点线面位置关系例题与练习(含答案)

合集下载

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。

(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.【答案】(1)见解析(2)4 (3)【解析】(1)根据长方体的性质推断出平面平面平面.进而根据线面平行的判定定理推断出∥平面.设,进而根据几何体的体积关系求得棱柱的体积,进而利用体积公式求得.(3)在平面中作交于,过作交于点,根据线面垂直的性质推断出,进而根据,推断出,利用线面垂直的性质证明出.通过∽.利用比例关系求得,最后利用平方关系求得.试题解析:(1)∵是长方体,∴平面平面.∵平面,平面,∴平面.(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【考点】直线与平面平行的判定;点、线、面间的距离计算.2.在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条【答案】.【解析】如图可知:与直线异面的面对角线总共有,.,,,,,∴总共有条【考点】空间中直线与直线的位置关系.3.教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ().A.平行B.异面C.垂直D.相交但不垂直【答案】C【解析】由题意,直尺所在直线若与地面垂直,则在地面总有这样的直线,使得它与直尺所在直线垂直;若直尺所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直;综上,教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线垂直,故选B.【考点】空间中直线与平面之间的位置关系.4.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系5.已知不同直线、和不同平面、,给出下列命题:①②③异面④其中错误的命题有()个A.1B.2C.3D.4【答案】C【解析】①,正确;②,当时不成立,故②错误;③异面,,故③错误;④,有可能,故④错误【考点】直线与平面(平行)垂直的判定和性质定理,平面与平面(平行)垂直的判定和性质定理6.在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.【答案】(1)见解析(2)见解析【解析】(1)通过借助中间量——直线,易得,,可得直线,从而证得平面;(2)通过证明平面,即可征得平面平面.试题解析:(1)连结.在长方体中,对角线,又∵、为棱、的中点,∴,∴.又∵平面,平面,∴平面.(2)在长方体中,平面,而平面,∴.又在正方形中,,∴平面.又∵平面,∴平面平面.【考点】1.直线与平面平行的证明;2.面面垂直的证明.7.正方体-中,与平面ABCD所成角的余弦值为( )A.B.C.D.【答案】D【解析】因为平面所以与平面所成角为求线面角关键找垂线,找出垂线就能在直角三角形中研究线面角大小.另外需熟悉正方体中面对角线与体对角线量的关系.【考点】直线与平面所成角.8.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题9.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱台D.是棱柱【答案】C【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、D正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选C.【考点】长方体的几何特征,直线与平面平行、垂直的判定与性质。

数学必修二点线面之间的位置关系习题打印版(含答案)z

数学必修二点线面之间的位置关系习题打印版(含答案)z

点、直线、平面之间的位置关系1.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.2.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.3.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.4.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.5.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.答案1.证明:(1)∵E、F分别是AB、BD的中点,∴EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,∴直线EF∥面ACD.(2)在△ABD中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.2. (1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.3. 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.[证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.4. 因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 又PQ ⊄平面ACD ,从而PQ ∥平面ACD .(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1,sin ∠DAP =55,因此AD 和平面ABE 所成角的正弦值为55. 5. (1)转化为证明GF 平行于平面ABC 内的直线AC ;(2)转化为证明AC 垂直于平面EBC 内的两条相交直线BC 和BE ;(3)几何体ADEBC 是四棱锥C -ABED .[解] (1)证明:连接AE ,如下图所示. ∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC . 又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴G H ⊥平面ABCD ,∴V =13×1×12=16.。

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。

叫做垂足。

的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。

符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。

符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。

所成的角。

2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。

三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。

点线面位置关系练习(有详细答案)

点线面位置关系练习(有详细答案)

【空间中的平行问题】(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行) ③垂直于同一条直线的两个平面平行两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)【空间中的垂直问题】(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【空间角问题】(1)直线与直线所成的角①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

12.1专题十二(1) 点线面的位置关系(答案)

12.1专题十二(1)  点线面的位置关系(答案)

