【练习】高中数学空间中点线面的位置关系练习题

合集下载

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题1.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是()A.①③B.②④C.①④D.②③【答案】C【解析】对于①,由于两条平行线中的一条直线与一个平面垂直,则另一条直线也与该平面垂直,因此①是正确的;对于②,分别位于两个平行平面内的两条直线必没有公共点,但它们不一定平行,因此②是错误的;对于③,直线n可能位于平面α内,此时结论显然不成立,因此③是错误的;对于④,由m⊥α且α∥β得m⊥β,又m∥n,则n⊥β,因此④是正确的.故选C.2.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则B.若,,则C.若,,则D.若,,则【答案】B【解析】若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.【考点】空间直线和平面的位置关系.3.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:(1)EF//平面MNCB;(2)平面MAC平面BND.【答案】(1) (2)见解析【解析】(1)取的中点,连接,欲证平面,只要证只要证四边形是平行四边形即可,事实上,由于分别是的中点,易知另一方面又有 ,所以FG与ME平行且相等,四边形是平行四边形,问题得证.(2) 连接、,欲证平面,只要证平面,即证与平面内的两条相交直线、都垂直;由菱形易知;另外,由平面平面及矩形易证平面,进而有,所以问题得证.试题解析:证明:(1)取的中点,连接,因为且,又因为、分别为、的中点,且, 2分所以与平行且相等,所以四边形是平行四边形,所以, 4分又平面,平面,所以平面 6分(2)连接、,因为四边形是矩形,所以,又因为平面平面所以平面 8分所以因为四边形是菱形,所以因为,所以平面 10分又因为平面所以平面 12分【考点】1、直线与平面平行的判定;2、直线与平面及平面与平面垂直的判定与性质.4.已知三棱柱的侧棱在下底面的射影与平行,若与底面所成角为,且,则的余弦值为()A.B.C.D.【答案】C【解析】由三余弦公式得.又,所以.【考点】空间几何体及空间的角.5.设a、b为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且b⊥α,则a∥b;③若a∥α且a∥β,则α∥β;④若a⊥α且a⊥β,则α∥β.其中为真命题的是________.(填序号)【答案】②④【解析】①错,a∥α,b∥α,直线a与b可能相交、平行或异面;③错,若α∩β=l,a∥l,aα,aβ,则a∥α,a∥β.6.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.【答案】2【解析】若α、β换为直线a、b,则命题化为“a∥b,且a⊥γb⊥γ”,此命题为真命题;若α、γ换为直线a、b,则命题化为“a∥β,且a⊥b b⊥β”,此命题为假命题;若β、γ换为直线a、b,则命题化为“a∥α,且b⊥αa⊥b”,此命题为真命题,故真命题共2个.7.如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?【答案】(1)见解析(2)当BM=1时【解析】(1)证明:连结CE交AD于O,连结OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.OF平面ADF,C1E平面ADF,所以C1E∥平面ADF.(2)解:当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,由于B1B⊥平面ABC,BB1平面B1BCC1,所以平面B1BCC1⊥平面ABC.由于AB=AC,D是BC中点,所以AD⊥BC.又平面B1BCC1∩平面ABC=BC,所以AD⊥平面B1BCC1.而CM平面B1BCC1,于是AD⊥CM.因为BM=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,所以CM⊥DF.DF与AD相交,所以CM⊥平面ADF.CM⊥平面CAM,所以平面CAM⊥平面ADF.当BM=1时,平面CAM⊥平面ADF.8.如图PA⊥圆O所在平面,AB是圆O的直径,C是圆O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的是________.(填序号)【答案】①②④【解析】①AE平面PAC,BC⊥AC,BC⊥PA AE⊥BC,故①正确,②AE⊥PB,AF⊥PB,EF⊥PB,故②正确,③若AF⊥BC AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误,由①可知④正确.9.如图,PA⊥正方形ABCD,下列结论中不正确的是()A.PB⊥CB B.PD⊥CDC.PD⊥BD D.PA⊥BD【答案】C【解析】由CB⊥BA,CB⊥PA,PA∩BA=A,知CB⊥平面PAB,故CB⊥PB,即A正确;同理B正确;由条件易知D正确.10.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.【答案】(1)见解析(2)【解析】(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(2)∵VE-BCC1=VABC-A1B1C1=VA1-BCC1,∴BE=BA1,即A1E=A1B.连接OB,在Rt△A1OB中,A1O⊥OB,A1O=,BO=1,故A1B=2,则A1E的长度为.11.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列为真命题的是()A.若α⊥β,m⊥α,则m∥βB.若α⊥γ,β⊥γ,则α∥βC.若m⊥α,n∥m,则n⊥αD.若m∥α,n∥α,则m∥n【答案】C【解析】举反例,对于A,可能mβ;对于B,α,β可能相交;对于D,m,n可能相交或异面.12.设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:①若m⊥n,m⊥α,n⊄α则n∥α;②若α⊥β,则α∩β=m,n⊂α,n⊥m,则n⊥β;③若m⊥n,m∥α,n∥β,则α⊥β;④若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中,所有真命题的序号是________.【答案】①②【解析】③错误,α,β相交或平行;④错误,n与m可以垂直,不妨令n=α∩β,则在β内存在m⊥n.13.已知α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.其中是平面α∥平面β的充分条件的为________(填上所有符号要求的序号).【答案】①④【解析】①正确,此时必有α∥β;②错误,因为此时两平面平行或相交均可;③错误,当两直线a,b在两平面内分别与两平面的交线平行即可;④正确,由于α∥β,经过直线α的平面与平面β交于a′,则a∥a′,即a′∥α,又b∥α,因为a,b为异面直线,故a′,b为相交直线,由面面平行的判定定理可知α∥β,综上可知①④是平面α∥平面β的充分条件.14.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.上述命题中,所有真命题的序号是________.【答案】④【解析】若a∥α,a∥β,则α∥β或α与β相交,即命题①不正确;若a⊥α,a⊥β,则α∥β,即命题②不正确;若a∥α,b∥α,则a∥b或a与b相交或a与b异面,即命题③不正确;若a⊥α,b⊥α,则a∥b,即命题④正确,综上可得真命题的序号为④.15.正方形与梯形所在平面互相垂直,,,点在线段上且不与重合。

