浙江省金华市中考数学试题及答案

合集下载

2023年浙江金华市中考数学考试卷及答案解析

2023年浙江金华市中考数学考试卷及答案解析

2023年浙江金华市中考数学考试卷及答案解析卷Ⅰ一、选择题(本题有10小题,每小题3分,共30分)1.某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20-℃,10-℃,0℃,2℃,其中最低气温是()A.20-℃ B.10-℃C.0℃D.2℃【答案】A 【解析】【分析】根据有理数的大小比较,即可作出判断.【详解】解:201002-<-<<,故温度最低的城市是哈尔滨,故选:A .【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.2.某物体如图所示,其俯视图是()A. B. C. D.【答案】B 【解析】【分析】根据俯视图的意义判断即可.【详解】的俯视图是.故选B .【点睛】本题考查了几何体的三视图,正确理解俯视图是解题的关键.3.在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为()A.31.2310⨯ B.312310⨯ C.412.310⨯ D.51.2310⨯【答案】D 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数.【详解】解:5123000 1.2310=⨯,故选D【点睛】本题考查了科学记数法的表示方法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.4.在下列长度的四条线段中,能与长6cm,8cm 的两条线段围成一个三角形的是()A.1cmB.2cmC.13cmD.14cm【答案】C【解析】【分析】根据三角形三边的关系求出第三边的取值范围,再判断即可.【详解】解:设第三边长度为cm x ,则第三边的取值范围是214x <<,只有选项C 符合,故选:C .【点睛】本题考查了三角形三边的关系,能熟练求出求出第三边的取值范围是本题的关键.5.要使有意义,则x 的值可以是()A.0B.1- C.2- D.2【答案】D 【解析】【分析】根据二次根式有意义的条件求出x 的取值范围即可得到答案.【详解】解:∵二次根式有意义,∴20x -≥,∴2x ≥,∴四个选项中,只要D 选项中的2符合题意,故选D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.6.上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5.这组数据的众数是()A.1时B.2时C.3时D.4时【答案】D 【解析】【分析】根据众数的含义可得答案.【详解】解:这组数据中出来次数最多的是:4时,所以众数是4时;故选D【点睛】本题考查的是众数的含义,熟记一组数据中出现次数最多的数据就是这组数据的众数是解本题的关键.7.如图,已知12350∠=∠=∠=︒,则4∠的度数是()A.120︒B.125︒C.130︒D.135︒【答案】C 【解析】【分析】由1350∠=∠=︒可得a b ∥,可得2550∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,标记角,∵1350∠=∠=︒,∴a b ∥,而250∠=︒,∴2550∠=∠=︒,∴41805130∠=︒-∠=︒;故选C【点睛】本题考查的是平行线的判定与性质,邻补角的含义,熟记平行线的判定与性质是解本题的关键.8.如图,两个灯笼的位置,A B 的坐标分别是()()3,3,1,2-,将点B 向右平移2个单位,再向上平移1个单位得到点B ',则关于点,A B '的位置描述正确是()A.关于x 轴对称B.关于y 轴对称C.关于原点O 对称D.关于直线y x =对称【答案】B 【解析】【分析】先根据平移方式求出()33B ',,再根据关于y 轴对称的点横坐标互为相反数,纵坐标相同进行求解即可.【详解】解:∵将()1,2B 向右平移2个单位,再向上平移1个单位得到点B ',∴()33B ',,∵()3,3A -,∴点,A B '关于y 轴对称,故选B .【点睛】本题主要考查了坐标与图形变化—平移和轴对称,正确根据平移方式求出()33B ',是解题的关键.9.如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于点()()232A B m -,,,,则不等式kax b x+>的解是()A.30x -<<或2x >B.3x <-或02x <<C.20x -<<或2x >D.30x -<<或3x >【答案】A 【解析】【分析】先求出反比例函数解析式,进而求出点B 的坐标,然后直接利用图象法求解即可.【详解】解:∵()23A ,在反比例函数图象上,∴326k =⨯=,∴反比例函数解析式为6y x=,∵()2B m -,在反比例函数图象上,∴632m ==--,∴()32B --,,由题意得关于x 的不等式kax b x+>的解集即为一次函数图象在反比例函数图象上方时自变量的取值范围,∴关于x 的不等式kax b x+>的解集为30x -<<或2x >,故选:A .【点睛】本题主要考查了一次函数与反比例函数综合,解题的关键是正确求出点B 的坐标.10.如图,在Rt ABC △中,90ACB ∠=︒,以其三边为边在AB 的同侧作三个正方形,点F 在GH 上,CG 与EF 交于点P CM ,与BE 交于点Q .若HF FG =,则PCQE ABEFS S 四边形正方形的值是()A.14B.15C.312D.625【答案】B 【解析】【分析】设HF FG a ==,正方形ACGH 的边长为2a ,证明tan tan HAF GFP ∠=∠,先后求得12GP a =,32PC a =,BC a =,利用三角形面积公式求得214BCQ S a =△,证明Rt Rt BQC BPE ∽△△,求得254BEP S a =△,2CQEP S a =四边形,据此求解即可.