高考真题复习专题十二(1) 点线面的位置关系参考答案1.B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为所以其表面积为22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.2.B【解析】【分析】首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,= B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.3.C【解析】【分析】首先画出长方体1111ABCD A BC D -,利用题中条件,得到130AC B ∠=,根据2AB =,求得1BC =,可以确定1CC =.【详解】在长方体1111ABCD A BC D -中,连接1BC ,根据线面角的定义可知130AC B ∠=,因为2AB =,所以1BC =,从而求得1CC =,所以该长方体的体积为22V =⨯⨯ C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.4.C【解析】【分析】利用正方体1111ABCD A BC D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.在正方体1111ABCD A BC D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.A【解析】【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。

空间点线面的位置关系带详细答案

空间点线面的位置关系带详细答案

.空间点、线、面的位置关系带详细答案————————————————————————————————作者:————————————————————————————————日期:8.2空间点、线、面的位置关系五年高考A组统一命题.课标卷题组1.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A: B: C: D:答案详解C正确率: 62%, 易错项: B解析:本题主要考查空间直角坐标系。

以垂直于的方向为轴,为轴,为轴建立空间直角坐标系。

则,,由于,则,。

即,,所以异面直线与所成角的余弦值。

故本题正确答案为C。

2.已知,为异面直线,平面,平面,直线满足,,,,则()。

A: ,且B: ,且C: 与相交,且交线垂直于D: 与相交,且交线平行于答案详解D正确率: 49%, 易错项: C解析:本题主要考查直线、平面的位置关系。

若,则由知,而,所以,与,为异面直线矛盾,所以平面与平面相交。

由平面,,且,可知,同理可知,所以与两平面,的交线平行。

故本题正确答案为D。

3.平面过正方体的顶点,平面,平面,平面,则,所成角的正弦值为()。

A: B: C: D:答案详解A正确率: 47%, 易错项: B解析:本题主要考查点、直线、平面的位置关系。

如图所示,因为平面,若设平面平面,则,又因为平面平面,结合平面平面,所以,即,同理可得:,所以,所成角的大小与,所成角的大小相等,即的大小,因为,所以,即。

故本题正确答案为A。

4.直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()。

A: B: C: D:答案详解C正确率: 73%, 易错项: B解析:本题主要考查空间向量的应用。

建立如图所示的空间直角坐标系,设,则有,,,,,所以,,则,,所以。

故本题正确答案为C。

易错项分析:空间中异面直线夹角的解法,用空间向量法解题相对简单,本题易错点是正确建立空间直角坐标系,求出两条直线的方向向量,最后正确应用向量的数量积公式求出异面直线夹角的余弦值。

高中数学必修二 点线面间的位置关系检测题及参考答案

高中数学必修二 点线面间的位置关系检测题及参考答案

高中数学必修二阶段质量检测(二)点、直线、平面之间的位置关系(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.分别在两个平行平面内的两条直线间的位置关系不可能为()A.平行B.相交C.异面D.垂直【答案】B。

【解析】因为两平行平面没有公共点,所以两直线没有公共点,所以两直线不可能相交.2.设BD1是正方体ABCD-A1B1C1D1的一条对角线,则这个正方体中面对角线与BD1异面的有()A.0条B.4条C.6条D.12条【答案】C。

【解析】每个面中各有一条对角线与BD1异面,它们是:AC,A1C1,B1C,A1D,AB1,DC1.3.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直【答案】D。

【解析】如图所示,在正方体ABCD-A1B1C1D1中,AD⊥平面DCC1D1,因此平面ABCD、平面AA1D1D均与平面DCC1D1垂直,而且平面AA1D1D∩平面ABCD=AD,显然选项D不正确,故选D.4.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是() A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】D。

