点线面位置关系例题与练习(含答案)

合集下载

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。

(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.【答案】(1)见解析(2)4 (3)【解析】(1)根据长方体的性质推断出平面平面平面.进而根据线面平行的判定定理推断出∥平面.设,进而根据几何体的体积关系求得棱柱的体积,进而利用体积公式求得.(3)在平面中作交于,过作交于点,根据线面垂直的性质推断出,进而根据,推断出,利用线面垂直的性质证明出.通过∽.利用比例关系求得,最后利用平方关系求得.试题解析:(1)∵是长方体,∴平面平面.∵平面,平面,∴平面.(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【考点】直线与平面平行的判定;点、线、面间的距离计算.2.在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条【答案】.【解析】如图可知:与直线异面的面对角线总共有,.,,,,,∴总共有条【考点】空间中直线与直线的位置关系.3.教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ().A.平行B.异面C.垂直D.相交但不垂直【答案】C【解析】由题意,直尺所在直线若与地面垂直,则在地面总有这样的直线,使得它与直尺所在直线垂直;若直尺所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直;综上,教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线垂直,故选B.【考点】空间中直线与平面之间的位置关系.4.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系5.已知不同直线、和不同平面、,给出下列命题:①②③异面④其中错误的命题有()个A.1B.2C.3D.4【答案】C【解析】①,正确;②,当时不成立,故②错误;③异面,,故③错误;④,有可能,故④错误【考点】直线与平面(平行)垂直的判定和性质定理,平面与平面(平行)垂直的判定和性质定理6.在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.【答案】(1)见解析(2)见解析【解析】(1)通过借助中间量——直线,易得,,可得直线,从而证得平面;(2)通过证明平面,即可征得平面平面.试题解析:(1)连结.在长方体中,对角线,又∵、为棱、的中点,∴,∴.又∵平面,平面,∴平面.(2)在长方体中,平面,而平面,∴.又在正方形中,,∴平面.又∵平面,∴平面平面.【考点】1.直线与平面平行的证明;2.面面垂直的证明.7.正方体-中,与平面ABCD所成角的余弦值为( )A.B.C.D.【答案】D【解析】因为平面所以与平面所成角为求线面角关键找垂线,找出垂线就能在直角三角形中研究线面角大小.另外需熟悉正方体中面对角线与体对角线量的关系.【考点】直线与平面所成角.8.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题9.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱台D.是棱柱【答案】C【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、D正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选C.【考点】长方体的几何特征,直线与平面平行、垂直的判定与性质。

数学必修二点线面之间的位置关系习题打印版(含答案)z

数学必修二点线面之间的位置关系习题打印版(含答案)z

点、直线、平面之间的位置关系1.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.2.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.3.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.4.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.5.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.答案1.证明:(1)∵E、F分别是AB、BD的中点,∴EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,∴直线EF∥面ACD.(2)在△ABD中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.2. (1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.3. 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.[证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.4. 因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 又PQ ⊄平面ACD ,从而PQ ∥平面ACD .(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1,sin ∠DAP =55,因此AD 和平面ABE 所成角的正弦值为55. 5. (1)转化为证明GF 平行于平面ABC 内的直线AC ;(2)转化为证明AC 垂直于平面EBC 内的两条相交直线BC 和BE ;(3)几何体ADEBC 是四棱锥C -ABED .[解] (1)证明:连接AE ,如下图所示. ∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC . 又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴G H ⊥平面ABCD ,∴V =13×1×12=16.。

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。

叫做垂足。

的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。

符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。

符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。

所成的角。

2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。

三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。

点线面位置关系练习(有详细答案)

点线面位置关系练习(有详细答案)

【空间中的平行问题】(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行) ③垂直于同一条直线的两个平面平行两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)【空间中的垂直问题】(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【空间角问题】(1)直线与直线所成的角①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

12.1专题十二(1) 点线面的位置关系(答案)

12.1专题十二(1)  点线面的位置关系(答案)

