(完整版)二项式定理典型例题解析
(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。
《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x 10742532243840513518012032xx x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n . ∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25. 说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得. 典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C又∵余数不能为负数,需转化为正数。
高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析1.若(x+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且a﹣a1+a2﹣a3+…+a8﹣a9=39,则实数m的值为.【答案】5.【解析】令,即,得:,又因为,所以,则.【考点】二项式定理、赋值法.2.若已知,则的值为 .【答案】1【解析】令,可得;令,可得;两式结合可得.【考点】二项式定理的应用.3. x(x﹣)7的展开式中,x4的系数是.【答案】84.【解析】x(x﹣)7的通项是,令7-2r=3,得r="2" ,所以x(x﹣)7的展开式的的系数为所以x(x﹣)7的展开式中,x4的系数是84.【考点】二项式定理;二项式系数的性质4.在的展开式中,x6的系数是()A.﹣27B.27C.﹣9D.9【答案】D【解析】在的展开式中通项为,故x6为r=6,即第7项.代入通项公式得系数为.,故选D.【考点】二项式定理及二项式系数的性质.5.二项式的展开式的常数项为第()项A.17B.18C.19D.20【答案】C【解析】由二项式定理可知,展开式的常数项是使的项,解得为第19项,答案选C.【考点】二项式定理6.(1)已知,记的个位上的数字为,十位上的数字,求的值;(2)求和(结果不必用具体数字表示).【答案】(1);(2).【解析】(1)首先要掌握排列数计算公式,但也不能死算,应为从开始,它的后两位数字均为零,因此只需研究前面的和的结果就可以解决问题;(2)反复、灵活运用组合数的两点性质:①,②即能解决问题.试题解析:(1)的后两位由确定,而,故个位数字为,十位数字为,所以. 6分(2). 12分【考点】1.排列数计算公式;2.组合数的性质.7.若,则a0+a2+a4+a6+a8的值为.【答案】128【解析】令,得①,再令得②,由①+②得:,故应填入:128.【考点】二项式.8.二项式的展开式的常数项为第()项A.17B.18C.19D.20【解析】C由二项展开式的通项知==,则=0,解得=18,故常数为第19项.【考点】二项展开式的通项9.展开式中不含项的系数的和为()A.-1B.0C.1D.2【答案】B【解析】由二项式定理知,展开式中最后一项含,其系数为1,令=1得,此二项展开式的各项系数和为=1,故不含项的系数和为1-1=0,故选B.【考点】二项展开式各项系数和;二项展开式的通项10.展开式中的常数项是_________________.【答案】【解析】由二项式定理可知已知二项展开式的通项为:(r="0,1,2," ,6),令得:;故知已知二项展开式的第三项:是常数项,故填60.【考点】二项式定理.11.若,则;【答案】2014【解析】首先令可得;然后令得,即,代入式子即可求得结果.【考点】二项式定理.12.的展开式中的常数项是。
二项式定理典型例题

二项式定理典型例题--典型例题一(1 <例1在二项式Jx十一^ 的展开式中,前三项的系数成等差数列,求展开式中所有有< 2仮丿理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:前三项的r =0,1,2.1 1 12 1 1得系数为:t1=1, t2= C n— = — n,t3 = C n— = —n(n -1),2 2 4 81 由已知:2t^t1t3n=1 n(n—1),8n = 8通项公式为1 16 J3rT r^c8-r x^r =0,1,2…8,T r 1为有理项,故16-3r是4的倍数, 2r••• r =0,4,8.依次得到有理项为「=X4,T5二c8■丄x二色乂忑二c81x‘1X2.248 28256 说明:本题通过抓特定项满足的条件,利用通项公式求出了r的取值,得到了有理项.类100似地,C.2 3)的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有17页系数和为3n.典型例题四例4 (1 )求(1 -X)3(1 - x)10展开式中X5的系数;(2)求(X - 2)6展开式中的常X数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.3 10 5解:(1)(1-X)(1 X)展开式中的X可以看成下列几种方式得到,然后合并同类项:3彳门庄55用(1 -X )展开式中的常数项乘以 (1 X )展开式中的 X 5项,可以得到 C io X ;用(1-X )3展开式中的一次项乘以(1 - X )10展开式中的X 4项可得到(-3x)(C :o x 4) =-3C :0X 5;43 2(C10~C 10'3C10 —'Golx63x、.x17x1 展开式的通项公式X的常数项为C ;2二924 .说明:问题(2)中将非二项式通过因式分解转化为二项式解决•这时我们还可以通过 合并项转化为二项式展开的问题来解决.典型例题五26c例5求(1 • x -X )展开式中X 5的系数. 分析:(1,x-x 2)6不是二项式,我们可以通过 1 • X - X 2=(1 • x) -X 2或1・(x-x 2)把它看成二项式展开.解:方法一:(1 X _x 2)6 =(1 . x) _x 2f6 5 2 4 4=(1 x ) -6(1 x) x 15(1 x) x -其中含 X 5 的项为 c 6x 5 -6C ;X 5 15C ;X 5 =6x 5. 含x 5项的系数为6.方法二:(1 x -x 2)6 = 1(X -X 2)F=1 6(x-x 2) 15(x -X 2)220(x -X 2)315(x -X 2)46(x-x 2)5(x-x 2)65 5 555用(1 —x)3中的X 2乘以(1 X )10展开式中的X 3可得到 3X 2C ;o X 3=3C ;o X 5;用(1 - X )3中的3102X 项乘以(1 X )展开式中的X 项可得到—3x C 10X = -C 10X ,合并同类项得5X 项为:12由T r 1 二C ;2(、2)12二C ;2X 6_C ,可得展开式其中含x 的项为20(-3)x ,15(-4)x 6x = 6x .5 二x 项的系数为6.方法3 :本题还可通过把(1 • x - X 2)6看成6个1 • x - X 2相乘,每个因式各取一项相乘 可得到乘积的一项,x 5项可由下列几种可能得到.5个因式中取x , —个取1得到C 6x 5 .3个因式中取x , 一个取—x 2,两个取1得到C 6 C ;x 3 ・(-x 2). 1个因式中取x ,两个取—x 2,三个取1得到C ; C ;x (-x 2)2 . 合并同类项为(C ; -c l c ; • C ;C ;)X 5 =6x 5, x 5项的系数为6.典型例题六例 6 求证:(1) C 「2C 2zr nV = 2心; (2)c n 〔c ;1c :1(2n 1-1).23n +1 n +1分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证 明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质c n - Cn -c n - c n =2n .•••左边=n C 0」+ nC ;_1+…+n-n (C n J ' C^^ ',Cnj.) = n,2=右边.丄 cn=——=—n!— k 1 k 1 k!(n -k)! (k -1)!(n - k)!1 (n 1)!1 (1)C n 1 n 1 (k 1)!(n -k)! n 1 本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质 求解.此外,有些组合数的式子可以直接作为某个二项式的展开式, 但这需要逆用二项式定 理才能完成,所以需仔细观察,我们可以看下面的例子:求910897822 C io 2 C 10 2 C w■ 2C io 10的结果.仔细观察可以发现该组合数的式与(1 -2)10的展开式接近,但要注意:(1 2)10二 C o Co 2 • C 2。
二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。
6.3 二项式定理(解析版)人教版高中数学精讲精练选择性必修三

6.3二项式定理考法一二项式的展开式【例1-1】(2023上·高二课时练习)求411x ⎛⎫⎪⎝⎭+的展开式.【答案】答案见解析【解析】4123404132231404444411111C 1C 1C C 1C 1111x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝⎝⎭⎝⎭23446411x x x x =++++.【例1-2】(2023·黑龙江)()12312C 4C 8C 2C nnn n n n -+-++-= ().A .1B .-1C .(-1)nD .3n【答案】C【解析】原式=()()()()()()0120122222121n n nn n n n n -+-+-++-=-=-C C C C L .故选:C.【一隅三反】1.(2023·甘肃)若对x ∀∈R ,()()()()()()55432252102102521ax b x x x x x +=+-+++-+++-恒成立,其中,a b ∈R ,则a b +=()A .1-B .0C .2D .3【答案】C【解析】由()()()()()()()543255252102102521211x x x x x x x +-+++-+++-=+-=+,得()()551ax b x +=+,所以1a b ==,2a b +=.故选:C.2.(2023·安徽安庆)如果12212C 2C 2C 2187n n n n n ++++= ,则22223C C C n +++=.【答案】56【解析】依题意,1220012212C 2C 2C 2C 2C 2C 2C n n n n n n n n n n n+++++++=+ ()1232187nn =+==,解得7n =,222322237337C C C C C C =++++++ 32232224475567C C C C C C C =+++=+++ 322323667778C C C C C C 87656321⨯⨯=====⨯⨯+++.