中级计量经济学讲义_第二章第一节数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)

合集下载

中级计量经济学讲义_第二章第一节数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)

中级计量经济学讲义_第二章第一节数学基础 (Mathematics)第一节  矩阵(Matrix)及其二次型(Quadratic Forms)

上课材料之二:第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。

行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。

如果α是一个标量,则αA =[αa ij ]。

矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。

显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。

计量经济学讲义

计量经济学讲义

计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。

本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。

第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。

时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。

2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。

这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。

第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。

这些方法可以帮助我们理解和总结经济数据的基本特征。

2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。

例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。

第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。

这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。

2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。

例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。

第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。

2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。

第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。

计量经济学 主要知识点

计量经济学  主要知识点

《计量经济学》《经济计量学》《Econometrics》一、主要知识点第一章绪论第一节计量经济学一、经济计量学的产生过程1930 世界经济计量学会二、经济计量学与其他学科的关系计量经济学的定义第二节建立计量经济学模型的步骤和要点一、数据类型1、时间序列数据2、截面数据3、面板数据二、经济变量与经济参数(一)、经济变量1、内生变量和外生变量内生变量(endogenous variable):随机变量,模型自身决定;内生变量影响模型中内生变量,同时又受外生变量和其它内生变量影响。

外生变量(exogenous variable):通常为非随机变量,在模型之外决定。

而外生变量只影响模型中的内生变量,不受模型中任何其它变量影响。

2、解释变量与被解释变量3、滞后变量与前定变量(二)建模步骤和要点。

模型假定把所研究的经济变量之间的关系用适当的数学模型表达出来。

估计参数模型检验:经济意义的检验、统计推断的检验、计量经济的检验、预测的检验第三节计量经济学模型的应用模型应用:政策评价、经济预测、结构分析、检验和发展经济理论第二章一元线性回归模型第一节概述一、相关关系与回归分析1、函数关系与统计相关关系2、相关分析与回归分析的区别和联系二、总体回归模型与样本回归模型1、总体回归模型(PRF):总体回归函数随机扰动项2、样本回归模型(SRF):样本回归函数残差第二节简单线性回归模型的参数估计一、对线性回归模型的假设(古典假定)如何表示?1、零均值假定2、同方差假定3、无自相关假定4、 与解释变量不相关5、 正态性假定二、普通最小二乘法(OLS )1、 OLS 的思想 参数估计式2、Y i 的分布三、普通最小二乘估计量的统计性质 高斯—马尔可夫定理 BLUE1、参数估计量的性质 高斯-马尔科夫定理2、 总体方差/随机扰动项方差的估计式3、 参数估计量的概率分布四、最大似然估计的概念第三节 简单线性回归模型的检验一、对估计值的直观判断(经济意义的检验) 二、拟和优度的检验1、 TSS=ESS+RSS2、 TSS ESS RSS 各自的含义3、 R2的构造4、 ∑∑==22212ˆiyx TSSESS R iβ5、 2R [0,1]三、对1β的显著性检验(T 检验) 检验步骤 四、均值预测与个值预测的置信区间 P49 第三章 多元线性回归模型 第一节 概述一、基本概念偏回归系数及其解释二、多元线性回归的基本假定如何表示和理解?1、零均值假定2、同方差假定3、无自相关假定4、无多重共线性5、扰动项与解释变量不相关6、正态性假定第二节多元线性回归模型的最小二乘估计一、矩阵形式的OLS参数估计式二、总体方差/随机扰动项方差的OLS估计式三、参数估计量的性质:同一元情形四、样本容量问题第三节多元回归模型的检验一、拟和优度检验1、判定系数2、调整后的判定系数二、对单个回归系数的显著性检验(T检验)检验步骤三、总体回归模型的显著性检验(F检验)检验步骤第四节预测对个值预测、区间预测的理解:p74第五节可以线性化的其他函数形式一、线性回归模型的形式:对参数而言是线性的回归系数的含义:边际效应二、几种常见的线性回归模型1、 双对数模型 回归系数的经济含义:弹性2、 半对数模型3、 倒数变换模型第六节 受约束回归 基本思想和检验步骤 第四章 违背经典假设的回归模型第一节 异方差一、异方差1、 异方差,指的是回归模型中的随机误差项的方差不是常数。