高考真题复习专题十二(1) 点线面的位置关系参考答案1.B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为所以其表面积为22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.2.B【解析】【分析】首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,= B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.3.C【解析】【分析】首先画出长方体1111ABCD A BC D -,利用题中条件,得到130AC B ∠=,根据2AB =,求得1BC =,可以确定1CC =.【详解】在长方体1111ABCD A BC D -中,连接1BC ,根据线面角的定义可知130AC B ∠=,因为2AB =,所以1BC =,从而求得1CC =,所以该长方体的体积为22V =⨯⨯ C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.4.C【解析】【分析】利用正方体1111ABCD A BC D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.在正方体1111ABCD A BC D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.A【解析】【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。

空间点线面的位置关系带详细答案

空间点线面的位置关系带详细答案

.空间点、线、面的位置关系带详细答案————————————————————————————————作者:————————————————————————————————日期:8.2空间点、线、面的位置关系五年高考A组统一命题.课标卷题组1.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A: B: C: D:答案详解C正确率: 62%, 易错项: B解析:本题主要考查空间直角坐标系。

以垂直于的方向为轴,为轴,为轴建立空间直角坐标系。

则,,由于,则,。

即,,所以异面直线与所成角的余弦值。

故本题正确答案为C。

2.已知,为异面直线,平面,平面,直线满足,,,,则()。

A: ,且B: ,且C: 与相交,且交线垂直于D: 与相交,且交线平行于答案详解D正确率: 49%, 易错项: C解析:本题主要考查直线、平面的位置关系。

若,则由知,而,所以,与,为异面直线矛盾,所以平面与平面相交。

由平面,,且,可知,同理可知,所以与两平面,的交线平行。

故本题正确答案为D。

3.平面过正方体的顶点,平面,平面,平面,则,所成角的正弦值为()。

A: B: C: D:答案详解A正确率: 47%, 易错项: B解析:本题主要考查点、直线、平面的位置关系。

如图所示,因为平面,若设平面平面,则,又因为平面平面,结合平面平面,所以,即,同理可得:,所以,所成角的大小与,所成角的大小相等,即的大小,因为,所以,即。

故本题正确答案为A。

4.直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()。

A: B: C: D:答案详解C正确率: 73%, 易错项: B解析:本题主要考查空间向量的应用。

建立如图所示的空间直角坐标系,设,则有,,,,,所以,,则,,所以。

故本题正确答案为C。

易错项分析:空间中异面直线夹角的解法,用空间向量法解题相对简单,本题易错点是正确建立空间直角坐标系,求出两条直线的方向向量,最后正确应用向量的数量积公式求出异面直线夹角的余弦值。

高中数学必修二 点线面间的位置关系检测题及参考答案

高中数学必修二阶段质量检测(二)点、直线、平面之间的位置关系(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.分别在两个平行平面内的两条直线间的位置关系不可能为()A.平行B.相交C.异面D.垂直【答案】B。

【解析】因为两平行平面没有公共点,所以两直线没有公共点,所以两直线不可能相交.2.设BD1是正方体ABCD-A1B1C1D1的一条对角线,则这个正方体中面对角线与BD1异面的有()A.0条B.4条C.6条D.12条【答案】C。

【解析】每个面中各有一条对角线与BD1异面,它们是:AC,A1C1,B1C,A1D,AB1,DC1.3.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直【答案】D。

【解析】如图所示,在正方体ABCD-A1B1C1D1中,AD⊥平面DCC1D1,因此平面ABCD、平面AA1D1D均与平面DCC1D1垂直,而且平面AA1D1D∩平面ABCD=AD,显然选项D不正确,故选D.4.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是() A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】D。