【详解】解:∵四边形ACGH 是正方形,且HF FG =,设HF FG a ==,则2AC CG GH AH a ====,∵四边形ABEF 是正方形,∴90AFP ∠=︒,∴90HAF HFA GFP ∠=︒-∠=∠,∴tan tan HAF GFP ∠=∠,即12HF GP HA FG ==,∴12GP a =,∴13222PC a a a =-=,同理tan tan HAF CAB ∠=∠,即12HF BC HA AC ==,∴BC a =,同理12CQ a =,∴52PB a =,22221524BQ a a a ⎛⎫=+= ⎪⎝⎭,2111224BCQ S a a a =⨯⨯=△,∵Rt Rt BQC BPE ∽△△,∴2225142554BCQ BEPaS BQ S BP a ⎛⎫=== ⎪⎝⎭△△,∴2554BEP BCQ S S a ==△△,∴2BEP BCQ CQEP S S S a =-=四边形△△,∵()22222225ABEF S AB AC BC a a a ==+=+=正方形,∴22155PCQE ABEFS a a S ==四边形正方形,故选:B .【点睛】本题考查了正方形的性质,相似三角形的判定和性质,三角函数的定义,解题的关键是学会利用参数构建方程解决问题.卷Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在“答题纸”的相应位置上.二、填空题(本题有6小题,每小题4分,共24分)11.因式分解:x 2+x =_____.【答案】()1x x +【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.如图,把两根钢条OA OB ,的一个端点连在一起,点C D ,分别是OA OB ,的中点.若4cm CD =,则该工件内槽宽AB 的长为__________cm .【答案】8【解析】【分析】利用三角形中位线定理即可求解.【详解】解:∵点C D ,分别是OA OB ,的中点,∴12CD AB =,∴()28cm AB CD ==,故答案为:8.【点睛】本题考查了三角形中位线定理的应用,掌握“三角形的中位线是第三边的一半”是解题的关键.13.下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是__________.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【解析】【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350750010=,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.14.在直角坐标系中,点()4,5绕原点O 逆时针方向旋转90︒,得到的点的坐标是__________.【答案】()5,4-【解析】【分析】把点绕原点旋转的问题转化为直角三角形旋转的问题,画出图形可解决问题.【详解】解:过A 点作AD x ⊥轴,过B 点作BE y ⊥轴,∵点A 的坐标为()45,,∴5,4AD OD ==,∵90AOB ∠=︒,∴90BOE AOE ∠+∠=︒,∵90AOD AOE ∠+∠=︒,∴AOD BOE ∠=∠,∵OA OB =,在AOD △和BOE △中,===ADO BEO AOD BOE OA OB ∠∠⎧⎪∠∠⎨⎪⎩,∴()AOD BOE ≅AAS ,∴45OE OD BE AD ====,,∴点B 的坐标为()54-,,故答案为:()54-,.【点睛】本题考查坐标与图形变化-旋转,解题的关键是正确作出图形解决问题.15.如图,在ABC 中,6cm,50AB AC BAC ==∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为__________cm.【答案】56π##56π【解析】【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD AB ⊥,∵6cm,50AB AC BAC ==∠=︒,∴BD CD =,1252BAD CAD BAC ∠=∠=∠=︒,∴250DOE BAD ∠=∠=︒,113cm 22OD AB AC ===,∴弧DE 的长为()50351806cm ππ⨯⨯=,故答案为:56πcm .【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.16.如图是一块矩形菜地()(),m ,m ABCD AB a AD b ==,面积为()2ms .现将边AB 增加1m .(1)如图1,若5a =,边AD 减少1m ,得到的矩形面积不变,则b 的值是__________.(2)如图2,若边AD 增加2m ,有且只有一个a 的值,使得到的矩形面积为()22m s ,则s 的值是__________.【答案】①.6②.6+##6+【解析】【分析】(1)根据面积的不变性,列式计算即可.(2)根据面积,建立分式方程,转化为a 一元二次方程,判别式为零计算即可.【详解】(1)根据题意,得,起始长方形的面积为()2m s ab =,变化后长方形的面积为()()()211m a b +-,∵5a =,边AD 减少1m ,得到的矩形面积不变,∴()()5115b b +-=,解得6b =,故答案为:6.(2)根据题意,得,起始长方形的面积为()2m s ab =,变化后长方形的面积为()()()212m a b ++,∴()()212s a b =++,s b a=,∴()212s s a a ⎛⎫=++ ⎪⎝⎭,∴221s s a a=++,∴()2220a s a s +-+=,∵有且只有一个a 的值,∴()22Δ4280b ac s s =-=--=,∴21240s s -+=,解得1266s s =+=-(舍去),故答案为:6+.【点睛】本题考查了图形的面积变化,一元二次方程的应用,正确转化为一元二次方程是解题的关键.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2023)2sin305-+︒+-.【答案】7【解析】【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式112252=+-⨯+,1215=+-+,7=.