故答案为:563.(2023·高二课时练习)(1)求4⎛⎫ ⎪⎝⎭的展开式(2)求()()55211x x x -++的展开式;(3)化简()()()()()5432151********x x x x x -+-+-+-+-.【答案】(1)221218110854x x x x-+-+(2)答案见解析;(3)51x -【解析】(1)()4442131x x ⎛⎫⎫==- ⎪⎪⎝⎭⎭()()()()()()()()432234012344444421C 3C 31C 31C 31C 1x x x x x⎡⎤=+⋅-+⋅-+⋅-+-⎣⎦()432218110854121x x x x x=-+-+221218110854x x x x =-+-+.(2)()()()5555223(1)1(1)11x x x x x x x -++-++⎦=⎣-⎡⎤=()()()()()123405314323332341355555C 1C 1C 1C 1C 1x x x x x =⨯⨯⨯+⨯+⨯-+-+---()55035C 1x+⨯-3691215151010 5x x x x x =-+-+-.(3)原式0514********555555C (1)C (1)C (1)C (1)C (1)C (1)1x x x x x x =-+-+-+-+-+--55[(1)1]11x x =-+-=-.考法二二项式指定项的系数【例2-1】(2024·四川绵阳)51x ⎫-⎪⎭的展开式中,x 的系数为()A .5-B .10-C .5D .10【答案】A【解析】51x ⎫⎪⎭的展开式的通项为53521551C (1)C rr r r r rr T x x --+⎛⎫=⋅⎭⋅-=-⋅⋅ ⎪⎝.令5312r-=,得1r =.x ∴的系数为15C 5-=-.故选:A .【例2-2】.(2024·湖南)二项式741x ⎫-⎪⎭的展开式中常数项为()A .7-B .21-C .7D .21【答案】A【解析】二项式741x ⎫⎪⎭的通项公式为()14147317741C C 1rrrr r rr T x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令1414013r r -=⇒=,所以常数项为()17C 17⋅-=-,故选:A 【例2-3】(2024·云南)写出623x⎛⎝展开式中的一个有理项为.【答案】12729x (答案不唯一)【解析】623x⎛⎝展开式的通项公式为所以展开式中的有理项分别为:0r =时,6121213729T x x ==;2r =时,4277363C 1215T x x ==;4r =时,2422563C 135T x x ==;6r =时,37-=T x .故答案为:12729x (四个有理项任写其一均可).【一隅三反】1.(2024·河南)29(2x x-展开式中的常数项为()A .672B .672-C .5376-D .5376【答案】D【解析】二项式29(2)x x -的展开式的通项218319992C )()(N 2)C (,9,r r r r r rr T r x xr x--+=-=-≤∈,令1830r -=,得6r =,所以二项展开式中的常数项为669C 2)7(536-=.故选:D2.(2024安徽)9a x x ⎛⎫+ ⎪⎝⎭展开式中含3x 项的系数为84-,则实数a 的值为()A .1-B .2-C .3-D .4-【答案】A 【解析】()992199C C 0,1,2,,9rr rr r r r a T xa x r x --+⎛⎫=⋅==⋅⋅⋅ ⎪⎝⎭,令923r -=,得3r =.∴3333349C 84T a x a x ==,依题意38484a =-,∴1a =-.故选:A.3.(2023·全国·模拟预测)5的展开式中,有理项是第项.【答案】3【解析】5的展开式的通项511051362155C 3C 3kkkk k k k T x x x ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅,其中0,1,2,3,4,5k =,当1k T +为有理项时,1056k-为整数,结合0,1,2,3,4,5k =,所以2k =,即有理项是展开式中的第3项,故答案为:3考法三两个二项式乘积的系数【例3-1】(2024·广东广州)在()()511x x +-展开式中3x 的系数为()A .1-B .0C .1D .2【答案】B【解析】显然()()()()5551111x x x x x +-=-+-,则()51x -展开式第1r +项55155,N,5C (1)C (1)rrr rr r r T xr x r --+-∈=-≤=,当3r =时,33235C (1)10x x x ⋅-=-,当2r =时,22335C (1)10x x -=,所以展开式中含3x 的项为3310100x x -+=,即展开式中3x 的系数为0.故选:B【例3-2】(2023·全国·模拟预测)()7y m x y x ⎛⎫+- ⎪⎝⎭的展开式中34x y 的系数为105-,则实数m =()A .2B .1C .1-D .2-【答案】D【解析】()7x y -的展开式的通项公式为()7171C r r r rr T x y -+=-,所以()61171C r r r r r y T x y x-++=-.令6314r r -=⎧⎨+=⎩,解得3r =,()7171C r r r rr mT m x y -+=⋅-.令734r r -=⎧⎨=⎩,解得4r =.由题意,可知()()()3434343777771C 1C C C 1C 105m m m -+⋅-=-+=-=-,所以2m =-.故选:D .【一隅三反】1.(2023·湖北)若()()542x m x --的展开式中的3x 的系数为600-,则实数m =()A .8B .7C .9D .10【答案】B【解析】由题意知,()52x -展开式的通项公式为()55C 2rr rx --,故3x 的系数为()()3232554C 2C 232040600m m ⨯---=--=-,解得7m =.故选:B .2.(2024·广东·)()()42112x x +⋅-的展开式中3x 的系数为.【答案】40-【解析】()()42112x x +⋅-的展开式中3x 的项为:()()313213441C 2C 240x x x x ⨯-+⨯-=-,所以展开式中3x 的系数为40-.故答案为:40-3.(2024·山东滨州)()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为.(用数字作答)【答案】40-【解析】()62x y -的通项公式为()()66166C 2C 2rrr r rr r r T x y x y --+=-=-,令2r =得,()22424236C 260T x y x y =-=,此时4242602120x y x y ⋅=,令3r =得,()33333346C 2160T x y x y =-=-,此时3342160160xx y x y y-⋅=-,故42x y 的系数为12016040-=-故答案为:40-考法四三项式指定项的系数【例4-1】(2023·全国·校联考模拟预测)在6221x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为()A .721B .-61C .181D .-59【答案】D【解析】6221x x ⎛⎫+- ⎪⎝⎭ =()6221x x ⎡⎤+-⎢⎥⎣⎦的展开式的通项公式为1r T +=()6622C 1rrrx x -⎛⎫+- ⎪⎝⎭=()()626C 21r r rr x x ---+,其中()66rx -+的展开式的通项公式为1k T +=66C kr kr x---,当0r =时,60r k --=,6k ∴=,常数项为()00666C C 2-;当1r =时,62r k --=,3k ∴=,常数项为()1365C C 2-;当2r =时,64r k --=,0k ∴=,常数项为()22064C C 2-;故常数项为()00666C C 2-+()1365C C 2-+()22064C C 259-=-.故选:D【例4-2】(2023·广东广州)()522x x y +-的展开式中52x y 的系数为(用数字作答).【答案】120【解析】由于()22522x y x y x =⋅⋅,所以()522x x y +-的展开式中含52x y 的项为()()222211252532C 2C C 120x x y x y ⨯⨯-=,所以()522x x y +-的展开式中52x y 的系数为120.故答案为:120【一隅三反】1(2023上·高二课时练习)()52123x x +-的展开式中5x 的系数为.【答案】92【解析】()()()5552123113x x x x +-=-+,又()51x -展开式的通项()()5155C 1C 1,0,1,2,3,4,5rrr r r r r T x x r -+=-=-=,()513x +展开式的通项()5155C 13C 3,0,1,2,3,4,5kk k k k k k S x x k -+===,所以含5x 的项为162534435261T S T S T S T S T S T S ++⋅+⋅++则含5x 的系数()()()()()()012345055144233322411500555555555555C 1C 3C 1C 3C 1C 3C 1C 3C 1C 3C 1C 392-+-+-+-+-+-=.故答案为:92.2.(2024·福建)412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为()A .72-B .70-C .70D .72【答案】C【解析】方法一:8412xx ⎛⎫+-= ⎪⎝⎭展开式中,第()1r +项()84188C 1C rrrrrr r T x--+⎛==- ⎝,所以常数项为()44581C 70T =-=,方法二:441122x x x x ⎡⎤⎛⎫=- ⎪⎛⎫+-+ ⎢⎭⎝⎣⎪⎭⎥⎝⎦展开式中,第()1r +项()4141C 2rrrr T x x -+⎛⎫=-+ ⎪⎝⎭,当0r =时,()4041C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为24C 6=;当2r =时,()22241C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为21424C C 48⨯=;当4r =时,()04441C 216x x ⎛⎫-+= ⎪⎝⎭,所以412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为70,故选:C .3.