达到目标的动作序列,这个过程通常称为规划(planning),它是自动问题求解的特例,是人工智能研究的重要子领域. 此外,计算机集成加工系统(CIMS)和柔性加工系统(FMS)在近年来获得迅速发展.在一个复杂的加工过程中,不同条件下的多种操作是必要的.环境的不确定性以及系统软硬件的复杂性,向当代工程师们设计和实现有效的集成控制系统提出了挑战.为了把现有的Petri 网技术用于现代加工系统,需要开发一种新技术,把机器智能技术和Petri 网理论以及智能离散事件控制器连接起来。
人工神经网络-95页PPT文档资料

《医学信息分析与决策》课程组
10
一、神经网络简介
神经网络的基本功能
传统分类能力
ANN 分类能力
分类与识别功能
2019/11/29
• ①“初值:步长:终值” 产生一个行向量(行矩 阵)。当步长为1时可以省略。如:1:5;1:2:6
• ②特殊命令:linspace(x,x2,n): ones(n)
(3)用input指令输入单个参数 (4)用小型矩阵或用数据文件输入
2019/11/29
《医学信息分析与决策》课程组
28
二、MATLAB简介
25
二、MATLAB简介
数值与变量
①数值
②变量:
• 变量名、函数名是对大小写很敏感的,两个字符串 表示的变量,字母都相同,大小写不同,也视为不 同的变量;
• 第一个字母必须是英文字母; • 字符间不可留空格; • 最多只能有31个字符(只能用英文字母、数字和下
连字符) • 一行中“%”后的内容仅作注释用,对MATLAB的计
《医学信息分析与决策》课程组
11
一、神经网络简介
第一讲 人工智能与计算智能概述

1.2 人工智能的发展简史
第一阶段——孕育期 (1956年以前) 第二阶段——人工智能基础技术的研究和形成 (1956年—1970年) 第三阶段——发展和实用化阶段 (1971年—1980年) 第四阶段——知识工程与专家系统 (1980年至今)
第一阶段——孕育期
公元前,古希腊哲学家亚里士多德(Aristotle)创立了古典形式逻辑。 17世纪,英国哲学家和自然科学家培根(F. Bacon)系统地提出了古典归 纳推理。 17世纪,德国数学家莱布尼茨(G. W. Leibniz)提出了数理逻辑的基本 思想。 1642年,法国物理学家和数学家帕斯卡(B. Pascal)发明了世界上第一 台会演算的机械加法机。 1673年,Leibniz在这台加法机的基础上发展并制成了可进行四则运算的 计算器。 1832年,英国数学家巴比奇(C. Babbage)制成可用来计算简单数学表 的差分机,并提出分析机(能自动完成各种类型数字计算)的设计思想。 19世纪中叶,英国数学家布尔(G. Boole)出了布尔代数,初步实现了 Leibniz的数理逻辑思想 。
1956年,Newell和Simon等人编写的程序Logic Theorist证明了《数学 原理》中第二章的三十八条定理,又于1963年证明了该章中的全部五十二条 定理。他们的成果使人工智能研究走上以计算机程序来模拟人类思维的道路 ,第一次把求解方法和问题的领域知识分离开。在相同的研究途径下, Selfridge编制了字符识别程序、Samuel研制了跳棋程序。Samuel的跳 棋程序具有学习功能,在1959和1962年分别打败了Samuel本人和美国一 个州的跳棋冠军。 1957年,Simon、Newell和肖(J. C. Shaw)合作开发了表处理语言 IPL(Information Processing Language。 1957年,罗森勃拉特(F. Rosenblatt)提出著名的感知机( Perceptron)模型,该模型是第一个完整的人工神经网络。 1958年,美籍逻辑学家王浩在自动定理证明中取得的重要进展。他的程序在 IBM-704计算机上用不到5分钟的时间证明了《数学原理》中“命题演算” 的全部220条定理。 1959年,王浩的改进程序用8.4分钟证明了上述220条定理及谓词演算
人工神经网络实验报告