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是注意各部分的运算法则,细心计算.18.已知13x =,求()()()212134x x x x +-+-的值.【答案】0【解析】【分析】原式利用平方差公式、单项式乘多项式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【详解】解:()()()212134x x x x +-+-224134x x x =-+-13x =-+.当13x =时,原式1133=-+⨯0=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.为激发学生参与劳动的兴趣,某校开设了以“端午”为主题的活动课程,要求每位学生在“折纸龙”“采艾叶”“做香囊”与“包粽子”四门课程中选且只选其中一门,随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图.请根据图表信息回答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙”课程的教室至少需要几间.【答案】(1)本次调查抽取的学生人数为50人,见解析(2)6间【解析】【分析】(1)根据条形统计图已知数据和扇形统计图已知的对应数据,即可求出被调查的总人数,再利用总人数减去选择“折纸龙”“做香囊”与“包粽子”的人数,即可得到选择“采艾叶”的人数,补全条形统计图即可;(2)根据选择“折纸龙”人数的占比乘以1000,可求出学校选择“折纸龙”的总人数,设需要x 间教室,根据题意列方程30160x ≥,取最小整数即可得到答案.【小问1详解】解:由选“包粽子”人数18人,在扇形统计图中占比36%,可得1836%50÷=,∴本次调查抽取的学生人数为50人.其中选“采艾叶”的人数:()508101814-++=.补全条形统计图,如图:【小问2详解】解:选“折纸龙”课程的比例85016%÷=.∴选“折纸龙”课程的总人数为100016%160⨯=(人),设需要x 间教室,可得30160x ≥,解得16,3x x ≥取最小整数6.∴估计至少需要6间教室.【点睛】本题考查了条形统计图与扇形统计图结合,用样本估计总体,用一元一次不等式解决实际问题,结合条形统计图和扇形统计图求出相关数据是解题的关键.20.如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD ⊥于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB =,求弦CD 的长.【答案】(1)见解析(2)6【解析】【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【小问1详解】证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.【小问2详解】如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =-,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.21.如图,为制作角度尺,将长为10,宽为4的矩形OABC 分割成410⨯的小正方形网格.在该矩形边上取点P ,来表示POA ∠的度数.阅读以下作图过程,并回答下列问题:(答题卷用)作法(如图)结论①在CB 上取点1P ,使14CP =.145POA ∠=︒,点1P 表示45︒.②以O 为圆心,8为半径作弧,与BC 交于点2P .230P OA ∠=︒,点2P 表示30︒.③分别以2,O P 为圆心,大于2OP 长度一半的长为半径作弧,相交于点,E F ,连结EF 与BC 相交于点3P .…④以2P 为圆心,2OP 的长为半径作弧,与射线CB 交于点D ,连结OD 交AB 于点4P .…(1)分别求点34,P P 表示的度数.(2)用直尺和圆规在该矩形的边上作点5P ,使该点表示37.5︒(保留作图痕迹,不写作法).【答案】(1)点3P 表示60︒;点4P 表示15︒(2)见解析【解析】【分析】(1)根据矩形的性质可求出2OP C ∠度数,根据线段垂直平分线的性质23P OP ∠度数,即可求出3POA ∠的度数,从而知道3P 点表示度数;利用半径相等即可求出22P OD P DO ∠=∠,再根据平行线的性质即可求出2P OD DOA ∠=∠以及对应的度数,从而知道3P 点表示度数.(2)利用角平分线的性质作图即可求出答案.【小问1详解】解:① 四边形OABC 是矩形,BC OA ∴∥.2230OP C P OA ∴∠=∠=︒由作图可知,EF 是2OP 的中垂线,332OP P P ∴=.323230POP P P O ∴∠=∠=︒.332260POA POP P OA ∴∠=∠+∠=︒.∴点3P 表示60︒.②由作图可知,22P D P O =.22P OD P DO ∴∠=∠.又CB OA ,2P DO DOA ∴∠=∠.221152POD DOA POA ∴∠=∠=∠=︒.∴点4P 表示15︒.故答案为:点3P 表示60︒,点4P 表示15︒.【小问2详解】解:如图所示,作34POP ∠的角平分线等.如图2,点5P 即为所求作的点.∵点3P 表示60︒,点4P 表示15︒.5POA ∠=()()()34434111601537.5222POA P OA P OA POA P OA ∠-∠+∠=∠+∠=︒+︒=︒.∴5P 表示37.5︒.【点睛】本题考查的是尺规作图的应用,涉及到的知识点有线段垂直平分线、角平分线性质、圆的相关性质,解题的关键需要正确理解题意,清楚知道用到的相关知识点.22.兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妺妺比哥哥迟2分钟到书吧.①求图中a 的值;②妺妺在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妺俩离家还有多远;若不能,说明理由.