【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故正确.5.如图所示,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.BD C.A1D D.A1D1【答案】选B【解析】CE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥CE.6.已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF ⊥AB,则EF与CD所成的角的度数为()A.90°B.45°C.60°D.30°【答案】D【解析】取BC的中点G,连接EG,FG,则EG=1,FG=2,EF⊥EG,则EF与CD所成的角等于∠EFG,为30°.7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D,E分别是棱BC,AB的中点,点F在棱CC1上,AB=BC=CA=CF=2,AA1=3,则下列说法正确的是() A.设平面ADF与平面BEC1的交线为l,则直线EC1与l相交B.在棱A1C1上存在点N,使得三棱锥N-ADF的体积为3 7C.设点M在BB1上,当BM=1时,平面CAM⊥平面ADFD.在棱A1B1上存在点P,使得C1P⊥AF【答案】C【解析】连接CE交AD于点O,则O为△ABC的重心,连接OF.由已知得OF∥EC1,则EC1∥l,故A错;若在A1C1上存在点N,则V N-ADF=V D-AFN,当N与C1重合时,V D-AFN取最小值为36,故B错;当BM=1时,可证得△CBM≌△FCD,则∠BCM+∠CDF=90°,即CM⊥DF.又∵AD⊥平面CBB1C1,CM⊂平面CBB1C1,∴AD⊥CM.∵DF∩AD=D,∴CM⊥平面ADF.∵CM⊂平面CAM,∴平面CAM⊥平面ADF,故C正确;过C1作C1G∥FA交AA1于点G.若在A1B1上存在点P,使得C1P⊥AF,则C1P⊥C1G.又∵C1P⊥GA1,C1G∩GA1=G,∴C1P⊥平面A1C1G.∵A1C1⊂平面A1GC1,∴C1P⊥A1C1,矛盾,故D错.故选C.8.在四面体ABCD 中,已知棱AC 的长为 2 ,其余各棱长都为1,则二面角A -CD -B 的余弦值为( ) A.12 B.13 C.33 D.23【答案】C【解析】取AC 的中点E ,CD 的中点F ,则EF =12,BE =22,BF =32, ∴△BEF 为直角三角形,cos θ=EF BF =33. 9.如图,平面α⊥平面β,A ∈α,B ∈β,AB 与平面α,β所成的角分别为45°和30°,过A ,B 分别作两平面交线的垂线,垂足分别为A ′,B ′,若AB =12,则A ′B ′等于( )A .4B .6C .8D .9【答案】B【解析】连接AB ′,BA ′,则∠BAB ′=45°,∠ABA ′=30°.在Rt △ABB ′中,AB =12,可得BB ′=6 2.在Rt △ABA ′中,可得BA ′=6 3.故在Rt △BA ′B ′中,可得A ′B ′=6.10.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A.125π12B.125π9C.125π6D.125π3【答案】C【解析】球心O 为AC 中点,半径为R =12AC =52,V =43πR 3=125π6. 11.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成四面体ABCD ,则在四面体ABCD 中,下列结论正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC【答案】D【解析】易知△BCD中,∠DBC=45°,∴∠BDC=90°,又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD,而AB⊥AD,CD∩AD=D,∴AB⊥平面ACD,∴平面ABC⊥平面ACD.12.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图,取CD的中点F,DF的中点G,连接EF,FN,MG,GB.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,EF⊂平面ECD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF且MG=12EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=2235222⎛⎫+=⎪⎝⎭,∴BM=MG2+BG2=7,∴BM≠EN.连接BD,BE,∵点N是正方形ABCD的中心,∴点N在BD上,且BN=DN,∴BM,EN是△DBE的中线,∴BM,EN必相交.二、填空题(本大题共4小题,每小题5分,共20分)13.设正三角形ABC的边长为a,PA⊥平面ABC,PA=AB,则A到平面PBC的距离为________. 【答案】217a 【解析】如图所示,取BC 中点E ,连接AE ,PE ,则AE ⊥BC ,又BC ⊥PA ,∴BC ⊥平面PAE .∴平面PAE ⊥平面PBC .在平面PAE 内过A 作AF ⊥PE ,垂足为F ,则AF ⊥平面PBC .则AF =PA ·AE PE =217a . 14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.【答案】90°【解析】∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1,∴B 1C 1⊥MN ,又∠B 1MN 为直角.∴B 1M ⊥MN ,而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1,又MC 1⊂平面MB 1C 1,∴MN ⊥MC 1,∴∠C 1MN =90°.15.如图,圆锥SO 中,AB 、CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =2,P 为SB 的中点,则异面直线SA 与PD 所成角的正切值为________.【答案】 2【解析】连接PO ,则PO ∥SA ,∴∠OPD 即为异面直线SA 与PD 所成的角,且△OPD 为直角三角形,∠POD 为直角,∴tan ∠OPD =OD OP =22= 2. 