废水除氨氮工艺比较知识讲解

合集下载

氨氮废水常用处理方法

氨氮废水常用处理方法

氨氮废水常用处理方法氨氮废水是指废水中含有氨氮化合物的废水。

氨氮废水的处理是保护环境、减少对生活水源、地下水和环境的污染的重要过程。

以下是常用的氨氮废水处理方法。

一、化学法处理1. 氧化法氧化法是将含有氨氮化合物的废水中的氨氮氧化为硝酸盐,进而使得氨氮被转化为无害物质。

常用的氧化剂有氯和臭氧。

此外,还可以利用高锰酸钾氧化废水中的氨氮。

2. 硫酸铵沉淀法硫酸铵沉淀法是一种将氨氮转化为与之反应生成固体沉淀的方法。

该方法中,硫酸铵与废水中的氨氮发生反应,生成可溶性的硫酸铵、硫酸铁、硫酸铵铁等盐类沉淀,从而将氨氮从废水中去除。

二、生物法处理1. 厌氧处理法厌氧处理法是利用厌氧条件下的微生物,将有机废物和氨氮一起去除。

在厌氧生物反应器中,废水中的氨氮会被微生物利用作为能源和氮源,通过微生物代谢的产物来将氨氮去除掉。

2. 高效曝气活性污泥法高效曝气活性污泥法是一种通过生物氧化反应将氨氮去除的方法。

在高效曝气活性污泥法中,通过添加活性污泥,在适宜的温度和pH条件下,利用曝气设备对污水进行充分曝气,促使废水中的氨氮通过厌氧-好氧反应达到去除的目的。

三、物理法处理1. 吸附法吸附法是通过吸附剂表面的孔隙结构和化学性质,将废水中的氨氮物质吸附到吸附剂上,使氨氮物质从废水中转移到吸附剂上,并通过后续的处理将吸附剂中的氨氮去除。

2. 膜分离法膜分离法是利用半透膜将废水中的氨氮物质分离出来的方法。

通过调整操作条件,如压力差、温度等,使得废水中的氨氮物质能够透过半透膜,从而达到去除的目的。

四、辅助方法1. 灭活法灭活法是指通过添加酸、碱等化学物质,改变废水中的pH值,使得废水中的氨氮化合物发生离子化反应,从而改变其活性,达到去除氨氮的目的。

2. 稀释法稀释法是指通过将废水与其他水源进行混合,降低废水中氨氮的浓度,以达到减少氨氮的目的。

上述是常用的氨氮废水处理方法,具体选择何种方法应根据废水中氨氮浓度、处理效果要求和经济成本等多方面因素综合考虑。

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术污水处理是一项重要而复杂的环境工程技术,其中氨氮去除技术是其中一个关键环节。

本文将详细介绍污水处理中的氨氮去除技术,并分点列出其相关内容。

一、氨氮的来源及危害1. 氨氮的来源:工业废水、农业面源废水、生活污水、农业非点源废水等。

2. 氨氮的危害:氨氮过量排放会导致水体富营养化,引发水华、水生生物死亡及水环境恶臭等问题,严重危害生态环境和人类健康。

二、常见的氨氮去除技术1. 生物法:包括厌氧法和好氧法。

- 厌氧法:利用厌氧菌群将氨氮转化为氮气,常见的反应器有厌氧反应槽和厌氧滤池等。

- 好氧法:利用好氧菌群将氨氮转化为硝酸盐,常见的处理单元有好氧池、好氧滤池和硝化反硝化池等。

2. 物理法:主要用于氨氮浓度较低的水体。

- 蒸发浓缩法:利用加热蒸发水体,浓缩氨氮浓度,常用于工业废水处理。

- 膜分离法:利用膜的选择性透过性,将氨氮分离出来,常见的膜法有超滤、反渗透和离子交换膜等。

3. 化学法:通过添加化学药剂达到去除氨氮的目的。

- 高锰酸钾法:利用高锰酸钾氧化氨氮生成氮气,广泛应用于农村生活污水处理。

- 硝化法:通过添加化学药剂加速氨氮转化为硝态氮,常见的药剂有硝酸铵和硫酸铵等。

三、氨氮去除技术的特点及应用情况1. 生物法:- 特点:技术成熟、操作简单、能耗低、无二次污染。

- 应用情况:广泛应用于城市生活污水处理、工业废水处理和农村污水处理等领域。

2. 物理法:- 特点:适用于氨氮浓度较低的水体、处理效果稳定。

- 应用情况:主要应用于工业废水处理和海水淡化等领域。

3. 化学法:- 特点:适用性广、处理效果较好。

- 应用情况:常见于农村生活污水处理和工业废水处理等领域。

四、氨氮去除技术的发展趋势1. 生物法:加强氮素转化功能菌的研究,提高转化效率。

2. 物理法:研发更高效、节能的膜分离技术,开发新型浓缩设备。

3. 化学法:研究更环保、高效的化学药剂,减少药剂使用量。

五、国内外氨氮去除技术研究进展1. 国内研究进展:随着环保意识的提高,氨氮去除技术研究受到重视,取得了不少成果。

废水除氨氮工艺比较知识讲解

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺物化法国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。