【答案】(1)100v =(2)①6a =;②能追上,理由见解析【解析】【分析】(1)结合图表可得()8,800A ,根据速度等于路程除以时间,即可解答;(2)①根据妺妺到书吧前的速度为200米/分,可知DE 的解析式的k 为200,设DE 的解析式为200s t b =+,根据妺妺比哥哥迟2分钟到书吧可得()12,800E ,将()12,800E 代入200s t b =+,即可得到一次函数解析式,把0s =代入一次函数即可得到a 的值;②如图,将妹妹走完全程的图象画出,将BC 和FG 的解析式求出,求两个函数的交点即可.【小问1详解】解:由图可得()8,800A ,8001008v ∴==(米/分),∴哥哥步行速度为100米/分.【小问2详解】①根据妺妺到书吧前的速度为200米/分,可知DE 的解析式的k 为200,设DE 所在直线为200s t b =+,将()10,800代入,得80020010b =⨯+,解得1200b =-.∴DE 所在直线为2001200s t =-,当0s =时,20012000t -=,解得6t =.∴6a =.②能追上.如图,根据哥哥的速度没变,可得,BC OA 的解析式的k 值相同,妹妹的速度减小但仍大于哥哥的速度,将妹妹的行程图象补充完整,设BC 所在直线为1100s t b =+,将()17,800B 代入,得180010017b =⨯+,解得1900b =-,∴100900s t =-.∵妺妺的速度是160米/分.设FG 所在直线为2160s t b =+,将()20,800F 代入,得280016020b =⨯+,解得22400b =-,∴1602400s t =-.联立方程1009001602400s t s t =-⎧⎨=-⎩,解得251600t s =⎧⎨=⎩,∴19001600300-=米,即追上时兄妺俩离家300米远.【点睛】本题考查了一次函数的实际应用(行程问题),从图像中获得正确的信息是解题的关键.23.问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁,a c 夹住横梁b ,使得横梁不能移动,结构稳固.图2是长为()cm l ,宽为3cm 的横梁侧面示意图,三个凹槽都是半径为1cm 的半圆.圆心分别为1231123,,,,2cm O O O O M O N O Q O P ===,纵梁是底面半径为1cm 的圆柱体.用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,,A B 为横梁与地面的交点,,C E 为圆心,12,,D H H 是横梁侧面两边的交点.测得32cm AB =,点C 到AB 的距离为12cm .试判断四边形1CDEH 的形状,并求l 的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形12312H H H H ,求l 的值;②若有n 根横梁绕成的环(n 为偶数,且6n ≥),试用关于n 的代数式表示内部形成的多边形123n H H H H 的周长.【答案】探究1:四边形1CDEH 是菱形,22cm l =;探究2:①(163cm l =+;②6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭【解析】【分析】探究1:根据图形即可判断出1CDEH 形状;根据等腰三角形性质可求出AM 长度,利用勾股定理即可求出CA 长度,从而求出l 值.探究2:①根据十二边形的特性可知130CH N ∠=︒,利用特殊角正切值求出1CH 长度,最后利用菱形的性质求出1EH 的长度,从而求得l 值.②根据正多边形的特性可知1CH N ∠的度数,利用特殊角正切值求出1CH 和1H N 长度,最后利用菱形的性质求出1EH 的长度,从而求得l 值.【详解】解:探究1:四边形1CDEH 是菱形,理由如下:由图1可知,1CD EH ∥,1ED CH ∥,∴1CDEH 为平行四边形.桥梁的规格是相同的,∴桥梁的宽度相同,即四边形1CDEH 每条边上的高相等,∵1CDEH 的面积等于边长乘这条边上的高,∴1CDEH 每条边相等,∴1CDEH 为菱形.②如图1,过点C 作CM AB ⊥于点M.由题意,得,12CA CB CM ==,32cm AB =.∴1162AM AB ==.在Rt CAM △中,222CA AM CM =+,∴20CA ===.∴222cm l CA =+=.故答案为:22cm l =.探究2:①如图2,过点C 作12CN H H ⊥于点N.由题意,得1212120,,3H CH CH CH CN ∠=︒==,130CH N ∴∠=︒.1126,tan 30CN CH CN H N ∴︒====又 四边形1CDEH 是菱形,∴l 16EH CH ==.∴((22616cm l =++=+.故答案为:(16cm l =+.②如图3,过点C 作12CN H H ⊥于点N.由题意,形成的多边形为正n 边形,∴外角12360CH H n∠=︒.在1Rt CNH 中,1123360tan tan CN H N CH H n ==∠︒.又1212,CH CH CN H H =⊥ ,∴12162360tan H H H N n==︒.∴形成的多边形的周长为6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭.故答案为:6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭.【点睛】本题是一道生活实际应用题,考查的是菱形的性质和判定、锐角三角函数、勾股定理,解题的关键在于将生活实际和有关数学知识有效结合以及熟练掌握相关性质.24.如图,直线2y x =+与x 轴,y 轴分别交于点,A B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为,C D ,其中点C 的坐标为()2,0.直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.【答案】(1)①22y x =-+;②13(2)能,6或23或67-或143-.