三角函数定义与三角函数公式大全
三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。
2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。
2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。
2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。
2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。
2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。
2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。
(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角公式所有公式大全

三角公式所有公式大全一、三角函数的定义和基本关系:1. 正弦函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的纵坐标y就是正弦函数sinα的值。
公式:sinα = y2. 余弦函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的横坐标x就是余弦函数cosα的值。
公式:cosα = x3. 正切函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的纵坐标y除以横坐标x的比值就是正切函数tanα的值。
公式:tanα = y / x4. 余切函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的横坐标x除以纵坐标y的比值就是余切函数cotα的值。
公式:cotα = x / y5. 正割函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的斜边与x轴的交点到原点的距离就是正割函数secα的值。
公式:secα = 1 / cosα6. 余割函数的定义:在单位圆上,从x轴正向到圆上特定点P的弧度为角α,P点的斜边与y轴的交点到原点的距离就是余割函数cscα的值。
公式:cscα = 1 / sinα7.三角函数的基本关系:(1) sin²α + cos²α = 1(2) tanα = sinα / cosα(3) cotα = 1 / tanα = cosα / sinα(4) sin(-α) = -sinα(5) cos(-α) = cosα(6) sin(π - α) = sinα(7) cos(π - α) = -cosα二、三角函数的四象限图示法:以单位圆为基准,将θ分别归类到四个象限,具体如下:1. 第一象限:θ ∈ (0, π/2),sin>0,cos>0,tan>0。
2. 第二象限:θ ∈ (π/2, π),sin>0,cos<0,tan<0。
3. 第三象限:θ ∈ (π, 3π/2),sin<0,cos<0,tan>0。
(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
初中数学三角函数公式

初中数学三角函数公式三角函数是数学中重要的一部分,它在几何、物理等领域有广泛的应用。
在初中数学中,我们主要学习正弦函数、余弦函数和正切函数,以及它们之间的关系。
本文将详细介绍这些三角函数的定义、性质和常用公式。
一、正弦函数正弦函数是最基本的三角函数之一,它反映了角度和边长之间的关系。
定义:设角A的终边与单位圆交于点P(x,y),则角A的正弦值sinA定义为点P的纵坐标y。
即sinA=y。
性质:1. sin(90°)=1,即sinA的最大值为1;2. sin(-A)=-sinA,即正弦函数具有奇对称性;3. sin(180°+A)=-sinA,即正弦函数具有周期性。
常用公式:1. 三角恒等式:sin(A±B)=sinAcosB±cosAsinB;2. 万能公式:sin2A=2sinAcosA;3. 正弦的平方:sin²A+cos²A=1二、余弦函数余弦函数与正弦函数相似,也是描述角度和边长之间关系的函数。
定义:设角A的终边与单位圆交于点P(x,y),则角A的余弦值cosA定义为点P的横坐标x。
即cosA=x。
性质:1. cos(0°)=1,即cosA的最大值为1;2. cos(-A)=cosA,即余弦函数具有偶对称性;3. cos(180°+A)=-cosA,即余弦函数具有周期性。
常用公式:1. 三角恒等式:cos(A±B)=cosAcosB∓sinAsinB;2. 万能公式:cos2A=cos²A-sin²A;3. 余弦的平方:sin²A+cos²A=1三、正切函数正切函数是正弦函数和余弦函数的比值,它在三角函数中也是重要的一员。
定义:设角A的终边与单位圆交于点P(x,y),且x≠0,则角A的正切值tanA定义为y/x。
即tanA=y/x。
性质:1. tan(0°)=0,即tanA的最小值为0;2. tan(-A)=-tanA,即正切函数具有奇对称性;3. tan(180°+A)=tanA,即正切函数具有周期性。
三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。
三角函数定义及三角函数公式大全