1.2.1.1空气吹脱法空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。

废水中的氨氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。

NH4++ OH-→ NH3+ H2O在吹脱过程中,废水pH 值、水温、水力负荷及气水比对吹脱效果有较大影响。

一般来说,pH值要提高至10.8~11.5 ,水温一般不能低于20℃,水力负荷为2.5~5 m3/(m2 · h),气水比为2500~5000 m3/m3,此时氨氮去除率在80%~95%。

空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时,NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。

另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1 以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。

其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。

延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。

由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。

废水中氨氮的去除

废水中氨氮的去除

废水中氨氮的去除废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在.生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

目前采用的除氮工艺有生物硝化与反硝化、沸石选择交换吸附、空气吹脱及折点氯化等四种。

一、生物硝化与反硝化(生物陈氮法)(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4。

57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7。

lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8。

0~8。

4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d—1(温度20℃,pH8.0~8。

4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间 .在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD 负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌.若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。

所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2—-N和NO3——N还原成N2的过程,称为反硝化。

反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。

氨氮废水处理技术介绍(详解)

氨氮废水处理技术介绍(详解)

氨氮废水处理技术介绍(详解)氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。

氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。

排放的废水以及垃圾渗滤液等。

氨氮废水对鱼类及某些生物也有毒害作用。

另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。

处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。

一、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。

磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。

反应方程式如下:Mg²﹢+NH4﹢+PO4³﹣=MgNH4P04.6H20影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。

化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。

化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。

脱氨氮 工艺

脱氨氮 工艺

脱氨氮工艺脱氨氮工艺是一种处理废水的方法,主要是用于去除废水中的氨氮物质。

氨氮是指水中存在的以氨(NH3)和游离氨离子(NH4+)形式存在的氮元素的总量。

脱氨氮工艺一般包括以下几个步骤:1. 酸碱中和-将废水中的氨氮与盐酸或硫酸等酸性物质进行中和反应,将氨氮转化为氨盐。

这样做主要是为了减少氨氮对后续处理过程的影响。

2. 气态转化-将氨盐通过加热蒸发的方式转化为氨气。

这一步骤可以通过采用蒸发器、脱气器等设备进行实现。

3. 吸收去除-将氨气通过吸收剂进行吸收,将其转化为无害的物质。

吸收剂可以采用硫酸、盐酸等酸性物质,或者碳酸钠、氢氧化钠等碱性物质。

4. 沉淀或过滤-经过吸收去除后,可以进行沉淀或过滤操作,将废水中的残余物质除去。

这一步骤可以通过加入沉淀剂、过滤剂等来实现。

5. 中和调节-根据处理后的废水的pH值进行调节,使其满足排放标准。

整个脱氨氮工艺具体的操作方式和设备选择会根据废水的特性以及处理要求而有所差异。

需要考虑的因素包括废水中的氨氮浓度、废水的体积、排放标准等。

继续脱氨氮工艺的描述:6. 活性炭吸附- 在一些情况下,氨氮无法完全通过吸收剂吸收去除,此时可以使用活性炭来吸附残余的氨氮。

活性炭具有良好的吸附性能,可以有效去除水中的氨氮。

7. 生物处理- 对于氨氮含量较高的废水,可以采用生物处理工艺来降低氨氮浓度。

生物处理通常包括好氧和厌氧两个阶段,通过微生物的代谢作用将氨氮通过硝化-脱氮过程转化为氮气释放。

8. 离子交换- 对于废水中氨氮含量特别高的情况,可以采用离子交换技术进行处理。

离子交换树脂能够选择性地吸附和释放氨氮,从而达到去除的目的。

需要注意的是,不同的废水处理厂和废水性质不同,可能会采用不同的组合工艺来实现脱氨氮的目的。

脱氨氮工艺的选择应综合考虑经济性、技术可行性、运行维护成本等因素,并根据所处地区的排放标准和要求来确定最佳的脱氨氮技术。

此外,对于特殊行业废水,可能需要根据对应的行业标准进行脱氨氮工艺调整和选择。

氨氮废水的处理方法及案例介绍

氨氮废水的处理方法及案例介绍

氨氮废水的处理方法氨氮废水主要来源于化肥、焦化、石化、制药、食品等行业废水,由于存在一定的隐患问题,因此人们对于这一废水的处理很重视,传统的处理方法有物理法、化学法、物理化学以及生化法等。