【解析】【分析】(1)①先求顶点的坐标,然后待定系数法求解析式即可求解;②过点E 作EH OC ⊥于点H .设直线BC 为y kx =+,把()2,0C 代入,得02k =+,解得52k =-,直线BC 为2y x =-+.同理,直线OP 为2y x =.联立两直线解析式得出1,24E ⎛⎫ ⎪⎝⎭,根据EH BO ∥,由平行线分线段成比例即可求解;(2)设点P 的坐标为2t t ⎛+ ⎝,则点D 的坐标为()22,0t -.①如图2-1,当2t >时,存在CPE BAO ∠=∠.记,CPE BAO APC αβ∠=∠=∠=,则APD αβ∠=+.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,进而得出点P 的横坐标为6.②如图2-2,当02t <≤时,存在CPE BAO ∠=∠.记,CPE BAD APD αβ∠=∠=∠=.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,得出点P 的横坐标为23.③如图23-,当20t -<≤时,存在CPE BAO ∠=∠.记BAO α∠=.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP =∠=,得出点P 的横坐标为67-.④如图2-4,当2t ≤-时,存在CPE BAO ∠=∠.记BAO α∠=.过点P 作PF x ⊥轴于点F ,则2AF t =--.在Rt APF 中,2cos 3AF PAF AP =∠=,得出点P 的横坐标为143-.【小问1详解】解:①∵2OC =,∴顶点P 的横坐标为1.∴当1x =时,22y x =+=,∴点P 的坐标是1,2⎛⎫ ⎪⎝⎭.设抛物线的函数表达式为2(1)2y a x =-+,把()0,0代入,得02a =+,解得2a =-.∴该抛物线的函数表达式为2(1)22y x =--+,即22y x =-+.②如图1,过点E 作EH OC ⊥于点H.设直线BC为y kx =+,把()2,0C代入,得02k =+,解得52k =-,∴直线BC为2y x =-+同理,直线OP为2y x =.由5235.2y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得1,235.4x y ⎧=⎪⎪⎨⎪=⎪⎩∴1,24E ⎛⎫ ⎪⎝⎭.∴113,2222OH HC ==-=.∵EH BO ∥,∴13BE OH EC HC ==.【小问2详解】设点P 的坐标为,2t t ⎛ ⎝,则点D 的坐标为()22,0t -.①如图21-,当2t >时,存在CPE BAO ∠=∠.记,CPE BAO APC αβ∠=∠=∠=,则APD αβ∠=+.∵PCD ∠为PAC △的外角,∴PCD αβ∠=+.∵PC PD =.∴PDC PCD αβ∠=∠=+.∴APD ADP ∠=∠.∴2AP AD t ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,∴2223t t +=,解得6t =.∴点P 的横坐标为6.②如图2-2,当02t <≤时,存在CPE BAO ∠=∠.记,CPE BAD APD αβ∠=∠=∠=.∵PDC ∠为PAD 的外角,∴PDC αβ∠=+.∴PCD PDC αβ∠=∠=+∴APC ACP ∠=∠.∴4AP AC ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,∴2243t +=,解得23t =.∴点P 的横坐标为23.③如图2-3,当20t -<≤时,存在CPE BAO ∠=∠.记BAO α∠=.∵PC PD =,∴1122PDC PCD CPE α∠=∠=∠=.∴1122APD BAO PDC αα∠=∠-∠=-=.∴APD PDA ∠=∠.∴2AD AP t ==-.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP =∠=,∴2223t t +=-,解得67t =-.∴点P 的横坐标为67-.④如图2-4,当2t ≤-时,存在CPE BAO ∠=∠.记BAO α∠=.∵PC PD =,∴1122PCD PDC CPE α∠=∠=∠=.∴1122APC BAO PCD ααα∠=∠-∠=-=.∴4PA CA ==.过点P 作PF x ⊥轴于点F ,则2AF t =--.在Rt APF 中,2cos 3AF PAF AP =∠=,∴2243t --=,解得143t =-.∴点P 的横坐标为143-.综上,点P 的横坐标为26146,,,373--.【点睛】本题考查了二次函数综合运用,解直角三角形,平行线分线段成比例,熟练掌握以上知识,分类讨论是解题的关键.。

浙江省金华市2022年中考数学真题试题(含解析)

浙江省金华市2022年中考数学真题试题(含解析)

2022年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.故选:B.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01【考点】正数和负数.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DB A C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则所求概率P1=,故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.9.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【考点】角的大小比较.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是x<﹣1 .【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.能够说明“=x不成立”的x的值是﹣1 (写出一个即可).【考点】算术平方根.【专题】计算题;实数.