计量经济学第二章

计量经济学第二章

第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
异方差性概念及产生原因
异方差性概念
异方差性是指误差项的方差随自变量的变化 而变化,即不满足同方差性的假设。
产生原因
异方差性的产生原因可能包括模型设定偏误、 遗漏重要变量、数据测量误差、异常值影响 等。
异方差性检验方法
图形检验法
通过绘制残差图或残差与解释变量的散点图,观察是否存在异方差性。
等级相关系数法
最小二乘法原理及应用
最小二乘法原理
最小二乘法是一种数学优化技术,它通过最小化预测值与实际观测值之间的残差平方和来估计线性回归模型的参 数。这种方法可以使得模型的预测结果更加接近实际观测值。
最小二乘法应用
在实际应用中,最小二乘法被广泛应用于各个领域,如经济学、金融学、社会学等。它可以用于预测未来趋势、 评估政策效果、分析市场需求等。
03
多元线性回归模型
多元线性回归模型构建
02
01
03
模型设定
确定因变量和自变量,建立多元线性回归方程。
数据收集
收集样本数据,包括因变量和自变量的观测值。
参数估计
采用最小二乘法等方法,估计模型参数。
偏回归系数解释与检验
偏回归系数解释
偏回归系数表示在其他自变量不变的情 况下,某一自变量对因变量的影响程度 。
05

计量经济学内容串讲PPT教学课件

计量经济学内容串讲PPT教学课件
|x’x|=0
系数不可以估计;不完全多重共线性时, Rank(X)=k,满秩,系数可以估计,但是 会导致模型估计结果出现问题。
2020/12/12
19
3注意:解释变量之间不存在线性关系, 并不意味着不存在非线性关系,当解 释变量之间存在非线性关系时,并不 违反无多重共线性的假定。
4 多重共线性常出现在时间序列数据 中,产生的原因:1. 经济变量之间具 有共同的变化趋势,2模型中包含滞后 变量(惯性作用) 3 截面数据在一定 情形下建立的模型4 抽样导致的偶然 样本
计量经济学内容串讲
2020/12/12
1
第一章 导论
2020/12/12
2
内容要点:
1 计量经济学的定义:计量经济学是以 经济理论和经济数据的事实为依据, 运用数学和统计学的方法,通过建立 数学模型来研究经济数量关系和规律 的一门经济学科。
2020/12/12
3
2 计量经济学研究步骤: 选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数
联立方程组模型
2020/12/12
43
1. 联立方程模型是用若干个相互关联的单一方程,同 时表示一个经济系统中经济变量相互联立依存性的 模型
2. 联立方程模型中的内生变量和外生变量。联立方程 模型中外生变量数值的变化能够影响内生变量的变 化,而内生变量却不能反过来影响外生变量
3. 联立方程模型中的联立方程偏倚 4. 联立方程模型的结构型模型和简化型模型
散点图), DW检验法(DW检验只能用于
检验随机误差项具有一阶自回归形式的自相
关问题。这种检验方法是建立经济计量模型
中最常用的方法,一般的计算机软件都可以
计算出DW 值,注意DW检验的缺点和局限

计量经济学讲义_2.doc

计量经济学讲义_2.doc

第二章经典单方程计量经济学模型:一元线性回归模型§2.1 回归分析概述一回归分析的概念无论自然现象之间还是社会经济现象之间,大都存在着不同程度的联系,计量经济学的主要任务之一就是寻找各种经济变量之间的相互联系程度、联系方式以及经济变量之间的运动规律。

一般来说,变量之间的关系可以分为两类:一类是确定性的函数关系。

例如,表示。

圆的半径与圆面积之间的关系,可以用函数关系S=2r另一类是非确定性的统计相关关系。

例如,商品房的价格Y与房屋面积X 的关系,随着X的增加,Y也增加。

但是,在给定X时,Y并不能确定。

原因在于,商品房的价格Y不仅与房屋面积X有关,而且还与所在的区域、楼层和小区的人文环境等等因素有关。

这样,虽然人们无法得到商品房的价格Y与房屋面积X之间的函数关系,但是,人们可以将商品房的价格Y作为随机变量,通过统计计量的方法研究它们之间的统计相关关系。

研究随机变量间统计相关关系的方法主要有两种,一种是相关分析法,另一种是回归分析法。

1 相关分析相关分析主要研究随机变量间的相关形式和相关程度。

(1)相关的定义与分类定义:相关(correlation)指两个或两个以上随机变量间相互关系的程度或强度。

分类:①按强度分完全相关:变量间存在函数关系。

例,圆的周长,L = 2πr高度相关(强相关):变量间近似存在函数关系。

例,我国家庭收入与支出的关系。

弱相关:变量间有关系但不明显。

例,近年来我国耕种面积与产量。

零相关:变量间不存在任何关系。

例,某班学生的学习成绩与年龄。

2004006008001020304050YX121020304050YX0.51.01.52.02.53.02.02.53.03.54.04.5YX完全相关 高度相关、线性相关、正相关 弱相关②按变量个数分按形式分:线性相关, 非线性相关 简单相关:指两个变量间相关按符号分:正相关, 负相关, 零相关 复相关(多重相关):指一个变量与两个或两个以上变量间的相关。

