二项式定理典型例题

合集下载

二次项定理10大典型例题

二次项定理10大典型例题

(1)知识点的梳理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。

用1r n r rr n T C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=, 变形式1221r n n nn n n C C C C +++++=-。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐1n n n n +1) n n n n nn n n n n n n n n n n n n n n n n n n n n n n n1. 二项式定理:,2. 基本概念:(a + b )n = C 0a n + C 1a n -1b ++ C r a n -r b r++ C n b n (n ∈ N * )①二项式展开式:右边的多项式叫做的二项展开式。

r +1 ②二项式系数:展开式中各项的系数. ③项数:共项,是关于与的齐次多项式 (r = 0,1C , r 2,⋅⋅⋅, n ) (r b a n④通项: 展开式中的第项叫做二项式展开式的 T C =r r a C +nr -1a r b nr -r b r 通项。

用表示。

3. 注意关键点: ①项数:展开式中总共有项。

r +1 n n(n +1) ②顺序:注意正确选择,,其顺序不能更改。

与是不同 (b r +b a +a 1)n 的。

③指数:的指数从逐项减到,是降幂排列。

的指数从b 0n a 逐项减到,是升幂排列。

各项的次数和等于. ④系数: 注意正确区分二项式系数与项的 C 0 , C 1 , C 2 , ⋅b a ⋅⋅, C r ,⋅⋅⋅, C n . 系数, 二项式系数依次是项的系数是与的系数(包括二项式系数)。

4. 常用的结论:令 令 5. 性质:(1+ x )n = C 0 + C 1x + C 2a x 2=+1,b =+ C x ,r x r ++ C n x n (n ∈ N *) (1- x )n = C 0 - C 1x + C 2x 2a -=1,+b C = r -x x r ,++ (-1)n C n x n(n ∈ N *) ①二项式系数的对称性:与首末两端“对距离”的 C C k 0 ==C C kn-1两个二项式系数相等,即,···nnnn②二项式系数和:令,则二项式系数的C 0 + C 1 + C 2 +a = +b C = r 1+ + C n = 2n和为, 变形式。

二次项定理典型例题

二次项定理典型例题

典型例题一例1在二项式i \1的展开式中,前三项的系数成等差数列,求展开式中所I 2如丿有有理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为:前三项的r =0,1,2.得系数为:t 1 = 1, t 2 = C ; — = — n,上3 = C :—二一n(n -1),2 24 81 由已知:2t2 =匕 t3 n=1 n(n-1), 8n = 8通项公式为彳 16 J3r人1二=0,1,2…8,T r 1为有理项,故16-3r 是4的倍数,2.r = 0,4,8.依次得到有理项为「= x 4,T 5= C ;丄4 x =色x,T g = c 8斗x ,一 x 2.24 8 28256说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类 似地,C ,2 33)100的展开式中有多少项是有理项?可以通过抓通项中 r 的取值,得到共有17项.典型例题二分析:本题仍然属于抓通项公式解决特定项的问题,但是系数的绝对值的最大值或系 数的最大值,需要对所有项的系数的变化规律进行研究. 由于系数的绝对值都是正数,我们可以用作商来研究系数绝对值的变化情况, 另外各项系数正负交替, 又便于用系数绝对值的大小变化抓系数的最大值.30-5r解:展开式的通项公式为:T r ■! =C ;0(-1)r 2”求v'x>1023:的展开式中,系数绝对值最大的项以及系数最大的项.系数的绝对值为 C ;o 2 -,记为t r d . 用前后两项系数的绝对值作商得:t r 羊I C ;F 2』徇10!j!(10_r)! 10_r口_ C l 。

2」_药 _(r+1)!(9_r)!2 10! 一2("1)5+ 105 3 t 5 X8典型例题三7 2 7例 3 已知(1 -2x)=a ° -a 2X 亠 a ?x ,求:(1) a 1 a 2 a^ ' ■■- a 7;(2) a 1 ■ a3 a 5 a 7 ;( 3) a 0 a 2 a 4 a 6.分析:本题是有关展开式系数和的问题,通过对等式中字母的赋值,往往会得到此类 问题的结果•字母经常取的值有0、1、一 1等.解:(1)取x = 0可得a 0 =1,令_1 2(r 1)得:心3即r = 0、1、2时,上述不等式成立. 所以,系数的绝对值从第 系数绝对值最大的项为第1项到第4项增加,以后逐项减小.554项,T 4=C 40(—1)32」X W=—15X 。