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。

(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.【答案】(1)见解析(2)4 (3)【解析】(1)根据长方体的性质推断出平面平面平面.进而根据线面平行的判定定理推断出∥平面.设,进而根据几何体的体积关系求得棱柱的体积,进而利用体积公式求得.(3)在平面中作交于,过作交于点,根据线面垂直的性质推断出,进而根据,推断出,利用线面垂直的性质证明出.通过∽.利用比例关系求得,最后利用平方关系求得.试题解析:(1)∵是长方体,∴平面平面.∵平面,平面,∴平面.(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【考点】直线与平面平行的判定;点、线、面间的距离计算.2.在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条【答案】.【解析】如图可知:与直线异面的面对角线总共有,.,,,,,∴总共有条【考点】空间中直线与直线的位置关系.3.教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ().A.平行B.异面C.垂直D.相交但不垂直【答案】C【解析】由题意,直尺所在直线若与地面垂直,则在地面总有这样的直线,使得它与直尺所在直线垂直;若直尺所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直;综上,教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线垂直,故选B.【考点】空间中直线与平面之间的位置关系.4.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系5.已知不同直线、和不同平面、,给出下列命题:①②③异面④其中错误的命题有()个A.1B.2C.3D.4【答案】C【解析】①,正确;②,当时不成立,故②错误;③异面,,故③错误;④,有可能,故④错误【考点】直线与平面(平行)垂直的判定和性质定理,平面与平面(平行)垂直的判定和性质定理6.在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.【答案】(1)见解析(2)见解析【解析】(1)通过借助中间量——直线,易得,,可得直线,从而证得平面;(2)通过证明平面,即可征得平面平面.试题解析:(1)连结.在长方体中,对角线,又∵、为棱、的中点,∴,∴.又∵平面,平面,∴平面.(2)在长方体中,平面,而平面,∴.又在正方形中,,∴平面.又∵平面,∴平面平面.【考点】1.直线与平面平行的证明;2.面面垂直的证明.7.正方体-中,与平面ABCD所成角的余弦值为( )A.B.C.D.【答案】D【解析】因为平面所以与平面所成角为求线面角关键找垂线,找出垂线就能在直角三角形中研究线面角大小.另外需熟悉正方体中面对角线与体对角线量的关系.【考点】直线与平面所成角.8.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题9.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱台D.是棱柱【答案】C【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、D正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选C.【考点】长方体的几何特征,直线与平面平行、垂直的判定与性质。