【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故正确.5.如图所示,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.BD C.A1D D.A1D1【答案】选B【解析】CE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥CE.6.已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF ⊥AB,则EF与CD所成的角的度数为()A.90°B.45°C.60°D.30°【答案】D【解析】取BC的中点G,连接EG,FG,则EG=1,FG=2,EF⊥EG,则EF与CD所成的角等于∠EFG,为30°.7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D,E分别是棱BC,AB的中点,点F在棱CC1上,AB=BC=CA=CF=2,AA1=3,则下列说法正确的是() A.设平面ADF与平面BEC1的交线为l,则直线EC1与l相交B.在棱A1C1上存在点N,使得三棱锥N-ADF的体积为3 7C.设点M在BB1上,当BM=1时,平面CAM⊥平面ADFD.在棱A1B1上存在点P,使得C1P⊥AF【答案】C【解析】连接CE交AD于点O,则O为△ABC的重心,连接OF.由已知得OF∥EC1,则EC1∥l,故A错;若在A1C1上存在点N,则V N-ADF=V D-AFN,当N与C1重合时,V D-AFN取最小值为36,故B错;当BM=1时,可证得△CBM≌△FCD,则∠BCM+∠CDF=90°,即CM⊥DF.又∵AD⊥平面CBB1C1,CM⊂平面CBB1C1,∴AD⊥CM.∵DF∩AD=D,∴CM⊥平面ADF.∵CM⊂平面CAM,∴平面CAM⊥平面ADF,故C正确;过C1作C1G∥FA交AA1于点G.若在A1B1上存在点P,使得C1P⊥AF,则C1P⊥C1G.又∵C1P⊥GA1,C1G∩GA1=G,∴C1P⊥平面A1C1G.∵A1C1⊂平面A1GC1,∴C1P⊥A1C1,矛盾,故D错.故选C.8.在四面体ABCD 中,已知棱AC 的长为 2 ,其余各棱长都为1,则二面角A -CD -B 的余弦值为( ) A.12 B.13 C.33 D.23【答案】C【解析】取AC 的中点E ,CD 的中点F ,则EF =12,BE =22,BF =32, ∴△BEF 为直角三角形,cos θ=EF BF =33. 9.如图,平面α⊥平面β,A ∈α,B ∈β,AB 与平面α,β所成的角分别为45°和30°,过A ,B 分别作两平面交线的垂线,垂足分别为A ′,B ′,若AB =12,则A ′B ′等于( )A .4B .6C .8D .9【答案】B【解析】连接AB ′,BA ′,则∠BAB ′=45°,∠ABA ′=30°.在Rt △ABB ′中,AB =12,可得BB ′=6 2.在Rt △ABA ′中,可得BA ′=6 3.故在Rt △BA ′B ′中,可得A ′B ′=6.10.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A.125π12B.125π9C.125π6D.125π3【答案】C【解析】球心O 为AC 中点,半径为R =12AC =52,V =43πR 3=125π6. 11.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成四面体ABCD ,则在四面体ABCD 中,下列结论正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC【答案】D【解析】易知△BCD中,∠DBC=45°,∴∠BDC=90°,又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD,而AB⊥AD,CD∩AD=D,∴AB⊥平面ACD,∴平面ABC⊥平面ACD.12.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图,取CD的中点F,DF的中点G,连接EF,FN,MG,GB.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,EF⊂平面ECD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF且MG=12EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=2235222⎛⎫+=⎪⎝⎭,∴BM=MG2+BG2=7,∴BM≠EN.连接BD,BE,∵点N是正方形ABCD的中心,∴点N在BD上,且BN=DN,∴BM,EN是△DBE的中线,∴BM,EN必相交.二、填空题(本大题共4小题,每小题5分,共20分)13.设正三角形ABC的边长为a,PA⊥平面ABC,PA=AB,则A到平面PBC的距离为________. 【答案】217a 【解析】如图所示,取BC 中点E ,连接AE ,PE ,则AE ⊥BC ,又BC ⊥PA ,∴BC ⊥平面PAE .∴平面PAE ⊥平面PBC .在平面PAE 内过A 作AF ⊥PE ,垂足为F ,则AF ⊥平面PBC .则AF =PA ·AE PE =217a . 14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.【答案】90°【解析】∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1,∴B 1C 1⊥MN ,又∠B 1MN 为直角.∴B 1M ⊥MN ,而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1,又MC 1⊂平面MB 1C 1,∴MN ⊥MC 1,∴∠C 1MN =90°.15.如图,圆锥SO 中,AB 、CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =2,P 为SB 的中点,则异面直线SA 与PD 所成角的正切值为________.【答案】 2【解析】连接PO ,则PO ∥SA ,∴∠OPD 即为异面直线SA 与PD 所成的角,且△OPD 为直角三角形,∠POD 为直角,∴tan ∠OPD =OD OP =22= 2. 