二项式定理练习题及答案解析

二项式定理练习题及答案解析

C.2
D.4
[答案] C
[解析] (1+2x)3(1-3x)5=(1+6x+12x+8xx)(1-3x)5,
故(1+2x)3(1-3x)5 的展开式中含 x 的项为 1×C35(-3x)3+12xC05=
-10x+12x=2x,所以 x 的系数为 2.
5.在 2x3+1x2n(n∈N*)的展开式中,若存在常数项,则 n 的最小值
由 C45•a=10,得 a=2.
9.若(1+2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值
范围是( )
A.112<x<15 B.16<x<15
C.112<x<23 D.16<x<25
Hale Waihona Puke [答案] A[解析] 由 T2>T1T2>T3 得 C162x>1C162x>C26(2x)2∴112<x<15.
[答案] D
[解析] x5 应是(1+x)10 中含 x5 项与含 x2 项.
∴其系数为 C510+C210(-1)=207.
7.(2009•北京)在 x2-1xn 的展开式中,常数项为 15,则 n 的一个值
可以是( )
A.3
B.4
C.5
D.6
[答案] D
[解析] 通项 Tr+1=Cr10(x2)n-r(-1x)r=(-1)rCrnx2n-3r,常数项
二项式定理练习题及答案解析
一、选择题
1.二项式(a+b)2n 的展开式的项数是( )
A.2n
B.2n+1
C.2n-1
D.2(n+1)
[答案] B
2.(x-y)n 的二项展开式中,第 r 项的系数是( )
A.Crn
B.Cr+1n

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

二项式定理与典型例题

二项式定理与典型例题

.
(6) 在 1 x3 1 x4 1 x5 1 x15 的展开式中 x3 的系数是
.
(7) 在 1 x 1 x2 1 x3 1 xn 所有二项式的各项的系数是
.
(8)若 x2 x10 a 0 a1(x 1) a9 (x 1)9 a10 (x 1)10 则 a9 ______ .
7、若 f (x) (1 x)m (1 x)n (m n N) 展开式中,x 的系数为 21,问 m、n 为何值时,x2 的系数最
小?
8、(1)自然数 n 为偶数时,求证:1 2C1n C2n 2C3n C4n 2Cnn1 Cnn 3 2n1 (2) Cn0 3Cn1 5Cn2 (2n 1)Cnn _______ . (3) C33 C43 C53 C530 _______ . (4) Cn0 2Cn1 3Cn2 (n 1)Cnn _______ . 80 9、求 11 被 9 除的余数
系数最大项的系数是多少?
练:(1).在 (a b)2n 的展开式中,二项式系数最大的项是多少? (2).在 ( x 1 )n 的展开式中,只有第 5 项的二项式最大,则展开式中的常数项是多少?
2 3x (3).写出在 (a b)7 的展开式中,系数最大的项?系数最小的项? (4).若展开式前三项的二项式系数和等于 79 ,求 (1 2x)n 的展开式中系数最大的项?
项.
题型五:奇数项的二项式系数和=偶数项的二项式系数和;
例:若 ( x2 1 )n 展开式中偶数项系数和为 256 ,求 n . 3 x2
练:若 ( 3
1 x