空间几何计算练习题求点线面的位置关系

空间几何计算练习题求点线面的位置关系

空间几何计算练习题求点线面的位置关系一、点、线、面的定义在空间几何中,点、线、面是最基本的概念。

点是空间中的一个位置;线是由无数个点按照一定规律排列而成的;面是由无数个线按照一定规律排列而成的。

二、求点、线、面的位置关系在空间中,点、线、面可能存在不同的位置关系。

下面通过一些具体的计算练习题,来求解它们之间的位置关系。

1. 点与线的位置关系设空间中有一条直线L,以及一个点P,求点P与直线L的位置关系。

解题步骤:1) 判断点P是否在直线L上。

通过判断点P是否满足直线L的方程来确定。

若点P满足直线L的方程,则点P在直线L上;若点P不满足直线L的方程,则点P不在直线L上。

2. 点与面的位置关系设空间中有一个平面面,以及一个点P,求点P与平面面的位置关系。

解题步骤:1) 判断点P是否在平面面上。

通过判断点P是否满足平面面的方程来确定。

若点P满足平面面的方程,则点P在平面面上;若点P不满足平面面的方程,则点P不在平面面上。

3. 线与线的位置关系设空间中有两条直线L1和L2,求直线L1与直线L2的位置关系。

解题步骤:1) 判断直线L1是否与直线L2重合。

通过判断直线L1和L2是否满足同一方程来确定。

若直线L1和L2满足同一方程,则直线L1与L2重合;若直线L1和L2不满足同一方程,则直线L1与L2不重合。

4. 线与面的位置关系设空间中有一条直线L和一个平面面,求直线L与平面面的位置关系。

解题步骤:1) 判断直线L是否与平面面平行。

通过判断直线L的方向向量是否与平面面的法向量平行来确定。

若直线L的方向向量与平面面的法向量平行,则直线L与平面面平行;若直线L的方向向量与平面面的法向量不平行,则直线L与平面面不平行。

5. 面与面的位置关系设空间中有两个平面面1和面2,求面1与面2的位置关系。

解题步骤:1) 判断面1是否与面2平行。

通过判断面1的法向量是否与面2的法向量平行来确定。

若面1的法向量与面2的法向量平行,则面1与面2平行;若面1的法向量与面2的法向量不平行,则面1与面2不平行。

高中数学空间中点线面的位置关系练习题

高中数学空间中点线面的位置关系练习题

空间中点线面的位置关系练习题1、下列有关平面的说法正确的是( )CA 一个平面长是10cm ,宽是5cmB 一个平面厚为1厘米C 平面是无限延展的D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则:①αα∉⇒⊄∈A a a A , ② αα∈⇒⊂∈A a a A , ③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A , 其中说法正确的个数是( )BA.0B.1C.2D.3 3、下列图形不一定是平面图形的是( )B A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( )CA.4、6、7B.3、4、6、7C.4、6、7、8D.4、6、8 5、共点的三条直线可确定几个平面 ( )D A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是( )DA 三角形B 四边形C 五边形D 六边形7、空间两条互相平行的直线指的是( )DA.在空间没有公共点的两条直线B.分别在两个平面内的两条直线C.分别在两个不同的平面内且没有公共点的两条直线D.在同一平面内且没有公共点的两条直线AQ B 1RCBDP A 1C 1D 1•••8、三个平面两两相交,交线的条数可能有————————————————1或39、不共线的四点可以确定——————————————————个平面。