16.(2019·全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________.【答案】 2【解析】如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC,PE,PF,则PE⊥AC,PF⊥BC.又PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图,在四面体ABCD中,CB=CD,AD⊥BD,且E、F分别是AB、BD的中点.求证:(1)EF∥平面ACD;(2)平面EFC⊥平面BCD.证明:(1)∵E,F分别是AB,BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄平面ACD,AD⊂平面ACD,∴EF∥平面ACD.(2)∵AD⊥BD,EF∥AD,∴EF⊥BD.∵CB=CD,F是BD的中点,∴CF⊥BD.又EF∩CF=F,∴BD⊥平面EFC.∵BD⊂平面BCD,∴平面EFC⊥平面BCD.18.(本小题满分12分)(2019·全国卷Ⅰ)如图,直四棱柱ABCD -A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.解:(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)过点C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为点C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=17,故CH=41717.从而点C到平面C1DE的距离为41717.19.(本小题满分12分)矩形ABCD中,AB=2,AD=1,E为CD的中点,沿AE将△DAE折起到△D1AE的位置,使平面D1AE⊥平面ABCE.(1)若F为线段D1A的中点,求证:EF∥平面D1BC;(2)求证:BE⊥D1A.证明:(1)取AB的中点G,连接EG、FG,则EG∥BC,FG∥D1B,且EG∩FG=G,EG、FG⊂平面EFG;D1B∩BC=B,D1B、BC⊂平面D1BC.∴平面EFG∥平面D1BC,注意到EF⊂平面EFG,∴EF∥平面D1BC.(2)易证BE⊥EA,平面D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE,且D1A⊂平面D1AE,∴BE⊥D1A.20.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分别交AC、SC于D、E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.解:(1)证明:如图,∵DE⊥SC,且E为SC的中点,又SB=BC,∴BE⊥S C.又DE∩BE=E,根据直线与平面垂直的判定定理知SC⊥平面BDE,BD⊂平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD⊂平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC为二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,设SA=AB=1,则SB= 2.由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB⊂平面SAB,∴BC⊥SB.在Rt△SBC中,SB=BC=2,∠SBC=90°,则SC=2.在Rt△SAC中,∠SAC=90°,SA=1,SC=2.∴cos∠ASC=SASC=12.∴∠ASC=60°,即二面角E-BD-C的大小为60°.21.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF ∥AC,AB=2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点O,连接EO,∵EF∥AC,且EF=1,AO=12AC=1,∴四边形AOEF为平行四边形,∴AF∥OE.∵OE⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FO,∵EF∥CO,EF=CO=1,且CE=1,∴四边形CEFO为菱形,∴CF⊥EO.∵四边形ABCD为正方形,∴BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD. 又BD∩EO=O,∴CF⊥平面BDE.22.(本小题满分12分)如图,已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC ⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E-ABC的体积.解:(1)取DC的中点N,取BD的中点M,连接MN,EN,EM,则直线MN即为所求.取BC的中点H,连接AH,∵△ABC为腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC.又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理,可证EN⊥平面BCD,∴EN∥AH.∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC.∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC.又EF⊂平面EMN,∴EF∥平面ABC.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,NG=12DH,由(1)可知,EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等.又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC.又DH=3,∴NG=3 2.又AC=AB=3,BC=2,∴AH=22,∴S△ABC=12·BC·AH=22,∴V E-ABC=V N-ABC=13·S△ABC·NG=63.。