5
1 x2

高锐教育-高中数学-二项式定理23道经典例题

高锐教育-高中数学-二项式定理23道经典例题

二项式定理典型例题--典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛=前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8112312-+=+=n n n t t t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr r r T r x T Λ为有理项,故r 316-是4的倍数,∴.8,4,0=r依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有17页系数和为n 3.典型例题四例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为: 5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫⎝⎛+=++x x x x . 由121⎪⎪⎭⎫ ⎝⎛+x x 展开式的通项公式rr rr r r x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开.解:方法一:[]6262)1()1(x x x x -+=-+Λ-+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n Λ;(2))12(11C 11C 31C 21C 1210-+=++++++n n n n n n n n Λ. 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++Λ.解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k Θ∴左边111101C C C ----+++=n n n n n n n Λ=⋅=+++=-----11111012)C C C (n n n n n n n Λ右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n--=-⋅+=+ 11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n Λ =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n Λ右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++Λ的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+Λ 10101091092102C 2C 2C 21021++++⨯+=Λ )C 2C 2C 210(21101099108210+++++=Λ从而可以得到:)13(21C 2C 2C 21010101099108210-=++++Λ. 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n Λ 981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n Λ 2111118C 8C 8⋅++⋅+=-+++n n n n n Λ64)C 8C 8(112111⋅++⋅+=-+-++n n n n n Λ是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x223252415025523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032x x x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛- 233254315530510)3()4()3()4()4([321-+-+=x C x C x C x])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0Λ=k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0Λ=k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项. 故原式展开后的总项数为66191011=++++Λ, ∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把三项式nx x ⎪⎭⎫⎝⎛-+21转化为nnx x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn nx x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,进而解出n .解:当0>x 时nnx x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=, 令022=-r n ,得r n =,∴展开式的常数项为nn n C 2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为nn n C 2)1(-. 无论哪一种情况,常数项均为nn n C 2)1(-.令20)1(2-=-nn n C ,以Λ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可.解:使1031⎪⎭⎫ ⎝⎛+x x 有意义,必须0>x ;依题意,有43T T <,即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C . ∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x . ∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x . ∴应填:5648980<<x . 典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C ,即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xxC .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有 8226655=⇒=n C C n n .∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0Λ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据已知条件得到2x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C nm499)211(55112211022+-=+-=-=n n n mn . ∵+∈N n ,∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=-Λ,求(1) 721a a a +++Λ;(2) 7531a a a a +++;(3) 6420a a a a +++. 解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a Λ. ①∴129721=+++a a a Λ.(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得: 6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++= 8128])4(128[217-=-+=. 说明:(1)本解法根据问题恒等式特点来用“特殊值”法.这是一种重要的方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+=Λ2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是________________.分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-= 3)17(10-+=37771010910911010010-++++=C C C C Λ 2]77[791081109010-+++⨯=C C C Λ又∵余数不能为负数,需转化为正数 ∴3230-除以7的余数为5 ∴应填:5分析(2):将5555写成55)156(-,然后利用二项式定理展开.解:155555+15)156(55+-=15565656555554555415555055+-++-=C C C C Λ容易看出该式只有14155555=+-C 不能被8整除,因此155555+除以8的余数,即14除以8的余数,故余数为6.∴应填:6.典型例题十七例17 求证:对于+∈N n ,111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n .证明:nn ⎪⎭⎫⎝⎛+11展开式的通项rr n r r nr nr p n C T !11=⋅=+r r r n n n n r )1()2)(1(!1+---=Λ)11()21)(11(!1nr n n r ----=Λ. 1111+⎪⎭⎫ ⎝⎛++n n 展开式的通项rr n r r n r n r A n CT)1(!)1(11'1+=+⋅=++ )111()121)(111(!1+--+-+-=n r n n r Λ. 由二项式展开式的通项明显看出'11++<r r T T ,所以111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n .说明:本题的两个二项式中的两项为正项,且有一项相同,证明时,根据题设特点,采用比较通项大小的方法完成本题证明.