(1)生物法传统的生化法主要用于低浓度氨氮废水处理,它是利用微生物的硝化及反硝化作用使氨氮转变为氮气。

低浓度氨氮废水通常具有比低的特点,有些生产废水甚至不含COD,因此采用生物脱氮的方式处理,需要加入碳源,运行成本很高。

常见工艺有A/O或A2/O)和SBR工艺。

其缺点是处理过程对温度和工业废水中某些组分的干扰非常敏感,需要的反应器体积比较大,而且反硝化过程中会产生N2O,易转化为其它影响臭氧层的氮氧化物,反硝化把NH4+这种有价值的物质转化成N2逸入空气,造成浪费。

在A/O工艺中,为了促使反硝化反应顺利进行,一般要求C/N大于3。

(2)蒸汽汽提法蒸汽汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,其处理机理与吹脱法基本相同,也是一个气液传质过程,即在高pH值时,使废水与蒸汽密切接触,从而降低废水中氨浓度的过程。

传质过程的推动力是气相中氨的分压与废水中氨的浓度对应的平衡分压之间的差值。

蒸汽汽提法由于采用的工作介质是蒸汽,氨自废水进入蒸汽中,然后在塔顶精馏成为浓氨水回收,因此无需增加后处理工序。

蒸汽汽提所需蒸汽体积要比空气吹脱法中所需空气体积小得多,因此设备体积较小,占地面积较少。

汽提法比较适用于处理1000mg/L以上的高浓度氨氮废水,对氨氮的去除率可达99%以上,效率高,技术成熟度好。

但是,常规的汽提废水脱氨技术蒸汽消耗量大,处理废水单耗比较高。

蒸汽汽提废水脱氨技术的普及推广应用需要在节能降耗方面加大研究开发的力度。

(3)离子交换法离子交换法适用于氨离子浓度在10~100mg/L的废水。

其原理是选用阳离子交换树脂,将水中的铵离子与树脂上的钠离子交换,从而达到去除铵的目的。

沸石具有从含钠、镁和钙等离子的溶液中有选择地去除氨离子的特点,因而选其作为交换树脂也叫有选择性的离子交换法,穿透的树脂要用2%的氯化钠溶液再生,再生液经过去氨处理后再循环使用,达一定的循环率后排放。

对污水中氨氮的主要去除方法

对污水中氨氮的主要去除方法

对污水中氨氮的主要去除方法近20 年来, 对氨氮污水处理方面开展了较多的研究。

其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。

一.生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。

因而,污水的生物脱氮包括硝化和反硝化两个阶段。

生物脱氮工艺流程见图1 。

进水预处理曝气池二沉池脱氮池图1 生物脱氮工艺流程硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤: 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。

在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。

反硝化过程中的电子供体是各种各样的有机底物(碳源) 。

生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。

但缺点是占地面积大,低温时效率低[11]。

2.传统生物法目前, 国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。

传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。

由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。

1932 年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification) ,1973年Barnard 结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox (A2/ O) UCT、JBH、AAA 工艺等,这些都是典型的传统硝化反硝化工艺[12]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内高浓度氨氮废水处理常见工艺
物化法
国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸
汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟
道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。

1.2.1.1空气吹脱法
空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓
度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。

废水中的氨
氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。

NH4++ OH-→ NH3+ H2O
在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。

一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力
负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率
在80%~95%。

空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有
彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时,
NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。

另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨
氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg∙L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法
蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。

其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。

延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。

由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。

蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg∙L-1以上),操作条件易于控制。

对于浓度在1000~30000 mg∙L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg∙L-1(国家一级排放标准)以下。

蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。

传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。

随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。

1.2.1.3折点加氯法
折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。

因此,该点称为折点,该状态下的氯化称为折点氯化。

折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

折点加氯法需氯量取决于氨氮的浓度,两者质量比为7.6:1,为了保证反应完全,一般氧化1 mg氨氮需加9~10 mg的氯气。

当氨氮浓度< 20 mg∙L-1时,脱氮率大于90%。

pH值对脱氮率影响较大,pH值高时产生NO3-,pH值低时产生NCl3,pH值较高或较低时都会过多消耗氯气,因而pH值通常控制在6~8 。

折点加氯法处理效率能达到90%~100%,处理效果稳定,不受水温影响,投资较少,但运行费用很高,如果控制不好,副产物氯胺和氯代有机物会造成二次污染。

该法只适用于处理不易生化处理的低浓度氨氮废水(如几十mg∙L-1左右),且处理量不宜过大。

1.2.1.4离子交换法
离子交换法是指在固体颗粒和液体的界面上发生的离子交换过程。

离子交换法采用无机离子交换剂沸石作为交换树脂,沸石具有对非离子氨的吸附作用以及与离子氨的离子交换作用,它是一种硅质类的阳离子交换剂,沸石处理氨氮废水成本低,而且对NH4+有很强的选择性。

pH值对沸石离子交换性能影响很大:当pH=4~8时,沸石离子交换性能最佳;当pH < 4 时,H+与NH4+发生竞争;pH > 8时,NH4+变为NH3而失去离子交换性能。