高二数学点线面的位置关系试题答案及解析

高二数学点线面的位置关系试题答案及解析1.如图,在直三棱柱中,,,分别为和的中点.(1)求证:平面;(5分)(2)求三棱锥的体积.(7分)【答案】(1)详见解析;(2).【解析】(1)这是常规题,只要在平面寻找到一条直线与平行即可,通常是通过再取中点构造中位线和平行四边形来达到证题目的,这题就是如此;(2)经常是通过体积计算来考查等积变换思想,三棱锥的体积,关键是三棱椎的高,直接求有难度,可通过变换顶点达到有利于求高的目的,这里就是转化为求三棱锥的体积来实现的.试题解析:(1)取边中点,连、,则,且,所以四边形是平行四边形,,且平面,平面. 5分(2)在等腰三角形中,易知⊥,又,∴平面由(1),平面又,,. 12分【考点】1.立体几何中线面位置关系的证明;2.几何体的体积计算,3.等积变换的思想.2.如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且(1)求证:平面平面;(2)若,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】解题思路:(1)作出辅助线,利用线面垂直的判定定理证明即可;(2)合理转化三棱锥的顶点和底面,利用体积法求所求的点到平面的距离.规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及点到平面的距离问题,往往转化三棱锥的顶点,利用体积法求距离.试题解析:(1)取中点,连接,则面,,(2)设点到平面的距离,,【考点】1.空间中垂直的判定;2.点到平面的距离.3.如图所示,正三棱锥中,分别是的中点,为上任意一点,则直线与所成的角的大小是 ( )A.B.C.D.随点的变化而变化.【答案】B【解析】连接,因为为正三棱锥,所以,则有,所以,即直线与所成的角的大小是.【考点】(1)线面垂直的判定与性质应用;(2)线线角.4.设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是(). A.若,,则B.若,,则C.若,,则D.若,,,则【答案】B.【解析】对于A选项,可能m与相交或平行,对于选项B,由于,则在内一定有一直线设为与平行,又,则,又,根据面面垂直的判定定理,可知,故B选项正确,对于C选项,可能有,对于D选项,可能与相交.【考点】线面间的位置关系5.如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,,.(1)求证:平面⊥平面;(2)求点C到平面的距离;(3)求PC与平面PAD所成的角的正弦值。

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析1. 如图,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD ,则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC【答案】D【解析】在平面图形中CD ⊥BD ,折起后仍有CD ⊥BD ,由于平面ABD ⊥平面BCD ,故CD ⊥平面ABD ,CD ⊥AB ,又AB ⊥AD ,故AB ⊥平面ADC ,所以平面ABC ⊥平面ADC ,故选D.2. 如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部【答案】A【解析】由BC 1⊥AC ,又BA ⊥AC ,则AC ⊥平面ABC 1,因此平面ABC ⊥平面ABC 1,因此C 1在底面ABC 上的射影H 必在直线AB 上.3. 设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A .m ∥β且l 1∥α B .m ∥l 1且n ∥l 2 C .m ∥β且n ∥β D .m ∥β且n ∥l 2【答案】B【解析】对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由n ∥l 2可转化为n ∥β,同选项C ,故不符合题意,综上选B.4. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ∥n ,且n ⊥β C .α⊥β,且m ∥α D .m ⊥n ,且n ∥β【答案】B【解析】A 错误,只有m 垂直于α与β的交线时,才能得到m ⊥β;B 正确,这是线面垂直的性质定理;C错误,m与β可能平行,可能相交,m也可能在平面β内;D错误,m与β可能平行,可能相交,m也可能在平面β内.5.已知、是两条直线,、是两个平面,给出下列命题:①若,,则;②若平面上有不共线的三点到平面的距离相等,则;③若、为异面直线,,,,,则.其中正确命题的个数()A.个B.个C.个D.个【答案】B【解析】如下图所示,在正方体中,棱、、、的中点分别为、、、,对于命题①,平面,平面,则平面平面,命题①为真命题;对于命题②,和的中点和都在平面内,但是平面与平面不平行,命题②不正确;对于命题③,与为异面直线,平面,平面,平面,平面,则可以在平面内找到,,于是得到平面平面,平面平面,所以,平面平面,命题③正确,故选B.【考点】空间中点、线、面的位置关系6.在棱长为1的正方体AC1中,E为AB的中点,点P为侧面BB1C1C内一动点(含边界),若动点P始终满足PE⊥BD1,则动点P的轨迹的长度为( )A.B.C.D.【答案】B【解析】如图,根据题意,BD1要始终垂直于PE所在的一个平面,取BC,BB1的中点F,G,易证BD1⊥平面EFG,故点P的轨迹为线段FG,易求得这条线段的长度是.7.如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.(1)求证:PA//平面BDM;(2)求直线AC与平面ADM所成角的正弦值.【答案】(1)见解析 (2)【解析】证明:连结AC,交BD于点O,连结MO因为MO是的中位线,所以MO∥PA又因为面PAD中,所以MO∥面PAD(2)因为,点M到面ADC的距离,所以。