典型例题十八例18 在52)23(++x x 的展开式中x 的系数为( ).A .160B .240C .360D .800分析:本题考查二项式定理的通项公式的运用.应想办法将三项式转化为二项式求解. 解法1:由5252]2)3[()23(++=++x x x x ,得k kk k x x C T 2)3(5251⋅+=-+ k k k x x C -+⋅⋅=525)3(2.再一次使用通项公式得,rk r r k k k r x C C T ---+⋅⋅⋅=21055132,这里50≤≤k ,k r -≤≤50. 令1210=--r k ,即92=+r k .所以1=r ,4=k ,由此得到x 的系数为24032445=⋅⋅C .解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为45C ,常数项为1,5)2(+x 的展开式中x 的系数为4452⋅C ,常数项为52.因此原式中x 的系数为24022445545=⋅+⋅C C .解法3:将52)23(++x x 看作5个三项式相乘,展开式中x 的系数就是从其中一个三项式中取x 3的系数3,从另外4个三项式中取常数项相乘所得的积,即2402344415=⋅⋅⋅C C .∴应选B .典型例题十九例19 已知92⎪⎪⎭⎫⎝⎛-x x a 的展开式中3x 的系数为49,常数a 的值为___________. 分析:利用二项式的通项公式.解:在92⎪⎪⎭⎫⎝⎛-x x a 的展开式中, 通项公式为=⎪⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛=-+rrr r x x a C T 299192329921)1(--⋅⎪⎭⎫⎝⎛⋅-r r r r r x a C . 根据题设,3923=-r ,所以8=r .代入通项公式,得39169ax T =. 根据题意,49169=a ,所以4=a .∴应填:4.典型例题二十例20 (1)求证:nn n n n n C C C )2(3)1(333133221-=-++⋅-⋅+-Λ(2)若443322104)32(x a x a x a x a a x ++++=+,求2312420)()(a a a a a +-++的值. 分析:(1)注意观察nn n n n n x C x C x C x ++++=+Λ2211)1(的系数、指数特征,即可通过赋值法得到证明.(2)注意到)()()(432102312420a a a a a a a a a a ++++=+-++)(43210a a a a a +-+-⋅,再用赋值法求之.解:(1)在公式nn n n n n x C x C x C x ++++=+Λ2211)1(中令3-=x ,即有 n nn n n n C C C )3()3()3(1)31(2211-++-+-+=-Λn n n n C C 3)1(331221⋅-+-⋅+⋅-=Λ∴等式得证.(2)在展开式443322104)32(x a x a x a x a a x ++++=+中, 令1=x ,得443210)32(+=++++x a a a a a ; 令1-=x ,得443210)32(+-=+-+-a a a a a . ∴原式)()(4321043210a a a a a a a a a a +-+-⋅++++=1)32()32(44=+-⋅+=.说明:注意“赋值法”在证明或求值中的应用.赋值法的模式是,在某二项展开式,如n n n x a x a x a a bx a ++++=+Λ2210)(或b a C a C b a n n n n n 110)(-+=+222b a C n n -+ n n n b C ++Λ中,对任意的A x ∈(A b a ∈,)该式恒成立,那么对A 中的特殊值,该工也一定成立.特殊值x 如何选取,没有一成不变的规律,需视具体情况而定,其灵活性较强.一般取1,1,0-=x 较多.一般地,多项式)(x f 的各项系数和为)1(f ,奇数项系数和为)]1()1([21--f f ,偶次项系数和为)]1()1([21-+f f .二项式系数的性质n n n n n n C C C C 2210=++++Λ及15314202-=+++=+++n n n n n n n C C C C C C ΛΛ的证明就是赋值法应用的范例.典型例题二十一例21 若+∈N n ,求证明:3724332+-+n n 能被64整除.分析:考虑先将323+n 拆成与8的倍数有关的和式,再用二项式定理展开.解:3724332+-+n n37243322+-⋅=+n n 3724931+-⋅=+n n 3724)18(31+-+⋅=+n n3724]8888[311112111101+-+⋅++⋅+⋅+⋅⋅=+++-++++n C C C C C n n n n n n n n n n Λ 3724]18)1(888[3121111+-+⋅+++⋅+⋅+⋅=-+++n n C C n n n n n Λ 3724)]98(8888[3211121111+-++⋅++⋅+⋅+⋅=-+-+++n n C C C n n n n n n n Λ3724)98(3]888[831132121112+-+⋅+++⋅+⋅+⋅=-+-+-+-n n C C C n n n n n n n Λ 64]888[6433212111++⋅+⋅+⋅=-+-+-Λn n n n n C C , ∵18-n ,2118-+⋅n n C ,3218-+⋅n n C ,…均为自然数,∴上式各项均为64的整数倍. ∴原式能被64整除.说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.典型例题二十二例22 已知nx x )3(232+的展开式各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.分析:先由条件列方程求出n .(1)需考虑二项式系数的性质;(2)需列不等式确定r . 解:令1=x 得展开式的各项系数之和为nn 22)31(=+,而展开式的二项式系数的和为n n n n n n C C C C 2210=++++Λ,∴有992222=-n n.∴5=n .(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项. ∴62233225390)3()(x x x C T =⋅=,32232232354270)3()(x x x C T =⋅=.(2)设展开式中第1+r 项的系数最大.341052532513)3()(r rr rrr r xC x x C T +-+⋅⋅=⋅⋅=,故有⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--115511553333r r r r r r r r C C C C即⎪⎪⎩⎪⎪⎨⎧+≥--≥.1351,613r r r r解得2927≤≤r .∵N r ∈, ∴4=r ,即展开式中第5项的系数最大.32642132455405)3()(x x x C T =⋅⋅=说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必须算出相应项的系数后再比较大小.典型例题二十三例23 求证:(1) pn m m p n p m n p m n C C C C C C C +-=+++0110Λ;(2) 1144220242333--+⋅=++++n n n n n n n n C C C C Λ(K n 2=,*N n ∈)分析:(1)注意到两列二项式两乘后系数的特征,可构造一个函数;也可用构造一个组合问题的两种不同解法找到思路.(2)同上构造函数,赋值.证明:(1)(法1)∵n m nm x x x )1()1()1(+⋅+=++,∴)1()1()1(221221nn n n n m m m m m nm x C x C x C x C x C x C x ++++⋅++++=++ΛΛ.∴此式左右两边展开式中Px 的系数必相等. 左边P x 的系数是p n m C +,右边Px 的系数是22110m p n p m n p m n p m n C C C C C C C C ⋅++⋅+⋅+⋅--Λ,∴pn m m p n p m n p m n p m n C C C C C C C C C +--=⋅++⋅+⋅+⋅022110Λ.等式成立.(法2)设想有下面一个问题:要从n m +个不同元素中取出P 个元素,共有多少种取法?该问题可有两种解法.一种解法是明显的,即直接由组合数公式可得出结论:有pn m C +种不同取法.第二种解法,可将n m +个元素分成两组,第一组有m 个元素,第二组有n 个元素,则从n m +个元素中取出P 个元素,可看成由这两组元素中分别取出的元素组成,取法可分成1+P 类:从第一组取P 个,第二组不取,有0n p m C C ⋅种取法;从第一组取1-P 个,从第二组取1个,有11n p m C C ⋅-种取法,…,第一组不取,从第二组取P 个.因此取法总数是p n m n p m n p m n p m C C C C C C C C ⋅++⋅+⋅+⋅--022110Λ.而该问题的这两种解法答案应是一致的,故有pn m m p n p m n p m n p m n C C C C C C C C C +--=⋅++⋅+⋅+⋅022110Λ.(2)∵n 为偶数,∴nn n n n n n C C C C 333)31(2210++++=+Λ;nn n n n n n C C C C 333)31(2210+-+-=-Λ.两式相加得)333(22444220nn n n n n n n C C C C ++++=+Λ, ∴1144220242333--+⋅=++++n n n n n n n n C C C C Λ.说明:构造函数赋值法,构造问题双解法,拆项法、倒序相加法都是证明一些组合数恒等式(或求和)的常用方法.。