(2023上·河北唐山)()423a b c --的展开式中2abc 的系数为()A .208B .216-C .217D .218-【答案】B【解析】根据二项式定理可得,()423a b c --的展开式中,含2abc 的项为()()211122432C C 2C 3216a b c abc ⋅⋅⋅-⋅⋅-=-.所以,()423a b c --的展开式中2abc 的系数为216-.故选:B.考法五(二项式)系数的最值【例5-1】(2023上·辽宁朝阳·高三建平县实验中学校联考阶段练习)在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()A .第3项B .第4项C .第5项D .第3项和第4项【答案】B【解析】二项式612x ⎫⎪⎭的展开式共有7项,则二项式系数最大的是第4项.故选:B.【例5-2】(2023·四川雅安)10(1)x -的展开式中,系数最小的项是()A .第4项B .第5项C .第6项D .第7项【答案】C【解析】依题意,10(1)x -的展开通项公式为()11010C ()(1)N C 010,r r r r r r T x x r r +≤≤=-=∈-,其系数为10(1)C r r-,当r 为奇数时,10(1)C r r-才能取得最小值,又由二项式系数的性质可知,510C 是{}10C r 的最大项,所以当=5r 时,10(1)C r r-取得最小值,即第6项的系数最小.故选:C .【一隅三反】1.(2022·重庆)(多选)若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A .第4项B .第5项C .第6项D .第7项【答案】BC【解析】 1n x x ⎛⎫+ ⎪⎝⎭的展开式的通项为211rr n r r n rr n n T C x C x x --+⎛⎫== ⎪⎝⎭,因为展开式中第3项与第8项的系数相等,∴27nnC C =,所以9n =,则91x x ⎛⎫+ ⎪⎝⎭展开式中二项式系数最大的项为第5项和第6项;故选:BC .2.(2024·海南)在()1nx +的二项展开式中,系数最大的项为3x 和4x ,则展开式中含x 项的系数为.【答案】7【解析】()1C 0,1,,kn kk n T xk n -+==⋅⋅⋅,因为系数最大的项为3x和4x ,所以n 为奇数,1142n n +⎛⎫--= ⎪⎝⎭,且132n n +-=,解得7n =.所以含x 项的系数为67C 7=.故答案为:73.(2023·上海嘉定)已知6(12)x +的二项展开式中系数最大的项为.【答案】4240x 【解析】设系数最大的项为()61C 2kkk T x +=,则11661166C 2C 2C 2C 2k k k k k k k k ++--⎧⋅≥⋅⎨⋅≥⋅⎩,解得111433k ≤≤,因为06k ≤≤且k 为整数,所以4k =,此时最大的项为()44456C 2240T x x ==.故答案为:4240x 4.(2023·上海)二项式()71x -的展开式中,系数最大的项为.【答案】335x 【解析】()71x -展开式通项公式为()717C 1rr rr T x -+=-,07r ≤≤且r 为整数.要想系数最大,则r 为偶数,其中()007717C 1T x x =-=,()225537C 121T x x =-=,()44357C 135T x x 3=-=,()6677C 17T x x =-=,显然系数最大项为3535T x =.故答案为:335x 考法六(二项式)系数和--赋值法【例6-1】(2023·广东佛山)(多选)已知()()()()102108012102111x x a a x a x a x ++=+++++++ ,则下列结论正确的是()A .02a =B .217a =C .13579384a a a a a ++++=D .0121023116144a a a a ++++= 【答案】ACD【解析】对于A ,令=1x -,则1080(12)(1)112a =-++-=+=,故A 正确;对于B ,因为108108(2)[(1)1][(1)1]x x x x ++=++++-,所以8662108C C (1)73a =+⋅-=,B 错误;对于C ,令0x =,则10011021024a a a +++== ,令2x =-,则8012102256a a a a -+-+== ,所以1357910242563842a a a a a -++++==,故C 正确;对于D ,由选项B 可知,977564110831084108C C (1)2,C C 64,C C 280a a a =+-==+⨯=-==,5342312510861087108810C C 196,C C 238,C C 112,C 146,a a a a =-==+==-==+=109101010C 10,C 1a a ====,所以01210231122237346452806196a a a a +++⋯+=+⨯+⨯+⨯+⨯+⨯7238811294610101116144+⨯+⨯+⨯+⨯+⨯=,故D 正确.故选:ACD.【例6-2】(2023·广东佛山)(多选)若5250125(1)(1)(1)x a a x a x a x =+-+-++- ,其中(0,1,,5)i a i = 为实数,则()A .01a =B .310a =C .13516a a a ++=-D .1251a a a +++= 【答案】AC【解析】令1x =可得01a =,A 正确.()5511x x =-+,其展开式的第三项是()()33235C 1101T x x =-=--,所以310a =-,B 不正确.令0x =可得01250a a a a ++++= ,所以1251a a a +++=- ,D 不正确.令2x =可得012532a a a a -++-= ,与01250a a a a ++++= 相减可得13516a a a ++=-,C 正确.故选:AC【一隅三反】1.(2023·河北)(多选)若()()20232320230123202332R x a a x a x a x a x x -=+++++∈ ,则()A .202302a =B .20230242022152a a a a -++++=C .20231352023512a a a a --++++=D .20233202312232023213333a a a a ++++=- 【答案】BD【解析】对于A ,当0x =时,()20232023022a =-=-,A 错误;对于B ,C ,当1x =时,20230123202311a a a a a +++++== ,当=1x -时,20230123202220235a a a a a a -+-++-=- ,所以20230242022152a a a a -++++= ,13a a+202352023512a a ++++= ,所以B 正确,C 错误;对于D ,当13x =时,20232023120220231323333a a a a ⎛⎫⨯-=++++ ⎪⎝⎭,所以()20232023123202302320231213333a a a a a ++++=--=- ,D 正确.故选:BD .2.(2023·江苏扬州·高二统考期中)(多选)()201212nn n x a a x a x a x -=++++ 的展开式中第3项和第11项的二项式系数相等,则以下判断正确的是()A .第7项的二项式系数最大B .所有奇数项二项式系数的和为132C .21212121222a a a+++=- D .12312231212a a a a ++++=- 【答案】AC【解析】由题意,可得210C C n n =,所以12n =,对于A 中,根据二项式定理的性质,可得中间项第7项的二项式系数最大,所以A 正确;对于B 中,根据二项式系数的性质,可得所有奇数项二项式系数的和为112,所以B 错误;对于C 中,对于C 中,令12x =,可得1212122102(11)0222a a a a ++++=-= ,令0x =,可得01a =,所以21212121222a a a +++=- ,所以C 正确;对于D 中,由()122120121212x a a x a x a x -=++++ ,可得()122120121212()x a a x a x a x '⎡⎤-=++++⎣⎦' ,即2111231211224(12)312a a x a x x a x -=+++-+ ,令1x =,可得1231112231224(12)24a a a a =+--+⨯+=+ ,所以D 错误.故选:AC.3.(2024·黑龙江·高二校联考期末)(多选)若()82801281(1)(1)x a a x a x a x =+-+-++- ,其中0128,,,,a a a a 为实数,则()A .01a =B .656a =C .1357128a a a a +++=D .2468128a a a a +++=【答案】AC【解析】令1t x =-,则原式转化为8280128(1)t a a t a t a t +=++++ ,对A ,令0=t ,得01a =,故A 正确;对B ,由二项式定理得6a =28C 28=,故B 错误;对CD ,令1t =,得801282a a a a ++++= ,令1t =-,得01280a a a a -+-+= ,所以71357024682128a a a a a a a a a +++=++++==,所以2468127a a a a +++=,故C 正确,D 错误.故选:AC考法七余数与小数【例7-1】(2023下·河南郑州·高二校联考期中)108除以49所得的余数是.【答案】22【解析】法一:由10010198291010101010(71)C 7C 7...C 7C 718=+=+++++,前9项可以被49整除,而910C 71714922+==+,故余数为22.法二:由510564(58491)==+5423324549515491015491015495154915=+⨯⨯+⨯⨯+⨯⨯+⨯⨯+,而515759375491549722==⨯+,故余数为22.故答案为:22【例7-2】.(2023·高二课时练习)将50.991精确到0.01的近似值是.【答案】0.96【解析】因为()55011225550.99110.009C 1C 0.009C 0.00910.0450.000810.95581=-=⨯-⨯+⨯-≈-+= ,且将50.991精确到0.01,故近似值为0.96故答案为:0.96【一隅三反】1.(2023安徽)1.028的近似值是.(精确到小数点后三位)【答案】1.172【解析】由题意得:8801223388881.02(10.02)0.020.020.02 1.172C C C C =+≈+⋅+⋅+⋅≈.故答案为:1.1722.(2023上·河北)1098除以1000的余数是.