点线面位置关系典型例题

点线面位置关系典型例题一,直线与平面平行的判定与性质典型例题一例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何?(2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何?分析:(1)由图(1)可知:α⊂b 或A b =α ;(2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O ,∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //.∵PC 在平面BDQ 外,∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论.解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.已知:直线b a //,//a 平面α,α⊄b .求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β.设c =βα ,∵α//a ,∴c a //.又∵b a //,∴c b //.∵α⊄b ,α⊂c ,∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求:(1)异面直线AB SC 、的公垂线段EF 及EF 的长;(2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆.∴CF SF =,E 是SC 的中点,∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角.连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得 22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a a a a EF EG GF EF EG GEF . ∴45=∠GEF .故异面直线EF 和SA 所成的角为 45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //.求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβ .∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾.∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据.(2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ;(2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行;(4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行.故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面 .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用. 解:∵b a //,∴a 和b 可确定平面β.∵P a =α ,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b = ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论. 证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β.在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α.∵α⊂b ,a 与b 为异面直线,∴α⊄a .又∵'//a a ,α⊂'a , ∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b 和'a 的. 由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 已知:l =βα ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b .∵α//a ,γ⊂a ,b =αγ ,∴b a //.同理过a 作平面δ交β于c .∵β//a ,δ⊂a ,c =βδ ,∴c a //.∴c b //.∵β⊄b ,β⊂c ,∴β//b .又∵α⊂b ,l =βα ,∴l b //.又∵b a //,∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a ,∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行.∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l ,∴直线1l 、2l 都重合于直线l ,∴l a //.说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AE PE AB PM =. 又∵CD AB QN ////, ∴BD BQ DC QN =,即BD BQ AB QN =.∵正方形ABEF 与ABCD 有公共边AB ,∴DB AE =.∵DQ AP =,∴BQ PE =.∴QN PM =.又∵AB PM //,AB QN //,∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //.又∵⊂MN 面BCE ,∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QB DQ QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB ,∴DB AE =,∵DQ AP =,∴QB PE =. ∴QS AQ QBDQ PE AP ==. ∴ES PQ //,又∵⊂ES 面BEC ,∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点. 已知:a =βα ,b =γβ ,c =αγ .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ ,∴β⊂b a 、.∴a 与b 平行或相交.①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγ ,α⊂a ,∴c a //.∴c b a ////.②若a 与b 相交,如图,设O b a = ,∴a O ∈,b O ∈.又∵βα =a ,γβ =b .∴α∈O ,γ∈O又∵c =γα ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DF E E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β.(1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾.(2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾.综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF .在ABC ∆中,E 、F 分别是AB 、BC 的中点.∴EF AC //.于是AC //平面EFG .同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE∶,连结DE , ∵Q 为BCD ∆的重心,∴1∶3=QE DE∶, ∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图.求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=.∵G 为11D C 的中点,∴CD G D //1且CD G D 211=,∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系;如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了.B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交.C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾.D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行. 解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b .∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了.∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面 α=.∴EG a //,即EG BD //, ∴FC AF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===. 则9204545=+⨯=+⋅=FC AF BD AF EG . ∴应填:920.说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.二,面面平行的性质与判定典型例题一例1:已知正方体1111-D C B A ABCD .求证:平面//11D AB 平面BD C 1.证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//,又 ⊂B C 1平面BD C 1,故 //1A D 平面BD C 1.同理 //11B D 平面BD C 1.又 1111D B D A D = ,∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ .∵βα//∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交.已知:如图,βα//,A l =α .求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B .∴γ与α、β都相交.设a =αγ ,b =γβ .∵βα//∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A .∵l 与b 相交.所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G .∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //,∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =,∴ △ACF ≌△DFG .∴ FG AF =.又 BE AE =,∴ BG EF //,β⊂BG .故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形.证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β.同理1BB 和1CC 确定平面γ.又11//BB AA ,且γ⊂1BB∴γ//1AA同理γ//AD又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A .同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ).A .α⊂l ,α⊂m ,且β//l ,β//mB .α⊂l ,β⊂m ,且m l //C .α⊥l ,β⊥m ,且m l //D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b .∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ,∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = ,∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ;(2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN .∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //.∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN .∵MN ⊂平面PMN ,∴β//MN .(2)分别连结MC 、MD .∵b BD AC ==,a BM AM 21==,又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM ,∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =,∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥.在CMN Rt ∆中,22222421c a b CN CM MN -+=-=.说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解.(3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究.解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内;∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行.已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可. 证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉.点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //',故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a .同理α//'b .又β⊂'a ,β⊂'b ,A b a ='' ,∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知: m =ρβ ,n =ργ ,∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H ,∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //,∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //.又SG ⊄平面DEF ,FH ⊂平面DEF ,∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出. 证法2:∵EF 为SBC ∆的中位线,∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB ,∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β ,又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin .由BE FA //,得212412∶∶∶∶===QA QB AF BE, ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167847267=⨯=.∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点、线、面的位置关系● 知识梳理(一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面.推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行;符号表述:,,,//,////a b a b O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