二项式定理题型荟萃人教版原创

二项式定理题型荟萃人教版原创

解: 依题意有2(1+0.2%)100
2(1 0.002)100
2[C1000
C1 100
0.002
C2 100
0.0022
]
2(1 0.2 0.0198 )
2.4396 2.44
所以100天后这家公司的股票指数约为2.44
点评近似计算常常利用二项式定理估算前几项
三计算题
x 1 求(1 x 1)5 展开式中含 一次幂的项。45x x
3.(1 x) (1 x)2 (1 x)3 (1 x)15
展开式中含x3项的系数为___1_8_2_0_____。
温故知新
4. (
x
2 x2
)n
的展开式中,第五项与第三项的二项式系
数之比为14:3,求展开式的常数项
Tr1 C1r0 (

x )10r ( 2 )r x2
105r
(2)r C1r0 x 2
x12
y8
5. (2x 2 1)n展开式的各项系数和为___1___;
新疆 王新敞
奎屯
6. (x 7 y)n 展开式的二项式系数之和为128、那么展
开式的项数是
;各项系数之和为:
题型8 三项式转化为二项式
例13 求( x 1 1 )8展开式中的常数项 x
解:三项式不能用二项式定理,必须转化为二项式
( x 1 1 )8 [( x 1 ) 1]8
项的二项式系数最大;如果二项式的
幂指数是奇数,中间两项的二项式系
数最大;
性质3:C
0 n
C
1 n
C
2 n
Cnk
C
n n
2n
性质4:(a+b)n的展开式中,奇数项的二项式系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 16 二项式定理典型例题-- 典型例题一

例1 在二项式nxx421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为:

4324121C21)(CrnrrnrrnrnrxxxT

前三项的.2,1,0r 得系数为:)1(8141C,2121C,123121nntnttnn, 由已知:)1(8112312nnnttt, ∴8n 通项公式为

1431681,82,1,021CrrrrrTrxT为有理项,故r316是4的倍数,

∴.8,4,0r 依次得到有理项为228889448541256121C,83521C,xxTxxTxT. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r的取值,得到了有理项.类似地,1003)32(的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有17页 系数和为n3. 典型例题四

例4 (1)求103)1()1(xx展开式中5x的系数;(2)求6)21(xx展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.