【答案】24【解析】因为10101922899101010101010109(1002)100+C (2)100+C (2)10C 80(2)100+C (2)=-=⨯-⨯⨯-⨯++⨯-⨯⨯-L 101922891010=[100+C (2)100+C (2)100(2)1000]+1024⨯-⨯⨯-⨯++-⨯L 101922891010=[100+C (2)100+C (2)100(2)1000+1000]24⨯-⨯⨯-⨯++-⨯+L ,所以1098除以1000的余数是:24.故答案为:243.(2023下·江苏淮安·高二江苏省郑梁梅高级中学校考阶段练习)今天是星期日,经过7天后还是星期日,那么经过202315天后是()A .星期日B .星期一C .星期三D .星期四【答案】B【解析】()202320232023120222022202320231514114C 14C 141=+=+++⨯+ ,因为20231202220222023202314C 14C 14+++⨯ 能被7整除,所以202315除以7余1,所以经过202315天后是星期一.故选:B.4.(2024·甘肃武威)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下:天干:甲乙丙丁戊己庚辛壬癸地支:子丑寅卯辰巳午未申酉戌亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,L ,若天干用完,则再从第一个天干开始循环使用.已知2023年是癸卯年,则8132+年以后是年.【答案】丙午【解析】因为88817788132(121)212C 12C 123+=++=+⨯++⨯+ ,所以8132+年以后地支为“午”.因为8881777888132(103)210C 103C 10332+=++=+⨯⨯++⨯⨯++ ,又因为88326563,32+=+除以10余数为3,所以8132+年以后天干为“丙”,故8132+年以后是丙午年.故答案为:丙午考法八杨辉三角的应用【例8】(2023·广东广州)(多选)我国南宋数学家杨辉在1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.该表蕴含着许多的数学规律,下列结论正确的是()第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561…………A .3333434520232024C C C C C ++++= B .11111=,211121=,L ,51115101051=C .从左往右逐行数,第2023项在第63行第7个D .第5行到第10行的所有数字之和为2024【答案】AC【解析】对于A 选项,由组合数的计算性质()1*1C C C ,,m m m n n n m n m n -++=∈<N ,所以,3333433334520234452023C C C C C C C C ++++=++++ 433434552023202320232024C C C C C C =+++==+= ,A 对;对于B 选项,()555122334455555111101C 10C 10C 10C 1010=+=+⋅+⋅+⋅+⋅+15010001000050000100000161051=+++++=,B 错;对于C 选项,第()n n ∈N 行共有1n +项,从左往右逐行数,第n 行最后一项对应的项数为()()()1212312n n n n ++++++++= ,因为()()62162220162++=,且202320167=+,所以,从左往右逐行数,第2023项在第63行第7个,C 对;对于D 选项,第()*n n ∈N 行所有项之和为01C C C 2n n n n n ++=+ ,所以,第5行到第10行的所有数字之和为()565610212222201612-+++==- ,D 错.故选:AC.【一隅三反】1.(2023·山东青岛·高二校联考期中)(多选)我国南宋数学家杨辉1261年所著的《详解九章算法》一书中展示了二项式系数表,数学爱好者对杨辉三角做了广泛的研究.则下列结论正确的是()A .123367891C C C C +++=B .第2023行的第1012个和第1013个数最大C .第6行、第7行、第8行的第7个数之和为第9行的第7个数D .第34行中从左到右第14个数与第15个数之比为2:3【答案】ABD【解析】A 选项,123678768761C C C 168421321⨯⨯⨯+++=+++=⨯⨯⨯,39987C 84321⨯⨯==⨯⨯,故A 正确;B 选项,由图可知:第n 行有1n +个数字,如果n 是奇数,则第12n +和第112n ++个数字最大,且这两个数字一样大;如果n 是偶数,则第12n+个数字最大,故第2023行的第1012个和第1013个数最大,故B 正确;C 选项,第6行,第7行,第8行的第7个数字分别为:1,7,28,其和为36;第9行第7个数字是84,故C 错误;D 选项,依题意:第34行第14个数字是133434!C 13!21!=⨯,第34行第15个数字是143434!C 14!20!=⨯,所以133443434!C 213!21!2:334!C314!20!⨯===⨯,故D 正确.故选:ABD.2.(2024上·江西·高二校联考期末)杨辉三角(如下图所示)是数学史上的一个伟大成就,杨辉三角中从第2行到第2023行,每行的第3个数字之和为()A .32023C B .32024C C .32023C 1-D .32024C 1-【答案】B【解析】()()()()()()()1!C !1!!!+!!1!1!C 1!r r n n n r n n r n n r n r r n r r n r +⋅++⋅-=+=-+--+-()()()()()()11!11!1!!1!C !r n n n n r n r r n r ++⋅++===+-+-,由题意可得,第2行到第2023行,每行的第3个数字之和为2222322232223420233342023442023C C C C C C C C C C C ++++=++++=+++ 323202320232024C C C ==+= ,故选:B .3.(2023上·湖北)如图,“杨辉三角”是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,比欧洲发现早500年左右.现从杨辉三角第20行随机取一个数,该数大于2023的概率为()A .1321B .1320C .57D .34【答案】A【解析】由杨辉三角的性质知第20行的数为()20C 020,N ii i ≤≤∈,一共有21个数,其中012342020202020C 1,C 20,C 190,C 1140,C 48452023=====>,由杨辉三角的对称性可知,第20行中大于2023的数的个数为214231-⨯=,故所求概率为1321.故选:A.一.单选题1.(2023·四川南充)二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-【答案】B【解析】展开式的通项为()611216=C 2kkk k T x x --+骣琪-琪桫,所以()()161022k k k -+-´=Þ=,常数项为()2665C 24602k´-=´=,故选:B.2.(2023·河北)若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-= ,则012020a a a +++= ()A.1B.0C.20202D.20212【答案】C【解析】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=L Q ,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+L .故选:C.3.(2024上海)二项式30的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【答案】D【解析】二项式30的展开式中,通项公式为5153063030rr r r rC C x --⋅⋅=⋅,030r ≤≤,0,6,12,18,24,30r ∴=时满足题意,共6项.故选:D.4.(2023安徽省)在12nx ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中5x 的系数为()A.7-B.358-C.358D.7【答案】D【解析】因为在12n x ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大所以8n =所以812x ⎫-⎪⎭的展开式的通项88218811,0,1,2,,822rrrr r r r T C x C x r +-+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭令852r +=,得2r =所以展开式中5x 的系数为228172C ⎛⎫-= ⎪⎝⎭故选:D 5.(2023安徽)()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A.15B.20C.30D.35【答案】D【解析】因为()61x +展开式的通项为6C r r x ,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中含2x 的项为2261C x ⋅和3631x C x ⋅.因为2366152035C C +=+=,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为35.故选:D6.(2023下·四川达州·高二统考期末)()3212x x -+的展开式中,3x 的系数为()A .20B .20-C .15-D .15【答案】B 【解析】()()632112x x x --+=,其展开式的通项为:()616C 1rrr r T x -+=⋅⋅-,取3r =得到3x 的系数为()336C 120⋅-=-.故选:B .7.(2023云南)在71x x ⎛⎫- ⎪⎝⎭的二项展开式中,系数最大的是第()项A.3B.4C.5D.6【答案】C【解析】在二项式71x x ⎛⎫- ⎪⎝⎭的展开式中,通项公式为772+177()()r r r r r r rr T C x x C x ---=⋅⋅-=-,故第r +1项的系数为7(1)r rC -,当0,2,4,6r =时,系数为正,因为0162477777C C C C C <=<<,所以当r =4时,系数最大的项是第5项.故选:C8.(2023·江西赣州·)在52x x ⎛⎫- ⎪⎝⎭的展开式中,下列说法不正确的是()A .不存在常数项B .所有二项式系数的和为32C .第3项和第4项二项式系数最大D .所有项的系数和为1【答案】D【分析】根据给定的二项式,写出展开式判断A ;利用二项式性质判断BC ;利用赋值法计算判断D 作答.