符号表述:若任意,a α⊂都有l a ⊥,且l α⊄,则l α⊥.②判定:,a b a b O l l l al b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭③性质:(1),l a l a αα⊥⊂⇒⊥;(2),//a b a b αα⊥⊥⇒; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥⇒∠-是二面角-的平面角 范围:[0,180]AOB ∠∈︒︒②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90︒,则αβ⊥; (2)判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭(3)性质:①若αβ⊥,二面角的一个平面角为MON ∠,则90MON ∠=︒;②a AB a a a ABαβββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭● 热点例析【例1】热点一 有关线面位置关系的组合判断若a ,b 是两条异面直线,α,β是两个不同平面,a ⊂α,b ⊂β,α∩β=l ,则( ).A .l 与a ,b 分别相交B .l 与a ,b 都不相交C .l 至多与a ,b 中一条相交D .l 至少与a ,b 中的一条相交解析:假设l 与a ,b 均不相交,则l ∥a ,l ∥b ,从而a ∥b 与a ,b 是异面直线矛盾,故l 至少与a ,b 中的一条相交.选D.热点二 线线、线面平行与垂直的证明【例2】如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .(1)方法一:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD . 又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得 BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,所以AD 2+BD 2=AB 2.所以AD ⊥BD .又AD ∩D 1D =D , 所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,故AA 1⊥BD .方法二:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD (如图), 所以BD ⊥D 1D .取AB 的中点G ,连接DG (如图).在△ABD 中,由AB =2AD 得AG =AD . 又∠BAD =60°,所以△ADG 为等边三角形,因此GD =GB , 故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°, 所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,故AA 1⊥BD . (2)如图,连接AC ,A 1C 1.设AC ∩BD =E ,连接EA 1.因为四边形ABCD 为平行四边形,所以EC =12AC .由棱台定义与AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形. 因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1 平面A 1BD , 所以CC 1∥平面A 1BD .热点三 面面平行与垂直的证明【例3】在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =4,P 为平面ABCD 外一点,且PA =PB ,PD =PC ,N 为CD 的中点.(1)求证:平面PCD ⊥平面ABCD ;(2)在线段PC 上是否存在一点E 使得NE ∥平面ABP ?若存在,说明理由并确定E 点的位置;若不存在,请说明理由.(1)证明:取AB 中点M ,连接PM ,PN ,MN , 则PM ⊥AB ,PN ⊥CD .又ABCD 为直角梯形,AB ⊥BC ,∴MN ⊥AB . ∵PM ∩MN =M ,∴AB ⊥平面PMN . 又PN ⊂平面PMN ,∴AB ⊥PN .∵AB 与CD 相交,∴PN ⊥平面ABCD .又PN ⊂平面 PCD ,∴平面PCD ⊥平面ABCD .(2)解:假设存在.在PC ,PB 上分别取点E ,F ,使BF =14BP ,CE =14CP ,连接EF ,MF ,NE ,则EF ∥BC 且可求得EF =34BC =3.∵MN =3且MN ∥BC ,∴EF ∥MN 且EF =MN . ∴四边形MNEF 为平行四边形,∴EN ∥FM . 又∵FM ⊂平面PAB ,∴在线段PC 上存在一点E 使得NE ∥平面ABP ,此时CE =14PC .热点四 折叠问题例4如图所示,在直角梯形ABCP 中,AP//BC ,AP ⊥AB ,AB=BC=221=AP ,D 是AP 的中点,E ,F ,G 分别为PC 、PD 、CB 的中点,将PCD∆沿CD 折起,使得⊥PD 平面ABCD . (Ⅰ)求证:AP //平面EFG ; (Ⅱ) 求二面角D EF G --的大小.CAPGEFBD O解:(Ⅰ) 证明:连AC,BD 交于O 点,连GO,FO,EO .∵E,F 分别为PC,PD 的中点,∴EF //CD 21,同理//12CD , EF ∴// GO∴四边形EFOG 是平行四边形, ⊂∴EO 平面EFOG .又在三角形PAC 中,E,O 分别为PC,AC 的中点,∴PA//EO⊂EO 平面EFOG,PA ⊄平面EFOG,∴PA//平面EFOG,即PA//平面EFG .方法二) 连AC,BD 交于O 点,连GO,FO,EO .∵E,F 分别为PC,PD 的中点,∴EF //CD 21,同理//12PB 又//AB,EF ∴//AB 21∴=⋂=⋂,,B AB PB E EF EG 平面EFG//平面PAB,又PA ⊄平面PAB,//PA ∴平面EFG .方法三)如图以D 为原点,以,,为方向向量建立空间直角坐标系xyz D -. 则有关点与向量的坐标为:()()()()()()0,0,2,0,2,0,1,2,0,0,1,1,0,0,1,2,00.P C G E F A()()()1,1,1,0,1,0,2,0,2-=-=-=设平面EFG 的法向量为()z y x n ,,=.00000⎩⎨⎧==⇒⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅∴y z x z y x y取()1,0,1=n .∵()AP n AP n ⊥∴=⨯+⨯+-⨯=⋅,0210021, 又⊄AP 平面EFG . ∴ AP//平面EFG .(Ⅱ)由已知底面ABCD 是正方形 ∴DC AD ⊥,又∵⊥PD 面ABCDPD AD ⊥∴ 又D CD PD =⋂⊥∴AD 平面PCD ,∴向量是平面PCD 的一个法向量, =()0,0,2又由(Ⅰ)方法三)知平面EFG 的法向量为()1,0,1=.22222===∴ 结合图知二面角D EF G --的平面角为.450● 热点五 线线角线面角面面角例5正四棱锥ABCD P -中,侧棱PA 与底面ABCD 所成角的正切值为26。