【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 1 mg/L.【考点】算术平均数;折线统计图.【专题】统计与概率.【分析】根据题意可以求得这6次总的含量,由折线统计图可以得到除第3次的含量,从而可以得到第3次检测得到的氨氮含量.【解答】解:由题意可得,第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,故答案为:1.【点评】本题考查算术平均数、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5 .【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x 的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】(1)只要证明AE∥BD,得=,列出方程即可解决问题.(2)分别求出六边形的对角线并且比较大小,即可解决问题.【解答】解:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,故答案为.(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2022﹣3tan60°+(﹣2022)0.【考点】实数的运算.【分析】首先利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.【解答】解:原式=3﹣1﹣3×+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30,∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.【点评】本题主要考查条形统计图,根据统计图读出训练前后各等级的人数及总人数间的关系是解题的关键,也考查了样本估计总体.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?【考点】一次函数的应用.【分析】(1)根据图1得到y关于x的函数表达式,根据表达式填表;(2)根据如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间得到伦敦(夏时制)时间与北京时间的关系,结合(1)解答即可.【解答】解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50(2)从图2看出,设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,由第(1)题,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.【点评】本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)令一次函数中y=0,解关于x的一元一次方程,即可得出结论;(2)①过点C作CF⊥x轴于点F,设AE=AC=t,由此表示出点E的坐标,利用特殊角的三角形函数值,通过计算可得出点C的坐标,再根据反比例函数图象上点的坐标特征可得出关于t的一元二次方程,解方程即可得出结论;②根据点在直线上设出点D的坐标,根据反比例函数图象上点的坐标特征可得出关于点D横坐标的一元二次方程,解方程即可得出点D的坐标,结合①中点E的坐标即可得出结论.【解答】解:(1)当y=0时,得0=x﹣,解得:x=3.∴点A的坐标为(3,0).:(2)①过点C作CF⊥x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t),在Rt△AOB中,tan∠OAB==,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=t,AF=AC•cos30°=t,∴点C的坐标是(3+t, t).∴(3+t)×t=3t,解得:t1=0(舍去),t2=2.∴k=3t=6.②点E与点D关于原点O成中心对称,理由如下:设点D的坐标是(x, x﹣),∴x(x﹣)=6,解得:x1=6,x2=﹣3,∴点D的坐标是(﹣3,﹣2).又∵点E的坐标为(3,2),∴点E与点D关于原点O成中心对称.【点评】本题考查了反比例函数与一次函数的交点问题、解一元二次方程以及反比例函数图象上点的坐标特征,解题的关键是:(1)令一次函数中y=0求出x的值;(2)根据反比例函数图象上点的坐标特征得出一元二次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出关于点的横坐标的一元二次方程是关键.22.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.【考点】菱形的判定与性质;切线的性质.【分析】(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得S△ABD,由OE为△ABD的中位线可得S△OBE=S△ABD;②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB==知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案【解答】解:(1)∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.(2)①连结OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF.∵FC∥AB,∴OF即为△ABD中AB边上的高.∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4.②过点D作DH⊥AB于点H.∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°.∴四边形OHDF为矩形,即DH=OF=4.∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°.