【详解】523450514233245555555222222C C C C C C x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+⋅-+⋅-+⋅-+⋅-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭53358080321040x x x x x x =-+-+-,因此在52(x x-的展开式中没有常数项,A 正确;52(x x-的展开式的所有二项式系数的和为5232=,B 正确;52(x x -的展开式的第3项和第4项二项式系数相等,并且最大,C 正确;当1x =时,52(x x-的展开式的所有项的系数和为5(1)1-=-,D 错误.故选:D二.多选题9.(2024·辽宁辽阳)若2nx⎛⎝展开式的二项式系数之和为64,则下列结论正确的是()A .该展开式中共有6项B .各项系数之和为1C .常数项为60-D .只有第4项的二项式系数最大【答案】BD【解析】因为二项式系数之和为64,即有264n =,所以6n =,则该展开式中共有7项,A 错误;令1x =,得该展开式的各项系数之和为1,B 正确;通项()()36662166C 21C 2rr rr r r rr T x x---+⎛=⋅⋅=-⋅⋅⋅ ⎝,令3602r -=,得4r =,()442561C 260T =-⨯⨯=,C 错误;二项式系数最大的是36C ,它是第4项的二项式系数,D 正确.故选:BD.10.(2023·辽宁朝阳)已知2,n ,8成等差数列,则在12nx x ⎛⎫- ⎪⎝⎭的展开式中,下列说法正确的是()A .二项式系数之和为32B .各项系数之和为1C .常数项为40D .展开式中系数最大的项为80x【答案】ABD【解析】由题意可得:22810n =+=,则5n =,对于选项A :二项式系数之和为5232=,故A 正确;对于选项B :令1x =,可得各项系数之和为()5211-=,故B 正确;对于选项C 、D :因为512x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为:()()55521551C 21C 2,0,1,2,3,4,5rrr r r r rr T x x r x ---+⎛⎫=-=-⋅⋅= ⎪⎝⎭,所以553135123280804010x x x x x x x x ---⎛⎫-=-+-+- ⎪⎝⎭,展开式中没有常数项,故C 错误;展开式中系数最大的项为80x ,故D 正确;故选:ABD.11.(2022上·辽宁本溪·高二校考期末)若202123202101232021(12)(R)x a a x a x a x a x x -=+++++∈ ,则()A .01220211a a a a ++++=-LB .20211352021312a a a a +++++=C .20210242020132a a a a -++++=D .123202123202112222a a a a++++=- 【答案】AD【解析】由题意,当0x =,2021011a ==,当1x =时,202101232021(1)1a a a a a +++++=-=- ,A 正确;当=1x -时,2021012320213a a a a a -+-+-= ,所以20211352021312a a a a +++++=- ,20210242020312a a a a -++++= ,B ,C 错误;2202120211212202122021111222222a a a a a a ⎛⎫⎛⎫+++=⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,当12x =时,2202101220211110222a a a a ⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,所以2202112202101111222a a a a ⎛⎫⎛⎫⨯+⨯++⨯=-=- ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:AD .12.(2023下·河北沧州·高二统考期中)已知()112110121123x a a x a x a x -=++++ ,则()A .111231112a a a a ++++=-- B .11135791115a a a a a a +++++=-C .11111231152a a a a ++++=- D .12311231133a a a a ++++=- 【答案】ACD【解析】因为()112110121123x a a x a x a x -=++++ ,令0x =可得1102a =,令1x =可得()11012112311a a a a ++++=-⨯=- ①,所以111231112a a a a ++++=-- ,故A 正确;令=1x -可得()1111012310112315a a a a a a -+-++-=+⨯= ②,①-②得111357911152a a a a a a --+++++=,故B 错误;①+②得110246810152a a a a a a -++++++=,又()1123x -展开式的通项为()11111C 23rrr r T x -+=⋅⋅-(011r ≤≤且N r ∈),所以当r 为奇数时展开式系数为负数,当r 为偶数时展开式系数为正数,即0246810,,,,,0a a a a a a >,1357911,,,,,0a a a a a a <,所以12311a a a a ++++ 1111123101152a a a a a =-+-++-=- ,故C 正确;将()112110121123x a a x a x a x -=++++ 两边对x 求导可得:()102101231133232311x a a x a x a x --=++++ ,再令1x =可得()101231123113323133a a a a ++++=--⨯=- ,故D 正确;故选:ACD 三.填空题13.(2023下·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,则n 的值为.【答案】6【解析】由012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,可得001112220C 1(4)C 1(4)C 1(4)C 1(4)729n n n n nn n n n--⋅⋅-+⋅⋅-+⋅⋅-++⋅⋅-= 则(14)729n -=,即6(3)729(3)n -==-,解得6n =.故答案为:6.14.(2023下·山西吕梁·高二统考阶段练习)20242023被4除的余数为.【答案】1【解析】因为20242024020241202322022202320242024202420242023(20241)C 2024C 2024C 2024C 20241=-=-+--+ ,且2024可以被4整除,所以余数为1.故答案为:1.15.(2023·北京)()82212x x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项为.(用数字作答)【答案】2464-【解析】82x x ⎛⎫+ ⎪⎝⎭的展开式的通项8821882C C 2rr r r r rr T x x x --+⎛⎫=⋅= ⎪⎝⎭(0r =,1,2, (8).当4r =时,其展开式的常数项为448C 21120=;当=5r 时,其展开式中21x的系数为558C 21792=,则()82212x x x ⎛⎫-⋅+ ⎪⎝⎭的展开式中常数项为1120217922464-⨯=-.故答案为:2464-16.(2023上·山东·高二校联考阶段练习)()21nx x ++展开式中各项的系数可以仿照杨辉三角构造如图所示的广义杨辉三角,其性质是以下各行每个数是它正上方和左、右两边三个数的和(不足3个数时,用0补上),则()52(3)1x x x -++的展开式中,7x 项的系数为.【答案】45-【解析】根据题意,可得广义杨辉三角如图所示,可知()521x x ++的展开式中,6x 项的系数为745,x 项的系数为30,所以()()5231x x x -++的展开式中,7x 项的系数为14533045⨯-⨯=-.故答案为:45-四.解答题17.(2023·广东梅州)在二项式()92x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有偶数项系数之和;(4)系数绝对值之和.【答案】(1)512(2)1(3)9841-(4)19683【解析】(1)设()99872901292.x y a x a x y a x y a y -=++++ 二项式系数之和为012999999C C C C 2512++++== (2)设9987290129()2x y a x a x y a x y a y -=++++ ,则各项系数之和为0129a a a a ++++ ,令1,1,x y ==得()9012921 1.a a a a ++++=-= (3)由(2)知01291,a a a a ++++= 令1,1x y ==-可得:901293,a a a a -+--= 将两式相减,可得:9135791398412a a a a a -++++==-,故所有偶数项系数之和为9841-.(4)方法一:012901239,a a a a a a a a a ++++=-+-+- 令1,1,x y ==-则9012901239319683a a a a a a a a a ++++=-+-+-== 方法二:0129a a a a ++++ 即为()92x y +展开式中各项系数和,令1,1x y ==得90129319683a a a a ++++== 故系数绝对值之和为19683.18.(2023·全国·高二随堂练习)(1)求92x⎛⎝的展开式中的常数项;(2)若621x ax ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为52,求a 的值;(3)求(10611⎛⎝的展开式中的常数项;(4)若3nx ⎛⎫⎝的展开式中各项系数之和为128,求展开式中31x 的系数.