1或410、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————②④⑤11、设c⊥③ca//,以其中a⊥④c 、表示直线,给出四个论断:①bba、a⊥②b c任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————或者若②④则①—————————若①④则②12、点E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,且BD =AC,则四边形EFGH是————————————。

高二文科数学点线面之间的位置关系练习题.

高二文科数学点线面之间的位置关系练习题.

A 1C 1D 1点线面之间的位置关系一、选择题(本大题共10小题,每小题5分,共50分)1. 若直线a 不平行于平面α,则下列结论成立的是()A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D.直线a 与平面α有公共点. 2. 已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是() A.3 B.2 C.1 D.03. 空间四边形ABCD 中,若A B A D A C C B C D B D =====,则A C 与B D 所成角为 A 、030 B、045 C、060 D、0904. 给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行;(2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直;(3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直;(4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面其中错误命题的个数为()(A )0 (B ) 1 (C )2 (D )35.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有()条 A 3 B 4 C 6 D 8 6. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC,则点O 是ΔABC 的()(A )内心(B )外心(C )重心(D )垂心7. 如图长方体中,AB=AD=23,CC 1=2,则二面角C1—BD —C 的大小为()(A )300 (B )450 (C )600 (D )900 8. 直线a,b,c 及平面α, β, γ, 下列命题正确的是() A 、若a ⊂α,b ⊂α,c ⊥a, c⊥b 则c ⊥α B、若b ⊂α, a//b 则a//α C 、若a//α, α∩β=b 则a//b D、若a ⊥α, b⊥α 则a//b9. 平面α与平面β平行的条件可以是()A. α内有无穷多条直线与β平行;B.直线a//α,a//βC. 直线a α⊂, 直线b β⊂, 且a//β,b//αD.α内的任何直线都与β平行 10、 a, b是异面直线,下面四个命题:①过a 至少有一个平面平行于b ;②过a 至少有一个平面垂直于b ;③至多有一条直线与a ,b 都垂直;④至少有一个平面与a ,b 都平行。