中级计量经济学课件ppt课件

中级计量经济学课件ppt课件

i 1,2,,n
OLS的判断标准(最小二乘法原则):实际值 与估计值的离差平方和达到最小。令
n
Q
Yi Yˆi 2
i1
使Q值达到最小,从而得到β 0和β 1 的估计值:
ˆ0、ˆ1
• ˆ0、ˆ1 的求解
n
Q
Y i Y ˆ i 2n
(3)回归分析的前提:相关密切且有因果 关系
二、总体回归函数 (双变量)总体回归函数是:
E(Y/Xi)f(Xi)
线性总体回归函数:
E(Y/Xi)01Xi
三、随机干扰项
E E ((YY//X Xii)) f0( Xi)1Xi
Y i E (Y /X i)i f(X i)i
– 样本区间经济行为的一致性 如纺织业,以80年代中期作为分界线
– 样本数据的可比性(价格) – 样本观测值过于集中的问题 – 模型随机误差项序列相关的问题
• 截面数据
– 样本与母体的一致性 – 模型随机误差项的异方差问题
• 虚变量数据
– 2、样本数据的质量
• 完整性:各变量得到相同容量的样本观测值 • 准确性:数据准确,且数据间相互对应 • 可比性
• (5)随着样本容量的增加,解释变量X的方差趋 于一个有限的常数,即:
(XiX)2 Q,当 n 时
n
• (6)回归模型是正确设定的.
二、参数的普通最小二乘估计(OLS)
• 简称OLS(Ordinary Least Square)

设所估计的直线方程为:
Yi 0 1Xi i
• 四、检验和发展经济理论
– 检验理论:根据经济理论 建立模型 以样本数据进行拟合
– 发现和发展理论:样本数据

《计量经济学》第二章知识

《计量经济学》第二章知识

第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:v a a a a a aa a a a A mn m m n n ij ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== 212222111211][矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。

行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。

如果α是一个标量,则αA =[αa ij ]。

矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。

显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上课材料之二:第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:v a a a a a aa a a a A mn m m n n ij ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== 212222111211][矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。

行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。

如果α是一个标量,则αA =[αa ij ]。

矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。

显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。

● 可逆矩阵(inverse matrix ),如果n 级方阵(square matrix)A 和B ,满足AB=BA=I 。

则称A 、B 是可逆矩阵,显然1-=B A ,1-=A B 。

如下结果是成立的:1111111)()()()(-------='='=A B AB A A AA 。

2.2 特殊矩阵1)恒等矩阵(identity matrix)对角线上元素全为1,其余全为0,可记为I ; 2)标量矩阵(scalar matrix) 即形如αI 的矩阵,其中α是标量; 3)幂等矩阵(idempotent matrix)如果矩阵A 具有性质A A A A ==⋅2,这样的矩阵称为幂等矩阵。

定理:幂等矩阵的特征根要么是1,要么是零。

4)正定矩阵(positive definite )和负定矩阵(negative definite ),非负定矩阵(nonnegative ) 或 半正定矩阵(positive semi-definite ),非正定矩阵(nonpositive definite) 或 半负定矩阵(negative semi-definite );对于任意的非零向量x ,如有x A x '>0(<0),则称A 是正(负)定矩阵;如有xA x'≥0(≤0),非负(非正)定矩阵。

如果A 是非负定的,则记为A ≥0;如果是正定的,则记为A >0。

协方差矩阵∑是半正定矩阵,几个结论:a )恒等矩阵或单位矩阵是正定的;b )如果A 是正定的,则1-A 也是正定的;c )如果A 是正定的,B 是可逆矩阵,则AB B '是正定的;d )如果A 是一个n ×m 矩阵,且n >m ,m A r =)(,则A A '是正定的,A A '是非负定矩阵。

5)对称矩阵(symmetric matrix ); 如果A =A ′,则A 称为对称矩阵。

2.3 矩阵的迹(trace )一个n ×n 矩阵的迹被定义为它的对角线上的元素之和,记为)(A tr ,则∑==ni iiaA tr 1)(,如下结论是显然的。

1))()(A tr A tr αα= (α是标量) 特例n I tr =)(2))()(A tr A tr ='3))()()(B tr A tr B A tr +=+ 4))()(BA tr AB tr =,特例211)(ij nj n i a A A tr ∑∑==='5)循环排列原则 tr(ABCD)=tr(BCDA)=tr(CDAB)=tr(DABC) 定理:实对称矩阵A 的迹等于它的特征根之和。

因为A 是实对称矩阵,故有在矩阵C ,使得⎪⎪⎪⎭⎫⎝⎛=Λ='n AC C λλ 1,其中I C C =',所以,∑==='='=Λ=ni iA tr AI tr C C A tr AC C tr tr 1)()()()()(λ。