【答案】答案见详解【解析】(1)设92x⎛⎝的展开式通项为:1r T +,则()()1199922199C 2C 21r r rr rr rr T x x r x -----+⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪⎝⎭,当6r =时,6379C 2672T =⨯=;故92x⎛⎝的展开式中的常数项为672;(2)设621x ax ⎛⎫+ ⎪⎝⎭的展开式通项为:1r T +,则()62112316611C C r rrrr r r T xx x a a ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,当3r =时,结合题意知此时3333334661515C C 222T x x a a a ⎛⎫⎛⎫=⋅⋅=⇒⋅=⇒= ⎪ ⎪⎝⎭⎝⎭;故a 的值为2;(3)设(10611⎛⎫ ⎪⎝⎭、的展开式通项分别为:11r m T H ++、,则3416110C C r m rm r m Tx H x -++==、,当0r m ==时,111T H ⨯=,当3,4r m ==时,454200T H ⨯=,当6,8r m ==时,7945T H ⨯=故(10611⎛⎝的展开式中的常数项为14200454246++=;(4)令1x =,则由题意可知21287n n =⇒=,设3nx ⎛⎫ ⎝的展开式通项为1r T +,则()()2577733177C 3C 31rrr r r r r r T x x x ----+⎛⎫=-=- ⎪⎝⎭,当6r =时,63377C 321T x x --=⨯=,故展开式中31x 的系数为21.19.(2023上·四川攀枝花·高二统考期末)从①第4项的系数与第2项的系数之比是74;②第3项与倒数第2项的二项式系数之和为36;这两个条件中任选一个,再解决补充完整的题目.已知()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*N n ∈),且()21nx -的二项展开式中,____.(1)求n 的值;(2)①求二项展开式的中间项;②求123n a a a a +++⋅⋅⋅+的值.【答案】(1)条件选择见解析,8n =(2)①451120T x =;②831-.【解析】(1)若选择①第4项的系数与第2项的系数之比是74,则有()()()()()()33113112C 211273214244C 21 nn n n n n n n n n ----⋅⋅---⨯⨯=⋅⋅-==,化简可得24400n n --=,求得8n =或7n =-(舍去).若选择②第3项与倒数第2项的二项式系数之和为36,则有()221211C CC C 3622n nnnnn n n nn --+++=+===,化简可得2720n n +-=,求得8n =或9n =-(舍去).(2)由(1)可得8n =,①()821x -的二项展开式的中间项为()()454458C 211120T x x =⋅⋅-=.②二项式()821x -展开式的通项公式为()()()88888C 2112C rrrrr rr x x ---⋅⋅-=-⋅⋅⋅,所以0a 、2a 、4a 、6a 、8a 为正数,1a 、3a 、5a 、7a 为负数.在()828012821x a a x a x a x -=+++⋅⋅⋅+中,令00,1x a ==.再令1x =-,可得801238123831a a a a a a a a a =-+-+⋅⋅⋅+=++++⋅⋅⋅+,∴1238831a a a a +++⋅⋅⋅+=-.20.(2023下·江苏宿迁·高二统考期中)在()2021212222121D D D D D nn n n n nn n n n n x x x x x x ---++=+++++L 的展开式中,把0122,,,D D D D ,nn n n n 叫做三项式的n 次系数列.(1)求02463333D D D D +++的值;(2)根据二项式定理,将等式2(1)(1)(1)n n n x x x +=++的两边分别展开,可得左右两边的系数对应相等,如()()()()2222122C C C C C n n n nnnn=++++ ,利用上述思想方法,求001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- 的值.【答案】(1)14(2)0【解析】(1)230615563333(1)D D D D x x x x x ++=++++ 令1x =得:3015633333D D D D =++++ ①令=1x -得:015633331D D D D =-+-+ ②①+②得:02463333282(D D D D )=+++,所以02463333D D D D 14+++=.(2)因为321(1)(1)x x x x -=-++所以()202332023220231(1)(1)x x x x -=-++,右边展开式中含4046x 项的系数为001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- ,而展开式中左边含4046x 项的系数为0,所以001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C 0-+--+-= .21.(2023北京)在()20122112121221D D D D D D D nr r r r n n n nn n n n n n n x x x x x x x x ++--++=+++⋅⋅⋅+++⋅⋅⋅++中,把0122D ,D ,D ,,D nn n n n ⋅⋅⋅叫做三项式系数.(1)当2n =时,写出三项式系数0123422222D ,D ,D ,D ,D 的值;(2)()()*na b n N +∈的展开式中,二项式系数可用杨辉三角表示,如图:第1行11第2行121第3行1331第4行14641第5行15101051…………当04n <≤,*n ∈N 时,类比杨辉三角,请列出三项式系数表;(3)求011223398989999999999999999999999999999D C D C D C D C D C D C -+-+⋅⋅⋅+-的值(可用组合数作答).【答案】(1)02D 1=,12D 2=,22D 3=,32D 2=,42D 1=;(2)系数表见解析;(3)3399C .【解析】(1)因为()2223411232x x x x x x ++=++++,所以02D 1=,12D 2=,22D 3=,32D 2=,42D 1=.(2)当04n <≤,*n ∈N 时,三项式系数表如下:第1行111第2行12321第3行1367631第4行14101619161041(3)()()()9999201223319719719819899999999999911D D D D D D x x x x x x x x++⋅-=++++⋅⋅⋅++()09919829798999999999999C C C C C x x x x ⋅-+-⋅⋅⋅++,其中含99x 项的系数为0011229898999999999999999999999999D C D C D C D C D C -+-⋅⋅⋅+-,又()()()99999923111x x x x ++⋅-=-,()9931x -的展开式中的第1r +项为()()9931991C rrrr T x -+=-,令()39999r -=,解得66r =,所以含99x 项的系数为66339999C C =;所以001122339898999966339999999999999999999999999999D C D C D C D C D C D C C C -+-+⋅⋅⋅+-==.22.(2023上·上海松江·高二上海市松江二中校考阶段练习)已知函数()y f x =,*x ∈N ,满足:①对任意*,a b ∈N ,都有()()()()af a bf b af b bf a +>+;②对任意*n ∈N 都有()3f f n n ⎡⎤=⎣⎦.(1)试证明:()f x 为*N 上的严格增函数;(2)求()()()1628f f f ++;(3)令()3nn a f =,*n ∈N ,试证明:121111424n n n a a a ≤+++<+ .【答案】(1)证明见解析(2)66。
高考专题 二项式定理(全解析)

1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理 概 念 篇【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开.解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3+C 44(-2b )4=a 4-8a 3b +24a 2b 2-32ab 3+16b 4.说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略.【例2】展开(2x -223x)5. 分析一:直接用二项式定理展开式.解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-223x )3+ C 45 (2x )(-223x )4+C 55(-223x)5 =32x 5-120x 2+x 180-4135x+78405x -1032243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开.解法二:(2x -223x)5=105332)34(x x=10321x[C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5]=10321x(1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x+78405x -1032243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例3】在(x -3)10的展开式中,x 6的系数是 .解法一:根据二项式定理可知x 6的系数是C 410.解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10-r (-3)r .令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确.如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 410.说明:要注意区分二项式系数与指定某一项的系数的差异.二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项式无关,后者与二项式、二项式的指数及项数均有关.【例4】已知二项式(3x -x32)10, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.分析:直接用二项式定理展开式.解:(3x -x 32)10的展开式的通项是T r +1=C r10(3x )10-r (-x32)r (r =0,1,…,10).(1)展开式的第4项的二项式系数为C 310=120. (2)展开式的第4项的系数为C 31037(-32)3=-77760. (3)展开式的第4项为-77760(x )731x ,即-77760x . 说明:注意把(3x -x 32)10写成[3x +(-x 32)]10,从而凑成二项式定理的形式. 【例5】求二项式(x 2+x21)10的展开式中的常数项.分析:展开式中第r +1项为C r10(x 2)10-r (x21)r ,要使得它是常数项,必须使“x ”的指数为零,依据是x 0=1,x ≠0.