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

8.2空间点、线、面的位置关系基础篇考点一点、线、面的位置关系1.(2023届福建厦门联考,5)如图,在三棱柱ABC-A1B1C1中,△A1B1C1是正三角形,E是BC的中点,则下列叙述中正确的是()1与B1E是异面直线1与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°答案C2.(2019课标Ⅱ,7,5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案B3.(2021安徽江南十校一模,7)设a、b为两条直线,则a∥b的充要条件是()A.a、b与同一个平面所成角相等B.a、b垂直于同一条直线C.a、b平行于同一个平面D.a、b垂直于同一个平面答案D4.(2022甘肃二诊,6)正方体上的点M,N,P,Q是其所在棱的中点,则下列各图中直线MN与直线PQ是异面直线的是()ABCD答案B5.(2023届广西桂林月考二,9)已知三条不同的直线a,b,c,平面α,β,下列说法正确的是()A.命题p:经过一个平面上一点有且只有一个平面与已知平面垂直.命题p是真命题B.已知直线a∥b,b∥c,则a∥cC.命题q:已知a∥α,b∥α,则a∥b.命题q是真命题D.已知a⊥b,b⊥c,a∥α,c∥β,则α∥β答案B6.(2023届黑龙江部分学校联考,4)一个封闭的正方体容器ABCD-A1B1C1D1,P,Q,R分别是AB,BC和C1D1的中点,由于某种原因,P,Q,R处各有一个小洞,当此容器内存水的表面恰好经过这三个小洞时,容器中水的上表面的形状是() A.三角形 B.四边形 C.五边形 D.六边形答案D7.(2022皖南八校三模,15)三棱锥A-BCD中,AB=CD=1,过线段BC中点E作平面EFGH与直线AB、CD都平行,且分别交BD、AD、AC于F、G、H,则四边形EFGH的周长为.答案2考点二异面直线所成的角1.(2018课标Ⅱ,9,5分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()答案C2.(2022江西赣州二模,8)在正四棱锥P-ABCD中,点E是棱PD的中点.若直线PB与直线CE则P B的值为()A.1B.2C.2D.22答案C3.(2022黑龙江模拟,8)如图,某圆锥SO的轴截面SAC是等边三角形,点B是底面圆周上的一点,且∠BOC=60°,点M是SA的中点,则异面直线AB与CM所成角的余弦值是()A.13 C.34答案C4.(2023届河南焦作调研一,11)已知圆柱的轴截面是边长为2的正方形,AB和CD分别是该圆柱上、下底面的一条直径,若四面体ABCD则异面直线AB与CD所成角的余弦值为()C.12D.13答案D综合篇考法一点、线、面位置关系的判定及其应用1.(2023届昆明一中双测二,4)在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E,F分别为棱A1B1,B1C1的中点,经过E,F,O三点的平面与正方体相交所成的截面为() A.梯形 B.平行四边形C.矩形D.正方形答案A2.(2022黑龙江大庆实验中学月考,11)给出下列命题:①若△ABC的三条边所在直线分别交平面α于P,Q,R三点,则P,Q,R三点共线;②若直线a,b是异面直线,直线b,c是异面直线,则直线a,c是异面直线;③若三条直线a,b,c两两平行且分别交直线l于A,B,C三点,则这四条直线共面;④对于三条直线a,b,c,若a⊥c,b⊥c,则a∥b.其中所有真命题的序号是() A.①② B.①③ C.③④ D.②④答案B3.(2019课标Ⅲ,8,5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B4.(2023届山西大同联考一,10)如图,在四棱柱ABCD-A1B1C1D1中,AB=AD=AA1=1,AD⊥AA1,AD⊥AB,∠A1AB=60°,M,N分别是棱AB和BC的中点,则下列说法中不正确的是()A.A1,C1,M,N四点共面B.B1N与AB共面C.AD⊥平面ABB1A1D.A1M⊥平面ABCD答案B5.(2021内蒙古赤峰2月月考,16)如图,在棱长为2的正方体中,点M、N在棱AB、BC上,且AM=BN=1,P在棱AA1上,α为过M、N、P三点的平面,则下列说法正确的是.①存在无数个点P,使面α与正方体的截面为五边形;②当A1P=1时,面α与正方体的截面面积为33;③只有一个点P,使面α与正方体的截面为四边形;④当面α交棱CC1于点H时,PM、HN、BB1三条直线交于一点.答案①②④6.(2020新高考Ⅰ,16,5分)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为.答案2π2考法二异面直线所成的角的求解1.(2023届贵阳开学测试,12)在长方体ABCD-A1B1C1D1中,AA1=2AB=2AD=4,点E在棱CC1上,且C1E=2CE,点F在正方形ABCD内.若直线A1F与BB1所成的角等于直线EF与BB1所成的角,则AF的最小值是() A.322 B.32 C.924 D.922答案A2.(2022安徽黄山第二次质检,10)已知四棱锥P-ABCD中,底面ABCD是梯形,AD∥BC,BC=AB=PA=2AD=2,PB=3,AC与BD交于M点,PN=2ND,连接MN,则异面直线MN与AB所成角的余弦值为()A.-18B.23 D.34答案D3.(2021东北三省四市联考,8)长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=43.过BC的平面分别交线段AA1,DD1于M、N两点,四边形BCNM为正方形,则异面直线D1M与BD所成角的余弦值为()A.14142114C.14435答案D4.(2018课标Ⅱ,9,5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为() A.1556C.52答案C5.(2022四川攀枝花联考(三),10)如图,直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是BC,A1B1的中点,下列说法中正确的是()A.DE⊥B1C1B.A1C∥平面B1DE1与DE是相交直线D.异面直线B1D与A1C1所成角的余弦值为5答案D6.(2022太原一模,15)已知在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB=2,若三棱锥的外接球体积为43π,则异面直线PB与AC所成角的余弦值为.答案12。