解:(1)103)1()1(xx展开式中的5x可以看成下列几种方式得到,然后合并同类项: 2 / 16

用3)1(x展开式中的常数项乘以10)1(x展开式中的5x项,可以得到5510Cx;用3)1(x展开式中的一次项乘以10)1(x展开式中的4x项可得到54104410C3)C)(3(xxx;

用3)1(x中的2x乘以10)1(x展开式中的3x可得到531033102C3C3xxx;用 3)1(x中的3x项乘以10)1(x展开式中的2x项可得到521022103CC3xxx,合并同类项得5x项为:

5521031041051063)CC3CC(xx.

(2)2121xxxx 1251)21

(xxxx.

由121xx展开式的通项公式rrrrrrxxT61212121C1)2(C,可得展开式的常数项为924C612. 说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.

典型例题五

例5 求62)1(xx展开式中5x的系数. 分析:62)1(xx不是二项式,我们可以通过22)1(1xxxx或)(12xx把它看成二项式展开. 解:方法一:6262)1()1(xxxx 44256)1(15)1(6)1(xxxxx 其中含5x的项为55145355566C15C6Cxxxx. 含5x项的系数为6. 方法二:6262)(1)1(xxxx 62524232222)()(6)(15)(20)(15)(61xxxxxxxxxxxx

其中含5x的项为555566)4(15)3(20xxxx. 3 / 16

∴5x项的系数为6. 方法3:本题还可通过把62)1(xx看成6个21xx相乘,每个因式各取一项相乘可得到乘积的一项,5x项可由下列几种可能得到.5个因式中取x,一个取1得到556Cx. 3个因式中取x,一个取2x,两个取1得到)(CC231336xx. 1个因式中取x,两个取2x,三个取1得到222516)(CCxx. 合并同类项为5525161336566)CCCC(Cxx,5x项的系数为6. 典型例题六

例6 求证:(1)1212CC2Cnnnnnnn; (2))12(11C11C31C21C1210nnnnnnnn. 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质

nnnnnn2CCCC210.

解:(1)11C)!()!1()!1()!()!1(!)!(!!Cknknnknknnknknknknkk ∴左边111101CCCnnnnnnn 11111012)CCC(nnnnnnn右边.

(2))!()!1(!)!(!!11C11knknknknkkkn 11C11)!()!1()!1(11knnknknn

∴左边112111C11C11C11nnnnnnn )12(11)CC(C111112111nnnnnnn右边.

说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求4 / 16

10C2C2C2C22108107910810109的结果.仔细观察可以发现该组合数的式与

10)21(

的展开式接近,但要注意: 10101099102210110010102C2C2C2CC)21(

10101091092102C2C2C21021

)C2C2C210(21101099108210 从而可以得到:)13(21C2C2C21010101099108210. 典型例题七

例7 利用二项式定理证明:98322nn是64的倍数. 分析:64是8的平方,问题相当于证明98322nn是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93nnn,将其展开后各项含有k8,与28的倍数联系起来. 解:∵98322nn 98)18(98911nnnn 9818C8C8C81211111nnnnnnnn 981)1(88C8C8211111nnnnnnn 2111118C8C8nnnnn

64)C8C8(112111nnnnn是64的倍数.

说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.

典型例题八

例8 展开52232xx. 分析1:用二项式定理展开式. 解法1:52232xx 5 / 16

2232524150250523)2(23)2(23)2(xxCxxCx

xC

52554245322352323)2(23)2(xCxxCx

xC

10742532243840513518012032xxxxxx

分析2:对较繁杂的式子,先化简再用二项式定理展开.

解法2:10535232)34(232xxxx 233254315530510

)3()4()3()4()4([321xCxCxC

x

])3()3()4()3()4(5554134532335CxCxC

)243716204320576038401024(321369121510xxxxxx

10742532243840513518012032xxxxxx.

说明:记准、记熟二项式nba)(的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 典型例题九

例9 若将10)(zyx展开为多项式,经过合并同类项后它的项数为( ). A.11 B.33 C.55 D.66 分析:10)(zyx看作二项式10])[(zyx展开.

解:我们把zyx看成zyx)(,按二项式展开,共有11“项”,即 10010101010)(])[()(kkkkzyxCzyxzyx.

这时,由于“和”中各项z的指数各不相同,因此再将各个二项式kyx10)(展开, 不同的乘积kkkzyxC1010)((10,,1,0k)展开后,都不会出现同类项. 下面,再分别考虑每一个乘积kkkzyxC1010)((10,,1,0k). 其中每一个乘积展开后的项数由kyx10)(决定,

相关文档
最新文档