解:设第r +1项为常数项,则T r +1=C r10(x 2)10-r(x21)r =C r10x r 2520-(21)r (r =0,1,…,10),令20-25r =0,得r =8. ∴T 9=C 810(21)8=25645. ∴第9项为常数项,其值为25645. 说明:二项式的展开式的某一项为常数项,就是这项不含“变元”,一般采用令通项T r +1中的变元的指数为零的方法求得常数项.【例6】 (1)求(1+2x )7展开式中系数最大项; (2)求(1-2x )7展开式中系数最大项.分析:利用展开式的通项公式,可得系数的表达式,列出相邻两项系数之间关系的不等式,进而求出其最大值.解:(1)设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--,2C 2C ,2C 2C 11771177r r r r r r r r即⎪⎪⎩⎪⎪⎨⎧--+≥-+--≥---,2!)17(!)1(!72!)7(!!7,2!)17(!)1(!72!)7(!!711r r r rr r r r r r r r化简得⎪⎪⎩⎪⎪⎨⎧≥≤⎪⎪⎩⎪⎪⎨⎧+≥--≥.313,316.1271,812r r r r r r 解得又∵0≤r ≤7,∴r =5.∴系数最大项为T 6=C 5725x 5=672x 5.(2)解:展开式中共有8项,系数最大项必为正项,即在第一、三、五、七这四项中取得.又因(1-2x )7括号内的两项中后两项系数的绝对值大于前项系数的绝对值,故系数最大值必在中间或偏右,故只需比较T 5和T 7两项系数的大小即可.667447)2(C )2(C --=1737C 4C >1,所以系数最大项为第五项,即T 5=560x 4.说明:本例中(1)的解法是求系数最大项的一般解法,(2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁.【例7】 (1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26,解得n =8. (1+2x )8的展开式中,二项式系数最大的项为T 5=C 4n (2x )4=1120x 4.设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--.2C 2C ,2C 2C 11771177r r r r r r r r∴5≤r ≤6.∴r =5或r =6.∴系数最大的项为T 6=1792x 5,T 7=1792x 6.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大;n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,再解不等式的方法求得.应 用 篇【例8】若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈Z ),则b n 的值( ) A.一定是奇数 B.一定是偶数C.与b n 的奇偶性相反D.与a 有相同的奇偶性分析一:形如二项式定理可以展开后考查.解法一:由(2+1)n =2a n +b n ,知2a n +b n =(1+2)n=C 0n +C 1n2+C 2n (2)2+C 3n (2)3+ … +C n n (2)n .∴b n =1+C 2n (2)2+C 4n (2)4+ …∴b n 为奇数. 答案:A分析二:选择题的答案是唯一的,因此可以用特殊值法. 解法二:n ∈N *,取n =1时,(2+1)1=(2+1),有b 1=1为奇数.取n =2时,(2+1)2=22+5,有b 2=5为奇数.答案:A【例9】若将(x +y +z )10展开为多项式,经过合并同类项后它的项数为( ) A.11 B.33 C.55 D.66分析:(x +y +z )10看作二项式10)(][z y x ++展开.解:我们把x +y +z 看成(x +y )+z ,按二项式将其展开,共有11“项”,即(x +y +z )10=10)(][z y x ++=∑=1010Ck k(x +y )10-k z k .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式(x +y ) 10-k 展开,不同的乘积C k10(x +y )10-k z k (k =0,1,…,10)展开后,都不会出现同类项.下面,再分别考虑每一个乘积C k10(x +y )10-k z k (k =0,1,…,10).其中每一个乘积展开后的项数由(x +y )10-k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为11+10+9+…+1=66.答案:D说明:化三项式为二项式是解决三项式问题的常用方法.【例10】求(|x |+||1x -2)3展开式中的常数项.分析:把原式变形为二项式定理标准形状. 解:∵(|x |+||1x -2)3=(||x -||1x )6, ∴展开式的通项是T r +1=C r6(||x )6-r (-||1x )r =(-1)r C r6(||x )6-2r . 若T r +1为常数项,则6-2r =0,r =3.∴展开式的第4项为常数项,即T 4=-C 36=-20.说明:对某些不是二项式,但又可化为二项式的题目,可先化为二项式,再求解. 【例11】求(x -3x )9展开式中的有理项.分析:展开式中的有理项,就是通项公式中x 的指数为整数的项.解:∵T r +1=C r9(x21)9-r (-x 31)r =(-1)r C r9x627r -.令627r -∈Z ,即4+63r-∈Z ,且r =0,1,2,…,9. ∴r =3或r =9.当r =3时,627r -=4,T 4=(-1)3C 39x 4=-84x 4.当r =9时,627r -=3,T 10=(-1)9C 99x 3=-x 3.∴(x -3x )9的展开式中的有理项是第4项-84x 4,第10项-x 3. 说明:利用二项展开式的通项T r +1可求展开式中某些特定项. 【例12】若(3x -1)7=a 7x 7+a 6x 6+ … +a 1x +a 0,求 (1)a 1+a 2…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.分析:所求结果与各项系数有关可以考虑用“特殊值”法,整体解决. 解:(1)令x =0,则a 0=-1,令x =1,则a 7+a 6+ … +a 1+a 0=27=128.①∴a 1+a 2+…+a 7=129.(2)令x =-1,则a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=(-4)7.②由2)2()1(-得:a 1+a 3+a 5+a 7=21[128-(-4)7]=8256.(3)由2)2()1(+得a 0+a 2+a 4+a 6=21[128+(-4)7]=-8128.说明:(1)本解法根据问题恒等式特点来用“特殊值”法,这是一种重要的方法,它用于恒等式.(2)一般地,对于多项式g (x )=(px +q )n =a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,g (x )各项的系数和为g (1),g (x )的奇数项的系数和为21[g (1)+g (-1)],g (x )的偶数项的系数和为21[g (1)-g (-1)].【例13】证明下列各式(1)1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n;(2)(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2; (3)C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 分析:(1)(2)与二项式定理的形式有相同之处可以用二项式定理,形如数列求和,因此可以研究它的通项寻求规律.证明:(1)在二项展开式(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+ … +C 1-n n ab n -1+C n n b n 中,令a =1,b =2,得(1+2)n =1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n ,即1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n .(2)(1+x )n (1+x )n =(1+x )2n ,∴(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )=(1+x )2n .而C n n 2是(1+x )2n 的展开式中x n 的系数,由多项式的恒等定理,得 C 0n C n n +C 1n C 1-n n + … +C 1n C 1-n n +C n n C 0n =C n n 2. ∵C m n =C m n n-,0≤m ≤n , ∴(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2.(3)证法一:令S =C 1n +2C 2n +3C 3n + … +n C n n . ①令S =C 1n +2C 2n + … +(n -1)C 1-n n +n C n n =n C n n +(n -1)C 1-n n + … +2C 2n +C 1n =n C n n +(n -1)C 1n + … +2C 2-n n+C 1-n n . ②由①+②得2S =n C 1n +n C 2n +n C 3n + … +n C n n =n (C n n +C 1n +C 2n +C 3n + … +C nn ) =n (C 0n +C 1n +C 2n +C 3n + … +C n n )=n 2n .∴S =n 2n -1,即C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 证法二:观察通项:k C k n =k 11C !)(!)1(!)1(!)(!--=---=-k n n k n k n n k n k n .∴原式=n C 01-n +n C 11-n +n C 21-n +n C 31-n + … +n C 11--n n =n (C 01-n +C 11-n +C 21-n +C 31-n +…+C 11--n n )=n 2n -1, 即C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 说明:解法二中k C k n =n C 11--k n 可作为性质记住. 【例14】求1.9975精确到0.001的近似值.分析:准确使用二项式定理应把1.997拆成二项之和形式如1.997=2-0.003.