高三数学 空间点、直线、平面之间的位置关系练习题(含答案)

高三数学  空间点、直线、平面之间的位置关系练习题(含答案)

空间点、直线、平面之间的位置关系建议用时:45分钟一、选择题1.下列命题中,真命题的个数为()①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1B.2C.3D.4B[根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.] 2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直A[由BC AD,AD A1D1知,BC A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.] 3.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC[对于A,B,D,a与c可能相交、平行或异面,因此A,B,D不正确,根据异面直线所成角的定义知C正确.]4.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外A[如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P必在直线AC上.]5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()A.15 B.25C.35 D.45D[连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,则A1C1=2,A1B=BC1=5,在△A1BC1中,由余弦定理得cos∠A1BC1=5+5-22×5×5=4 5.]二、填空题6.已知AE是长方体ABCD-EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有条.4[作出长方体ABCD-EFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条.]7.已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD =4,EF⊥AB,则EF与CD所成角的度数为.30°[如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=12AB=1,GE∥CD,且GE=12CD=2,∴∠FEG或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF=GFGE=12,可得∠GEF=30°,∴EF与CD所成角的度数为30°.]8.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC 的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是.②③④[如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故②③④正确.]三、解答题9.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.[证明](1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG =13BC ,CH =13DC , 所以GH ∥BD , 所以EF ∥GH ,所以E ,F ,G ,H 四点共面.(2)易知FH 与直线AC 不平行,但共面,所以设FH ∩AC =M , 所以M ∈平面EFHG ,M ∈平面ABC . 又因为平面EFHG ∩平面ABC =EG , 所以M ∈EG ,所以FH ,EG ,AC 共点.10.如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值. [解] (1)S △ABC =12×2×23=23, 三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.1.在正三棱柱ABC-A1B1C1中,AB=2BB1,则AB1与BC1所成角的大小为()A.30°B.60°C.75°D.90°D[将正三棱柱ABC-A1B1C1补为四棱柱ABCD-A1B1C1D1,连接C1D,BD,则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=2,则BC=CD=2,∠BCD =120°,BD=23,又因为BC1=C1D=6,所以∠BC1D=90°.]2.在正方体ABCD-A1B1C1D1中,M,N分别为棱CC1,A1D1的中点,则异面直线A1B与MN所成的角为()A.30°B.45°C.60°D.90°A[如图,取C1D1的中点P,连接PM,PN,CD1.因为M为棱CC1的中点,P为C1D1的中点,所以PM∥CD1,所以PM∥A1B,则∠PMN是异面直线A1B与MN所成角的平面角.设AB=2,在△PMN中,PM=PN=2,MN=6,则cos∠PMN=2+6-22×2×6=32,即∠PMN=30°.故选A.]3.如图所示,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.给出以下命题:①直线MN⊂平面PQR;②点K在直线MN上;③M,N,K,A四点共面.其中正确结论的序号为.①②③[由题意知,M∈PQ,N∈RQ,K∈RP,从而点M,N,K∈平面PQR.所以直线MN⊂平面PQR,故①正确.同理可得点M,N,K∈平面BCD.从而点M,N,K在平面PQR与平面BCD的交线上,即点K在直线MN上,故②正确.因为A∉直线MN,从而点M,N,K,A四点共面,故③正确.]4.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.[解](1)由已知可求得正方形ABCD的面积S=4,所以四棱锥O-ABCD的体积V=13×4×2=83.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,∴ME∥OC,则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=2,EM=3,MD=5,∵(2)2+(3)2=(5)2,即DE2+EM2=MD2,∴△DEM为直角三角形,且∠DEM=90°,∴tan∠EMD=DEEM=23=63.∴异面直线OC与MD所成角的正切值为6 3.5.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠F AB=90°,BC 12AD,BE12F A,G,H分别为F A,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解](1)证明:由题设知,FG=GA,FH=HD,所以GH 12AD.又BC 12AD,故GH BC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BE 12F A,G是F A的中点知,BE GF,所以EF BG.由(1)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上,所以C,D,F,E四点共面.1.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22C.33 D.13A[根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1.∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.]2.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15 B.56C.55 D.22C[如图,在长方体ABCD-A1B1C1D1的一侧补上一个相同的长方体EFBA-E1F1B1A1.连接B1F,由长方体性质可知,B1F∥AD1,所以∠DB1F为异面直线AD1与DB1所成的角或其补角.连接DF,由题意,得DF=12+(1+1)2=5,FB1=12+(3)2=2,DB1=12+12+(3)2= 5.在△DFB1中,由余弦定理,得DF2=FB21+DB21-2FB1·DB1cos∠DB1F,即5=4+5-2×2×5×cos∠DB1F,∴cos∠DB1F=5 5.]11。