(1)求侧面PAD 与底面ABCD 所成二面角的大小;(2)若E 是PB 中点,求异面直线PD 与AE 所成角的正切值;(3)在侧面PAD 上寻找一点F ,使得EF ⊥侧面PBC 。

试确定点F 的位置,并加以证明。

(1)连BD AC ,交于点O ,连PO ,则PO ⊥面ABCD ,∴ ∠PAO 就是PA 与底面ABCD 所成的角,∴ tan ∠PAO=26。

设AB=1,则PO=AO •tan ∠PAO =23。

设F 为AD 中点,连FO 、PO ,则OF ⊥AD ,所以,PF ⊥AD ,所以,PFO ∠就是侧面PAD 与底面ABCD 所成二面角的平面角。

在Rt PFO ∆中,3tan ==∠FO PO PFO ,∴ 3π=∠PFO 。

即面PAD 与底面ABCD 所成二面角的大小为3π(2)由(1)的作法可知:O 为BD 中点,又因为E 为PD 中点,所以,EO =//PD 21。

∴ EOD ∠就是异面直线PD 与AE 所成的角。

在Rt PDO ∆中,2522=+=PO OD PD 。

∴ 45=EO 。

由BD AO ⊥,PO AO ⊥可知:⊥AO 面PBD 。

所以,EO AO ⊥。

在Rt AOE ∆中,5102tan ==∠EO AO AEO 。

∴ 异面直线PD 与AE所成的角的正切是5102。

(3)延长FO 交BC于点G ,连接PG 。

相关文档
最新文档