2.4 矩阵的秩(rank)一个矩阵A 的行秩和列秩一定相等,一个矩阵的秩就可以定义为它的行秩或列秩,记为r(A),不加证明,我们给出如下结果:1))()(A r A r '=≤min (行数、列数)2)1)()(n B r A r -+≤)(AB r ≤min ))(),((B r A r ,其中A 、B 分别为m ×n 1、n 1×n 矩阵,特例:如果A 、B 为n ×n 矩阵,而且AB=0,则)()(B r A r +≤n3))()()(A A r A A r A r '='=,其中A 是n ×n 的方阵 4))(B A r +≤)()(B r A r +5)设A 是n ×n 矩阵,且I A =2,则n I A r I A r =-++)()( 6)设A 是n ×n 矩阵,且A A =2,则n I A r A r =-+)()( 2.5 统计量的矩阵表示向量可理解为特殊的矩阵。

i 是一个其元素都为1的n 维列向量,即i'=(1,1,…,1),如果我们再假定),,,(21n x x x x=',计量经济模型中的许多统计量就可以用矩阵的形式表示出来,很方便进行数学推导。

显而易见,∑=⋅'=n i i x i x 1,∑=⋅'=n i i x x x 12,样本的均值与方差的矩阵表示如下:1)样本均值矩阵表示;事实上n i i =' 即11='i i n,而⎪⎪⎪⎪⎭⎫ ⎝⎛='111111111 i i ,x i n x n x n i i ⋅'==∑=111;2)样本方差矩阵表示易知:x i i n x i n i x i x x '=⋅'⋅⋅==⎪⎪⎪⎭⎫⎝⎛11。

其中矩阵i i n '1是一个每个元素都为n 1的n 阶方阵,从而x M x i i n I x i i n x x i x x x x x x x n 021)1()1()(∆'⋅-='-=-=⎪⎪⎪⎪⎭⎫ ⎝⎛---。

定理:矩阵0M 是幂等矩阵。

矩阵0M 的对角线上的元素为)11(n -,非对角线的元素为n1-,是一个对称矩阵。

故样本方差:)()(1)(1122x x x x nx x n S n i i -'-=-=∑=x M x nx M x n x M M x n02000111'=='⋅=。

2.6 矩阵的二次型与多元正态分布1)矩阵的二次型(Quadratic Forms )和线性变换(linear transferring ) 设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式n n n x x a x x a x a x x x f 11211221112122),,,(+++= n n x x a x a 2222222+++……………………………2n nn x a + (1)称为数域P 上的一个n 元二次型,或者,在不致引起混淆时简称二次型。

例如2332223*********x x x x x x x x x +++++就是有理数域上的一个三元二次型,为了以后讨论上的方便,在(1)中,i x x j i (<)j 的系数写在ij a 2。

而不简单地写成ij a 。

和在几何中一样,在处理许多其它问题时也常常希望通过变量的线性替换简化有关的二次型,为此,我们引入定义1 设.n x x ,,1 ;n y y ,,1 是两组文字,系数在数域...........P .中的一级关系式.......⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (2) 称为由...n x x ,,1 ,n x 到.n y y ,,1 的一个线性替换,或简称线性替换,如果系数行列式.......................0≠ij c那么线性替换......(2)就称为非退化的.......。

在讨论二次型时,矩阵是一个有力的工具,因此我们先把二次型与线性替换用矩阵来表示。

令ij ji a a =, i <j由于i j j i x x x x =所以二次型(1)可以写成n n n x x a x x a x a x x x f 112112211121),,,(+++=n n x x a x a x x a 2222221221++++……………………………………22211n nn n n n n x a x x a x x a ++++∑∑===n i nj j i ijx x a11(3)把(3)的系数排成一个n ×n 矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 (4) 它就称为二次型(3)的矩阵,因为ji ij a a =,i ,,,,1n j =所以A A '=我们把这样的矩阵称为对称矩阵,因此,二次型的矩阵都是对称的...........。

令⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21 于是,二次型可以用矩阵的乘积表示出来,AX X '⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=n nn n n n n n x x x a a a a a a a a a x x x 2121222211121121),,,( ⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++=n nn n n n n n n n x a x a x a x x x a x a x a x a x a x x x 22112222121121211121),,,( ∑∑===ni nj j i ij x x a 11故 AX X x x x f n '=),,,(21 应该看到,二次型(1)的矩阵A 的元素ji ij a a =正是它的j i x x 项的系数的一半,因此二次型和它的矩阵是相互唯一决定的,由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且A A =',B B =',则B A =。

相关文档
最新文档