16.(2019·全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________.【答案】 2【解析】如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC,PE,PF,则PE⊥AC,PF⊥BC.又PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图,在四面体ABCD中,CB=CD,AD⊥BD,且E、F分别是AB、BD的中点.求证:(1)EF∥平面ACD;(2)平面EFC⊥平面BCD.证明:(1)∵E,F分别是AB,BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄平面ACD,AD⊂平面ACD,∴EF∥平面ACD.(2)∵AD⊥BD,EF∥AD,∴EF⊥BD.∵CB=CD,F是BD的中点,∴CF⊥BD.又EF∩CF=F,∴BD⊥平面EFC.∵BD⊂平面BCD,∴平面EFC⊥平面BCD.18.(本小题满分12分)(2019·全国卷Ⅰ)如图,直四棱柱ABCD -A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.解:(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)过点C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为点C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=17,故CH=41717.从而点C到平面C1DE的距离为41717.19.(本小题满分12分)矩形ABCD中,AB=2,AD=1,E为CD的中点,沿AE将△DAE折起到△D1AE的位置,使平面D1AE⊥平面ABCE.(1)若F为线段D1A的中点,求证:EF∥平面D1BC;(2)求证:BE⊥D1A.证明:(1)取AB的中点G,连接EG、FG,则EG∥BC,FG∥D1B,且EG∩FG=G,EG、FG⊂平面EFG;D1B∩BC=B,D1B、BC⊂平面D1BC.∴平面EFG∥平面D1BC,注意到EF⊂平面EFG,∴EF∥平面D1BC.(2)易证BE⊥EA,平面D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE,且D1A⊂平面D1AE,∴BE⊥D1A.20.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分别交AC、SC于D、E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.解:(1)证明:如图,∵DE⊥SC,且E为SC的中点,又SB=BC,∴BE⊥S C.又DE∩BE=E,根据直线与平面垂直的判定定理知SC⊥平面BDE,BD⊂平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD⊂平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC为二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,设SA=AB=1,则SB= 2.由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB⊂平面SAB,∴BC⊥SB.在Rt△SBC中,SB=BC=2,∠SBC=90°,则SC=2.在Rt△SAC中,∠SAC=90°,SA=1,SC=2.∴cos∠ASC=SASC=12.∴∠ASC=60°,即二面角E-BD-C的大小为60°.21.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF ∥AC,AB=2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点O,连接EO,∵EF∥AC,且EF=1,AO=12AC=1,∴四边形AOEF为平行四边形,∴AF∥OE.∵OE⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FO,∵EF∥CO,EF=CO=1,且CE=1,∴四边形CEFO为菱形,∴CF⊥EO.∵四边形ABCD为正方形,∴BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD. 又BD∩EO=O,∴CF⊥平面BDE.22.(本小题满分12分)如图,已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC ⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E-ABC的体积.解:(1)取DC的中点N,取BD的中点M,连接MN,EN,EM,则直线MN即为所求.取BC的中点H,连接AH,∵△ABC为腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC.又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理,可证EN⊥平面BCD,∴EN∥AH.∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC.∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC.又EF⊂平面EMN,∴EF∥平面ABC.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,NG=12DH,由(1)可知,EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等.又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC.又DH=3,∴NG=3 2.又AC=AB=3,BC=2,∴AH=22,∴S△ABC=12·BC·AH=22,∴V E-ABC=V N-ABC=13·S△ABC·NG=63.。