解:1.9975=(2-0.003)5=25-C 15240.003+C 25230.0032-C 35220.0033+…≈32-0.24+0.00072≈31.761.说明:利用二项式定理进行近似计算,关键是确定展开式中的保留项,使其满足近似计算的精确度.【例15】求证:5151-1能被7整除.分析:为了在展开式中出现7的倍数,应把51拆成7的倍数与其他数的和(或差)的形式.证明:5151-1=(49+2)51-1=C 0514951+C 15149502+ … +C 505149·250+C 5151251-1,易知除C 5151251-1以外各项都能被7整除.又251-1=(23)17-1=(7+1)17-1=C17717+C117716+ … +C16177+C1717-1=7(C 017716+C 117715+…+C 1617).显然能被7整除,所以5151-1能被7整除.说明:利用二项式定量证明有关多项式(数值)的整除问题,关键是将所给多项式通过恒等变形变为二项式形式,使其展开后的各项均含有除式.创 新 篇【例16】已知(x lg x +1)n 的展开式的最后三项系数之和为22,中间一项为20000.求x . 分析:本题看似较繁,但只要按二项式定理准确表达出来,不难求解!解:由已知C n n +C 1-n n +C 2-n n=22,即n 2+n -42=0. 又n ∈N *,∴n =6. T 4为中间一项,T 4=C 36 (x lg x )3=20000,即(x lg x )3=1000. x lg x =10.两边取常用对数,有lg 2x =1,lg x =±1,∴x =10或x =101.说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项公式,根据已知条件列出等式或不等式进行求解.【例17】设f (x )=(1+x )m +(1+x )n (m ,n ∈N *),若其展开式中关于x 的一次项的系数和为11,问m ,n 为何值时,含x 2项的系数取最小值?并求这个最小值.分析:根据已知条件得到x 2的系数是关于x 的二次表达式,然后利用二次函数性质探讨最小值问题.解:C 1m +C 1n =n +m =11. C 2m+C 2n=21(m 2-m +n 2-n )=21122-+n m ,∵n ∈N *,∴n =6或5,m =5或6时,x 2项系数最小,最小值为25. 说明:本题是一道关于二次函数与组合的综合题.【例18】若(x +x1-2)n 的展开式的常数项为-20,求n . 分析:题中x ≠0,当x >0时,把三项式(x +x 1-2)n 转化为(x -x1)2n ;当x <0时,同理(x +x 1-2)n =(-1)n (x -x1)2n .然后写出通项,令含x 的幂指数为零,进而解出n .解:当x >0时,(x +x 1-2)n =(x -x1)2n ,其通项为T r +1=C r n 2(x )2n -r (-x1)r =(-1)r C r n2(x )2n -2r . 令2n -2r =0,得n =r ,∴展开式的常数项为(-1)r C n n 2; 当x <0时,(x +x 1-2)n =(-1)n (x -x1)2n .同理可得,展开式的常数项为(-1)r C n n 2. 无论哪一种情况,常数项均为(-1)r C n n 2.令(-1)r C n n 2=20.以n =1,2,3,…,逐个代入,得n =3. 说明:本题易忽略x <0的情况.【例19】利用二项式定理证明(32)n -1<12+n .分析:12+n 不易从二项展开式中得到,可以考虑其倒数21+n . 证明:欲证(32)n -1<12+n 成立,只需证(23)n -1<21+n 成立.而(23)n -1=(1+21)n -1=C 01-n +C 11-n 21+C 21-n (21)2+ … +C 11--n n (21)n -1 =1+21-n +C 21-n (21)2+ … +C 11--n n (21)n -1>21+n .说明:本题目的证明过程中将(23)n -1转化为(1+21)n -1,然后利用二项式定理展开式是解决本问题的关键.【例20】求证:2≤(1+n1)n <3(n ∈N *).分析:(1+n1)n 与二项式定理结构相似,用二项式定理展开后分析.证明:当n =1时,(1+n 1)n =2.当n ≥2时,(1+n 1)n =1+C 1n n 1+C 2n 21n + … +C n n (n 1)n =1+1+C 2n 21n+ … +C n n (n 1)n>2. 又C k n (n 1)k =knk k n n n !)1()1(+-- ≤!1k ,所以(1+n 1)n ≤2+!21+!31+ … +!1n <2+211⋅+321⋅+ … +n n ⋅-)1(1=2+(1-21)+(21-31)+ … +(11-n -n1) =3-n1<3. 综上有2≤(1+n1)n<3. 说明:在此不等式的证明中,利用二项式定理将二项式展开,再采用放缩法和其他有关知识,将不等式证明到底.【例21】求证:对于n ∈N *,(1+n 1)n <(1+11+n )n +1.分析:结构都是二项式的形式,因此研究二项展开式的通项是常用方法.证明:(1+n 1)n 展开式的通项T r +1=C r n r n1=r r n n r A ! =!1r r n r n n n n )1()2)(1(+---=!1r (1-n 1)(1-n 2)…(1-nr 1-). (1+11+n )n +1展开式的通项T ′r +1=C r n 1+rn )1(1+=r r n n r )1(!A 1++ =!1r r n r n n n n )1()2)(1(+---=!1r (1-11+n )(1-12+n )…(1-11+-n r ). 由二项式展开式的通项可明显地看出T r +1<T ′r +1所以(1+n 1)n <(1+11+n )n +1说明:本题的两个二项式中的两项均为正项,且有一项相同.证明时,根据题设特点,采用比较通项大小的方法完成本题证明.【例22】设a 、b 、c 是互不相等的正数,且a 、b 、c 成等差数列,n ∈N *,求证:a n +c n>2b n .分析:题中虽未出现二项式定理的形式,但可以根据a 、b 、c 成等差数列创造条件使用二项式定理.证明:设公差为d ,则a =b -d ,c =b +d .a n +c n -2b n =(b -d )n +(b +d )n -2b n=[b n -C 1n b n -1d +C 2n b n -2d 2+ … +(-1)n d n ]+[b n +C 1n b n -1d +C 2n bn -2d 2+ … +d n ] =2(C 2n b n -2d 2+C 4n bn -4d 4…)>0. 说明:由a 、b 、c 成等差,公差为d ,可得a =b -d ,c =b +d ,这就给利用二项式定理证明此问题创造了可能性.问题即变为(b -d )n +(b +d )n >2b n ,然后用作差法改证(b -d )n +(b +d )n -2b n >0.【例23】求(1+2x -3x 2)6的展开式中x 5项的系数.分析:先将1+2x -3x 2分解因式,把三项式化为两个二项式的积,即(1+2x -3x 2)6=(1+3x )6(1-x )6.然后分别写出两个二项式展开式的通项,研究乘积项x 5的系数,问题可得到解决.解:原式=(1+3x )6(1-x )6,其中(1+3x )6展开式之通项为T k +1=C k 63k x k,(1-x )6展开式之通项为T r +1=C r6(-x )r .原式=(1+3x )6(1-x )6展开式的通项为C k 6C r6(-1)r 3k x k +r .现要使k +r =5,又∵k ∈{0,1,2,3,4,5,6},r ∈{0,1,2,3,4,5,6},必须⎩⎨⎧==5,0r k 或⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,51,42,33,24,1r k r k r k r k r k 或或或或 故x 5项系数为C 0630C 56(-1)5+C 1631C 46(-1)4+C 2632C 36(-1)3+C 3633C 26(-1)4+C 4634C 16(-1)+C 5635C 06(-1)0=-168.说明:根据不同的结构特征灵活运用二项式定理是本题的关键.【例24】(2004年全国必修+选修1)(x -x 1)6展开式中的常数项为( ) A.15B.-15C.20D.-20解析:T r +1=(-1)r C r6(x )6-r x-r=(-1)r C r6x r 233-,当r =2时,3-23r =0,T 3=(-1)2C 26=15. 答案:A【例25】 (2004年江苏)(2x +x )4的展开式中x 3的系数是( ) A.6B.12C.24D.48解析:T r +1=(-1)r C r 4(x )4-r(2x )r =(-1)r 2r C r 4x22r +,当r =2时,2+2r=3,T 3=(-2)2C 24=24. 答案:C【例26】 (2004年福建理)若(1-2x )9展开式的第3项为288,则∞→n lim (x 1+21x + … +n x1)的值是( )A.2B.1C.21D.52 解析:T r +1=(-1)r C r 9(2x )r =(-1)r C r 92xr ,当r =2时,T 3=(-1)2C 2922x=288.∴x =23. ∴∞→n lim (x 1+21x + … +n x 1)=32132-=2.答案:A【例27】 (2004年福建文)已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A.28B.38C.1或38D.1或28解析:T r +1=(-1)r C r 8x 8-r (xa )r =(-a )r C r 8x 8-2r ,当r =4时,T 3=(-a )4C 48=1120,∴a =±2. ∴有函数f (x )=(x -xa )8.令x =1,则f (1)=1或38. 答案:C【例28】 (2004年天津)若(1-2x )2004=a 0+a 1x +a 2x 2+…+a 2004x 2004(x ∈R ),则(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+ … +(a 0+a 2004)= .(用数字作答)解析:在函数f (x )=(1-2x )2004中,f (0)=a 0=1,f (1)=a 0+a 1+a 2+ … +a 2004=1, (a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2004) =2004a 0+a 1+a 2+ … +a 2004 =2003a 0+a 0+a 1+a 2+ … +a 2004 =2003f (0)+f (1) =2004.答案:2004。