三角函数定义及三角函数公式大全三角函数是数学中一类重要的函数,主要用于描述和分析三角形以及周期性现象。
三角函数的定义涵盖了正弦函数、余弦函数、正切函数、余切函数、割函数和余割函数等,它们在数学和物理等领域都有广泛的应用。
下面将对每个三角函数的定义及其公式进行详细介绍。
1. 正弦函数(sine function):正弦函数是一个周期性函数,在单位圆上定义。
它的定义域是所有实数,值域是[-1, 1]。
通常用sin(x)或者sinθ来表示,其中θ为角度值。
正弦函数的公式为:sin(x) = sinθ = y/r = 对边/斜边2. 余弦函数(cosine function):余弦函数同样也是一个周期性函数,也在单位圆上定义。
它的定义域是所有实数,值域也是[-1, 1]。
通常用cos(x)或者cosθ来表示。
余弦函数的公式为:cos(x) = cosθ = x/r = 邻边/斜边3. 正切函数(tangent function):正切函数是一个无界函数,定义于所有实数上。
它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, ∞)。
正切函数通常用tan(x)或者ta nθ来表示。
正切函数的公式为:tan(x) = tanθ = y/x = 对边/邻边4. 余切函数(cotangent function):余切函数也是一个无界函数,定义于所有实数上。
它的定义域是除了kπ(k=0,1,2,...)外的所有实数,值域也是(-∞, ∞)。
余切函数通常用cot(x)或者cotθ来表示。
余切函数的公式为:cot(x) = cotθ = x/y = 邻边/对边5. 割函数(secant function):割函数是一个无界函数,在余弦函数的基础上定义。
它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, -1]∪[1, ∞)。
割函数通常用sec(x)或者secθ来表示。
三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式大全三角函数是数学中一个重要的概念,它描述了以弧度为单位的角度与一个直角三角形的各边之间的关系。
三角函数在几何、三角学、物理学等领域中都有广泛的应用,所以熟练掌握三角函数及其相关公式是非常重要的。
在三角函数中,有六个基本的三角函数,它们分别是正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
这些函数有特定的定义和性质,下面我们将逐一介绍这些内容。
1. 正弦函数(sin):在一个直角三角形中,正弦函数定义为对边长度与斜边长度之比。
对于一个角度为θ的直角三角形,正弦函数可以表示为sinθ = 对边/斜边。
2. 余弦函数(cos):余弦函数定义为邻边长度与斜边长度之比。
对于一个角度为θ的直角三角形,余弦函数可以表示为cosθ = 邻边/斜边。
3. 正切函数(tan):正切函数定义为对边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正切函数可以表示为tanθ = 对边/邻边。
4. 余切函数(cot):余切函数定义为邻边长度与对边长度之比。
对于一个角度为θ的直角三角形,余切函数可以表示为cotθ = 邻边/对边。
5. 正割函数(sec):正割函数定义为斜边长度与邻边长度之比。
对于一个角度为θ的直角三角形,正割函数可以表示为secθ = 斜边/邻边。
6. 余割函数(csc):余割函数定义为斜边长度与对边长度之比。
对于一个角度为θ的直角三角形,余割函数可以表示为cscθ = 斜边/对边。
除了基本的三角函数,还有一些重要的三角函数公式用于解决各种三角函数之间的关系问题。
1.三角恒等式:- π的周期性:sin(θ+π) = -sin(θ),cos(θ+π) = -cos(θ),tan(θ+π) = tan(θ)- 90度的周期性:sin(θ+90度) = cos(θ),cos(θ+90度) = -sin(θ),tan(θ+90度) = -cot(θ)- 互余:sin(θ) = csc(θ),cos(θ) = sec(θ),tan(θ) =cot(θ)- 余角:sin(π/2 - θ) = cos(θ),cos(π/2 - θ) = sin(θ),tan(π/2 - θ) = cot(θ)2.三角函数的平方和差:- sin(A + B) = sin(A)cos(B) + cos(A)sin(B)- sin(A - B) = sin(A)cos(B) - cos(A)sin(B)- cos(A + B) = cos(A)cos(B) - sin(A)sin(B)- cos(A - B) = cos(A)cos(B) + sin(A)sin(B)3.三角函数的倍角公式:- sin(2θ) = 2sin(θ)cos(θ)- cos(2θ) = cos²(θ) - sin²(θ)- tan(2θ) = 2tan(θ)/(1 - tan²(θ))4.三角函数的半角公式:- sin(θ/2) = ±√((1 - cos(θ))/2)- cos(θ/2) = ±√((1 + cos(θ))/2)- tan(θ/2) = sin(θ)/(1 + cos(θ))5.三角函数的和差化积公式:- sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)- sin(A) - sin(B) = 2cos((A+B)/2)sin((A-B)/2)- cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)- cos(A) - cos(B) = -2sin((A+B)/2)sin((A-B)/2)这些只是三角函数及其公式的一部分,还有更多的公式和关系可以在数学教材和参考资料中找到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数定义及三角函数公式大全
一:初中三角函数公式及其定理
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A
90B 90∠-︒=∠︒=∠+∠得由B A
对
边
邻边
C
A
90B 90∠-︒=∠︒=∠+∠得由B A
αsin 0 2
1 2
2 2
3
1 αcos
1
23 2
2
2
1
αtan 0 3
3
1 3 - αcot
- 3
1
3
3
0 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:
当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知
的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h
i l
=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
:i h l
=h
l
α
二:三角函数公式大全
tanα
+tanβ
tan(α+β)=——————
1-tan
α·tanβ
tanα
-tanβ
tan(α-β)=——————
1+tan
α·tanβ
2tan(α/2)
tanα=——————
1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-
2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α三角函数的和差化积公式三角函数的积化和差公式
α
+βα-β
sinα+sinβ=2sin—--·cos—-—
2
2
α
+βα-β
sinα-sinβ=2cos—--·sin—-—
2
2
1
sinα·cosβ=-[sin(α+β)
+sin(α-β)]
2
1
cosα·sinβ=-[sin(α+β)
-sin(α-β)]
2
1
cosα·cosβ=-[cos(α+β)
α+βα-β
cosα+cosβ=2cos—--·cos—-—
2
2
α+βα-β
cosα-cosβ=-2sin—--·sin—-—
2 2 +cos(α-β)]
2
1 sinα·sinβ=- -[cos(α+β)-cos(α-β)]
2
化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公
式)。