高二数学点线面的位置关系试题答案及解析

高二数学点线面的位置关系试题答案及解析

高二数学点线面的位置关系试题答案及解析1.如图,在直三棱柱中,,,分别为和的中点.(1)求证:平面;(5分)(2)求三棱锥的体积.(7分)【答案】(1)详见解析;(2).【解析】(1)这是常规题,只要在平面寻找到一条直线与平行即可,通常是通过再取中点构造中位线和平行四边形来达到证题目的,这题就是如此;(2)经常是通过体积计算来考查等积变换思想,三棱锥的体积,关键是三棱椎的高,直接求有难度,可通过变换顶点达到有利于求高的目的,这里就是转化为求三棱锥的体积来实现的.试题解析:(1)取边中点,连、,则,且,所以四边形是平行四边形,,且平面,平面. 5分(2)在等腰三角形中,易知⊥,又,∴平面由(1),平面又,,. 12分【考点】1.立体几何中线面位置关系的证明;2.几何体的体积计算,3.等积变换的思想.2.如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且(1)求证:平面平面;(2)若,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】解题思路:(1)作出辅助线,利用线面垂直的判定定理证明即可;(2)合理转化三棱锥的顶点和底面,利用体积法求所求的点到平面的距离.规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及点到平面的距离问题,往往转化三棱锥的顶点,利用体积法求距离.试题解析:(1)取中点,连接,则面,,(2)设点到平面的距离,,【考点】1.空间中垂直的判定;2.点到平面的距离.3.如图所示,正三棱锥中,分别是的中点,为上任意一点,则直线与所成的角的大小是 ( )A.B.C.D.随点的变化而变化.【答案】B【解析】连接,因为为正三棱锥,所以,则有,所以,即直线与所成的角的大小是.【考点】(1)线面垂直的判定与性质应用;(2)线线角.4.设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是(). A.若,,则B.若,,则C.若,,则D.若,,,则【答案】B.【解析】对于A选项,可能m与相交或平行,对于选项B,由于,则在内一定有一直线设为与平行,又,则,又,根据面面垂直的判定定理,可知,故B选项正确,对于C选项,可能有,对于D选项,可能与相交.【考点】线面间的位置关系5.如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,,.(1)求证:平面⊥平面;(2)求点C到平面的距离;(3)求PC与平面PAD所成的角的正弦值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点、线、面的位置关系● 知识梳理(一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面.推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行;符号表述:,,,//,////a b a b O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

符号表述:若任意,a α⊂都有l a ⊥,且l α⊄,则l α⊥.②判定:,a b a b O l l l al b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭③性质:(1),l a l a αα⊥⊂⇒⊥;(2),//a b a b αα⊥⊥⇒; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥⇒∠-是二面角-的平面角 范围:[0,180]AOB ∠∈︒︒②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90︒,则αβ⊥; (2)判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭(3)性质:①若αβ⊥,二面角的一个平面角为MON ∠,则90MON ∠=︒;②a AB a a a ABαβββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭● 热点例析【例1】热点一 有关线面位置关系的组合判断若a ,b 是两条异面直线,α,β是两个不同平面,a ⊂α,b ⊂β,α∩β=l ,则( ).A .l 与a ,b 分别相交B .l 与a ,b 都不相交C .l 至多与a ,b 中一条相交D .l 至少与a ,b 中的一条相交解析:假设l 与a ,b 均不相交,则l ∥a ,l ∥b ,从而a ∥b 与a ,b 是异面直线矛盾,故l 至少与a ,b 中的一条相交.选D.热点二 线线、线面平行与垂直的证明【例2】如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .(1)方法一:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD . 又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得 BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,所以AD 2+BD 2=AB 2.所以AD ⊥BD .又AD ∩D 1D =D , 所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,故AA 1⊥BD .方法二:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD (如图), 所以BD ⊥D 1D .取AB 的中点G ,连接DG (如图).在△ABD 中,由AB =2AD 得AG =AD . 又∠BAD =60°,所以△ADG 为等边三角形,因此GD =GB , 故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°, 所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,故AA 1⊥BD . (2)如图,连接AC ,A 1C 1.设AC ∩BD =E ,连接EA 1.因为四边形ABCD 为平行四边形,所以EC =12AC .由棱台定义与AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形. 因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1 平面A 1BD , 所以CC 1∥平面A 1BD .热点三 面面平行与垂直的证明【例3】在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =4,P 为平面ABCD 外一点,且PA =PB ,PD =PC ,N 为CD 的中点.(1)求证:平面PCD ⊥平面ABCD ;(2)在线段PC 上是否存在一点E 使得NE ∥平面ABP ?若存在,说明理由并确定E 点的位置;若不存在,请说明理由.(1)证明:取AB 中点M ,连接PM ,PN ,MN , 则PM ⊥AB ,PN ⊥CD .又ABCD 为直角梯形,AB ⊥BC ,∴MN ⊥AB . ∵PM ∩MN =M ,∴AB ⊥平面PMN . 又PN ⊂平面PMN ,∴AB ⊥PN .∵AB 与CD 相交,∴PN ⊥平面ABCD .又PN ⊂平面 PCD ,∴平面PCD ⊥平面ABCD .(2)解:假设存在.在PC ,PB 上分别取点E ,F ,使BF =14BP ,CE =14CP ,连接EF ,MF ,NE ,则EF ∥BC 且可求得EF =34BC =3.∵MN =3且MN ∥BC ,∴EF ∥MN 且EF =MN . ∴四边形MNEF 为平行四边形,∴EN ∥FM . 又∵FM ⊂平面PAB ,∴在线段PC 上存在一点E 使得NE ∥平面ABP ,此时CE =14PC .热点四 折叠问题例4如图所示,在直角梯形ABCP 中,AP//BC ,AP ⊥AB ,AB=BC=221=AP ,D 是AP 的中点,E ,F ,G 分别为PC 、PD 、CB 的中点,将PCD∆沿CD 折起,使得⊥PD 平面ABCD . (Ⅰ)求证:AP //平面EFG ; (Ⅱ) 求二面角D EF G --的大小.CAPGEFBD O解:(Ⅰ) 证明:连AC,BD 交于O 点,连GO,FO,EO .∵E,F 分别为PC,PD 的中点,∴EF //CD 21,同理//12CD , EF ∴// GO∴四边形EFOG 是平行四边形, ⊂∴EO 平面EFOG .又在三角形PAC 中,E,O 分别为PC,AC 的中点,∴PA//EO⊂EO 平面EFOG,PA ⊄平面EFOG,∴PA//平面EFOG,即PA//平面EFG .方法二) 连AC,BD 交于O 点,连GO,FO,EO .∵E,F 分别为PC,PD 的中点,∴EF //CD 21,同理//12PB 又//AB,EF ∴//AB 21∴=⋂=⋂,,B AB PB E EF EG 平面EFG//平面PAB,又PA ⊄平面PAB,//PA ∴平面EFG .方法三)如图以D 为原点,以,,为方向向量建立空间直角坐标系xyz D -. 则有关点与向量的坐标为:()()()()()()0,0,2,0,2,0,1,2,0,0,1,1,0,0,1,2,00.P C G E F A()()()1,1,1,0,1,0,2,0,2-=-=-=设平面EFG 的法向量为()z y x n ,,=.00000⎩⎨⎧==⇒⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅∴y z x z y x y取()1,0,1=n .∵()AP n AP n ⊥∴=⨯+⨯+-⨯=⋅,0210021, 又⊄AP 平面EFG . ∴ AP//平面EFG .(Ⅱ)由已知底面ABCD 是正方形 ∴DC AD ⊥,又∵⊥PD 面ABCDPD AD ⊥∴ 又D CD PD =⋂⊥∴AD 平面PCD ,∴向量是平面PCD 的一个法向量, =()0,0,2又由(Ⅰ)方法三)知平面EFG 的法向量为()1,0,1=.22222===∴ 结合图知二面角D EF G --的平面角为.450● 热点五 线线角线面角面面角例5正四棱锥ABCD P -中,侧棱PA 与底面ABCD 所成角的正切值为26。