人工神经网络实验报告
本实验旨在探索人工神经网络在模式识别和分类任务中的应用效果。
实验设置包括构建神经网络模型、数据预处理、训练网络以及评估网
络性能等步骤。
首先,我们选择了一个经典的手写数字识别任务作为实验对象。
该
数据集包含了大量手写数字的灰度图片,我们的目标是通过构建人工
神经网络模型来实现对这些数字的自动识别。
数据预处理阶段包括了对输入特征的标准化处理、数据集的划分以
及对标签的独热编码等操作。
通过对原始数据进行预处理,可以更好
地训练神经网络模型,提高模型的泛化能力。
接着,我们构建了一个多层感知机神经网络模型,包括输入层、隐
藏层和输出层。
通过选择合适的激活函数、损失函数以及优化算法,
我们逐步训练网络,并不断调整模型参数,使得模型在训练集上达到
较高的准确率。
在模型训练完成后,我们对网络性能进行了评估。
通过在测试集上
进行预测,计算模型的准确率、精确率、召回率以及F1-score等指标,来全面评估人工神经网络在手写数字识别任务上的表现。
实验结果表明,我们构建的人工神经网络模型在手写数字识别任务
中表现出色,准确率高达95%以上,具有较高的识别准确性和泛化能力。
这进一步验证了人工神经网络在模式识别任务中的强大潜力,展
示了其在实际应用中的广阔前景。
总之,本次实验通过人工神经网络的构建和训练,成功实现了对手写数字的自动识别,为人工智能技术在图像识别领域的应用提供了有力支持。
希望通过本实验的研究,可以进一步推动人工神经网络技术的发展,为实现人工智能的智能化应用做出更大的贡献。
53476《计算智能》第2章PPT

1, 1,
x≥0 x0
f(x)
1
0
x
-1
阶跃函数
符号函数
人工神经元--激励函数—饱和型函数
1, f (x) kx, 1,
x≥ 1 k
1≤x 1
k
k
x1 k
f(x) 1
0
x
-1
饱和型函数
人工神经元-激励函数-双曲正切函数
f
(x)
tanh(x)
ex ex
ex ex
f(x) 1
0
x
-1
双曲正切函数
参数 逻辑与 逻辑或
表 2.1 逻辑与和逻辑或神经网络结构中参数的选取
1
2
f(x)
f (x) 1 x≥0
0.5
0.5
0.75
f (x) 0 x 0
f (x) 1 x≥0
0.5
0.5
0.25
f (x) 0 x 0
逻辑与和逻辑或的实现
人工神经元-激励函数-S型函数
f (x)
1
, 0
1 exp(1 x)
f(x)
β=5.0
1
0.5 β=1
0
x
S型函数
人工神经元-激励函数-高斯函数
f (x) ex2 /2
f(x) 1
-1
0 1x
高斯函数
2、人工神经元网络结构
1 前馈型网络结构 2 反馈型网络结构
人工神经元网络结构---前馈型网络结构
学习规则是修正神经元之间连接强度或加权系数的算法, 使获得的网络结构能够适应实际需要的变化。具体说, 学习规则就是人工神经网络学习过程的一系列规定,包 括调整加权系数的规则、输出误差判定规则等。
人工智能导论 第8章 人工神经网络及其应用(导论)1-47

x1
y
m 1
x2
y
m 2
x p1
y
m pm
35
8.2.2 BP学习算法
2. 学习算法
当yik
1 1 euik
时
x
d y wikj1
k k1 ij
d
m i
yim (1
yim)(
ym i
y) i
— —输出层连接权调整公式
d y y w d k i
k
i (1
k pk 1
i)
k 1 k1 li l
9
8.1 神经元与神经网络
1. 生物神经元的结构 2. 神经元数学模型 3. 神经网络的结构与工作方式
10
8.1.2 神经元数学模型
2. 人工神经元模型
1943年,麦克洛奇和皮兹提出M -P模型。
u1
(权重/突触)
wi1 (细胞体)
(神经冲动)
…
f ()
yi
un
win
激励函数
i (阈值)
-1
29
8.2 BP神经网络及其学习算法
1. BP神经网络的结构 2. BP学习算法 3. BP算法的实现
30
8.2.2 BP学习算法
▪ 两个问题:
(1)是否存在一个BP神经网络能够逼近给定的样本或者函数。
( 2)如何调整BP神经网络的连接权,使网络的输入与输出与 给定的样本相同。
1986年,鲁梅尔哈特(D. Rumelhart)等提出BP学习算法。
A {aij}NN
U u1 uM T
B {bik }N M
1 N T
V v1
T
vN
Y y1 yN T
第一讲计算智能导论