离子交换法具有投资省、工艺简单、占地小、操作较为方便、温度和毒物对脱氮率影响小等优点,该法适用于处理中低浓度氨氮废水(<500 mg∙L-1),或者低浓度氨氮废水(如几十mg∙L-1左右)的处理或水的深度处理。

对于高浓度的氨氮废水,会因树脂再生频繁而造成操作困难。

离子交换法氨氮去除率高,但再生液为高浓度氨氮废水,仍需进一步处理。

1.2.1.5化学沉淀法
化学沉淀法是向废水中投加某种化学药剂,使之与废水中的某些溶解性污染物质发生反应,形成难溶盐沉淀下来,从而降低废水中溶解性污染物浓度的方法。

目前,研究最多的是向废水中添加含有Mg2+和PO43-的药剂,如用Na2HPO4和MgSO4作为化学沉淀剂,对于氨氮含量在500~30000 mg∙L-1氨氮废水,氨氮去除率可达到90%左右。

主要是利用以下化学反应:
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][ NH4+][ PO43-]> 2.5×10-13时可生成磷酸铵镁(MAP),除去废水中的氨氮。

穆大纲等采用向氨氮浓度较高的工业废水中投加
MgCl2•6H2O和Na2HPO4•12H2O生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。

结果表明,在pH为8.9l,Mg2+,NH4+,PO43-的摩尔比为1.25:1:1,反应温度为25 ℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氨质量浓度可由9500 mg∙L-1降低到460 mg∙L-1,去除率达到95%以上。

化学沉淀法可以处理各种浓度的氨氮废水,并且得到的沉淀物是一种很
好的复合肥料。

但是,由于Mg(OH)2和H3PO4价格比较高,采用该法
处理高浓度氨氮废水虽然工艺可行,但成本太高,而且向废水中加入
PO43-,易造成二次污染,实际生产中难以推广应用,仅仅限于一些特定的废水处理场所。

1.2.1.6催化湿式氧化法
催化湿式氧化法是在一定的温度、压力下,在催化剂的作用下,经空气
氧化使污水中的有机物、氨等分别氧化成CO2、H2O及N2等无害物质,达到净化的目的。

该方法净化效率高、流程简单、占地面积少,但由于反应设备需耐高温、耐腐蚀,故投资较大,尚处于研究开发阶段,少见工业化应用报导。

1.2.1.7烟道气法
烟道气法是指通入烟道废气使含氨废水气化后,氨与烟道气中二氧化硫
充分接触发生物理化学反应,将其中的氨固化,从而降低废水中氨氮含
量的方法。

当废水中氨与烟道气中二氧化硫含量相当时,可完全脱氨。

此方法既有效地利用了烟道气的废热,又使氨固化,是一种“以废治废”
的综合利用方法。

该方法用发电厂的烟道废气,应考虑烟道气的量和剩
余氨水的量相匹配,因此,烟道气法应用受到限制。

1.2.2 生化处理法
生化法是利用好氧菌及厌氧菌的硝化和反硝化过程,将废水中的氨氮转化为硝酸盐,然后转化为氮气,实现废水的达标排放。

生化法能彻底脱除废水中的氨,并且不会造成二次污染,能耗较物理化学法低。

但由于生物所能承受氨氮的浓度较低,一般生物处理氨氮浓度不能超过200 mg∙L-1。

如果废水中的氨氮浓度高于200 mg∙L-1而低于1000 mg∙L-1时则通常需要采用物理化学法和生化法相结合的工艺,即采用物理化学法先去除废水中部分氨,然后再采用生化法将氨氮彻底去除到排放标准。

如果废水中的氨氮浓度高于1000 mg∙L-1,例如几千mg∙L-1,甚至达到数万mg∙L-1,对于这样的废水,目前国内外的生产实践中比较通行的做法是:先将高浓度氨氮废水通过蒸氨的或吹脱将废水中的氨氮降到300 mg∙L-1以下(无法降到300 mg∙L-1以下,则需用清水进行稀释),然后用A/0法或化学沉淀法(磷酸铵镁盐法)进行后续处理。

出水NH3-N在操作管理十分良好的前提下,一般可以达到国家排放三级标准。

相关文档
最新文档