(1)求侧面PAD 与底面ABCD 所成二面角的大小;(2)若E 是PB 中点,求异面直线PD 与AE 所成角的正切值;(3)在侧面PAD 上寻找一点F ,使得EF ⊥侧面PBC 。

试确定点F 的位置,并加以证明。

(1)连BD AC ,交于点O ,连PO ,则PO ⊥面ABCD ,∴ ∠PAO 就是PA 与底面ABCD 所成的角,∴ tan ∠PAO=26。

设AB=1,则PO=AO •tan ∠PAO =23。

设F 为AD 中点,连FO 、PO ,则OF ⊥AD ,所以,PF ⊥AD ,所以,PFO ∠就是侧面PAD 与底面ABCD 所成二面角的平面角。

在Rt PFO ∆中,3tan ==∠FO PO PFO ,∴ 3π=∠PFO 。

即面PAD 与底面ABCD 所成二面角的大小为3π(2)由(1)的作法可知:O 为BD 中点,又因为E 为PD 中点,所以,EO =//PD 21。

∴ EOD ∠就是异面直线PD 与AE 所成的角。

在Rt PDO ∆中,2522=+=PO OD PD 。

∴ 45=EO 。

由BD AO ⊥,PO AO ⊥可知:⊥AO 面PBD 。

所以,EO AO ⊥。

在Rt AOE ∆中,5102tan ==∠EO AO AEO 。

∴ 异面直线PD 与AE所成的角的正切是5102。

(3)延长FO 交BC于点G ,连接PG 。

相关文档
最新文档