图灵测试
❖ 从表面上看,要使机器回答按一定范围提出的问 题似乎没有什么困难,可以通过编制特殊的程序 来实现。然而,如果提问者并不遵循常规标准, 编制回答的程序是极其困难的事情。例如,提问 与回答呈现出下列状况:
图灵试验
❖ 问:你会下国际象棋吗? ❖ 答:是的。 ❖ 问:你会下国际象棋吗? ❖ 答:是的。 ❖ 问:请再次回答,你会下国际象棋吗? ❖ 答:是的。 你多半会想到,面前的这位是一部笨机器。
然而,这种状况也没能维持几年,勤奋好学
的中学生很快又超过了大学教授,他居然把学习 的触角伸进了当时最新数学分支——集合论和泛 函分析,同时还阅读了大量历史和文学方面的书 籍,并且学会了七种外语。毕业前夕,冯·诺依曼 与数学教授联名发表了他第一篇数学论文,那一 年,他还不到17岁。
考大学前夕,匈牙利政局动荡,冯·诺依曼 便浪迹欧洲各地,在柏林和瑞士一些著名的大学 听课。22岁时,他获瑞士苏黎士联邦工业大学化 学工程师文凭。一年之后,轻而易举摘取布达佩 斯大学数学博士学位。在柏林当了几年无薪讲师 后,他转而攻向物理学,为量子力学研究数学模 型,又使自己在理论物理学领域占据了突出的地 位。风华正茂的冯·诺依曼,靠着顽强的学习毅力, 在科学殿堂里“横扫千军如卷席”,成为横跨 “数、理、化”各门学科的超级全才。
系詞有两种:「是」或「不是」;量词亦有兩种:「所有」 (all)或「有」(some)。
亚里斯多德与逻辑、推理
(A) 所有S是P (或 凡S是P),例如「凡人是動物」; (B) 凡S不是P,例如「凡貓不是狗」; (C) 有S是P,例如「有花是白的」; (D) 有S不是P,如有花不是白的。
所谓「逻辑推論」,即指由前提推导出结论的正 确(valid)的方法,在这种正确推论中,若前提为 真,則结论亦必然为真。
人工智能_第五章计算智能

传统分类能力
ANN 分类能力
分类与识别功能
§5.2.1人工神经网络研究的进展
三、基本功能
优化计算功能
§5.2.1人工神经网络研究的进展
§5.2.2人工神经网络的结构
2.生理神经元的功能
从生物控制论的观点,神经元作为控制和信息处理的基本单元,具有下列
一些重要的功能与特性:
• 时空整合功能:神经元对于不同时间通过同一突触传入的神经冲动,具有时 间整合功能。对于同一时间通过不同突触传入的神经冲动,具有空间整合功 能。两种功能相互结合,具有时空整合的输入信息处理功能; • 兴奋与抑制状态:即兴奋(细胞膜电位升高)和抑制(细胞膜电位降低)。 • 脉冲与电位转换:突触界面具有脉冲/电位信号转换功能。 • 神经纤维传导速度:神经冲动沿神经纤维传导的速度在1-150m/s之间。 • 突触延时和不应期:突触对神经冲动的传递具有时延和不应期,在相邻的二 次冲动之间需要一个时间间隔,即为不应期。 每个人脑大约含有1011-1012个神经元,每一神经元又约有103-104个突触。神
匹配等, 而反馈型神经网络则是一个非线性动力学系统,它具有如下两个重要特征:
1.系统具有多个稳定状态,从某一初始状态开始运动,系统最终可以到
为1或0取决于其输入之和大于或小于内部阈值θ。
§5.2.2人工神经网络的结构
激发函数一般具有非线性特性,常用的非线性特性如下图所示,分述于下:
① 阈值型
对于这种模型,神经元没有内部状态,激发函数为一阶跃函数,如图 (a) 所示。这时,输出为: 1 f(xi)=U(xi)= 0 ② 分段线性强饱和型 见图 (b)。 ,xi>0 ,xi≤0