点线面位置关系练习(有详细答案)

点线面位置关系练习(有详细答案)

【空间中的平行问题】(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行) ③垂直于同一条直线的两个平面平行两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)【空间中的垂直问题】(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【空间角问题】(1)直线与直线所成的角①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中点线面的位置关系练习题
1、下列有关平面的说法正确的是( )
A 一个平面长是10cm ,宽是5cm
B 一个平面厚为1厘米
C 平面是无限延展的
D 一个平面一定是平行四边形
2、已知点A 和直线a 及平面α,则:
①αα∉⇒⊄∈A a a A , ② αα∈⇒⊂∈A a a A ,
③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A ,
其中说法正确的个数是( )
A.0
B.1
C.2
D.3
3、下列图形不一定是平面图形的是( )
A 三角形
B 四边形
C 圆
D 梯形
4、三个平面将空间可分为互不相通的几部分( )
A.4、6、7
B.3、4、6、7
C.4、6、7、8
D.4、6、8
5、共点的三条直线可确定几个平面 ( )
A.1
B.2
C.3
D.1或3
6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、
AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是
( )
A 三角形
B 四边形
C 五边形
D 六边形 7、三个平面两两相交,交线的条数可能有————————————————
8、不共线的四点可以确定——————————————————个平面。

9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线A Q
B 1 R C
B D P A 1
C 1
D 1 ∙ ∙ ∙
的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————
10、空间两条互相平行的直线指的是( )
A.在空间没有公共点的两条直线
B.分别在两个平面内的两条直线
C.分别在两个不同的平面内且没有公共点的两条直线
D.在同一平面内且没有公共点的两条直线
11、分别和两条异面直线都相交的两条直线一定是( )
A 异面直线
B 相交直线
C 不平行直线
D 不相交直线
12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。

A 4 B 3 C 2 D 1
13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( )
A.若AC 和BD 共面,则AD 与BC 共面
B.若AC 和BD 是异面直线,则AD 与BC 是异面直线
C.若AB =AC ,DB =DC ,则AD =BC
D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形
14、空间四边形SABC 中,各边及对角线长都相等,若E 、
F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角
为( )
A 300
B 450
C 600
D 900
15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是————————————————————
16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— S C A B E F
17、ABCDEF是正六边形,P是它所在平面外一点,连接PA、PB、PC、PD、PE、PF后与
对。

正六边形的六条边所在直线共十二条直线中,异面直线共有
——————————
18、点E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,且BD=AC,则四边形EFGH是。

————————————
19、(16分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成
角的余弦值.
20、如图所示,等腰直角三角形ABC中,∠A=90°,BC=2,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.。

相关文档
最新文档