∵点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°.∴∠AOE=180°﹣∠EOB=150°.∴弧AE的长==.【点评】本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.【考点】二次函数综合题.【分析】(1)①根据函数解析式求出点A、B的坐标,求出AC的长;②作抛物线L2的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系数法求出抛物线的函数表达式;(2)过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B(t,at2),求出的值,根据抛物线上点的坐标特征求出的值.【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a(x﹣)2,由①得,B点的坐标为(,2),∴2=a(﹣)2,解得a=4.抛物线L2的函数表达式为y=4(x﹣)2;(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,则AB=BD=2t,点B的坐标为(t,at2),根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴=﹣,由题意得,点P的坐标为(2t,﹣4a3t2),则﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.【点评】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,灵活运用待定系数法求出函数解析式、掌握抛物线的对称性、正确理解抛物线上点的坐标特征是解题的关键.24.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B 在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由【考点】正方形的性质;待定系数法求一次函数解析式.【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH==3.∴E(﹣3,3).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM=,即=,∴OM=4.∴M(0,4).设直线EF的函数表达式为y=kx+4,∵该直线过点E(﹣3,3),∴﹣3k+4=3,解得k=,所以,直线EF的函数表达式为y=x+4.(2)如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1=,a2=﹣(舍去),∴OE=2a=,∴S正方形OEFG=OE2=.(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为(0,6).在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在=(图4)和=(图5)两种情况.如图4,△EFP是等腰直角三角形,有=,即=,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE=OA=6,∴PE=OE=12,PA=PE+AE=18,∴点P2的坐标为(﹣6,18).如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当=时,∴PO2=2PE2.∴2m2+2mn+n2=2(m2+n2),得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴=,∴AH=4OA=24,即OH=18,∴m=9.在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,∴点P3的坐标为(﹣18,36).当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE.∴点P4的坐标为(﹣6,0).在图6的基础上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在=(图7)这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.当=时,∴PE2=2PO2.∴2m2+2mn+n2=2n2+2m2,∴n=2m,由于NG=OG=m,则PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴ =1,即AN=OA=6.在等腰Rt△ONG中,ON=m,∴12=m,∴m=6,在等腰Rt△PRN中,RN=PR=6,∴点P5的坐标为(﹣18,6).所以,△OEP的其中两边的比能为:1,点P的坐标是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).【点评】此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.。

(中考精品)浙江省金华市中考数学真题(解析版)

(中考精品)浙江省金华市中考数学真题(解析版)

数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,2-中,是无理数的是( )A. 2-B. 12C. D. 2 【答案】C【解析】【分析】根据无理数定义判断即可;【详解】解:∵-2,12,2故选: C .【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2. 计算32a a ⋅的结果是( )A. aB. 6aC. 6aD. 5a 【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵ 32a a ⋅=5a ,故选D .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键. 3. 体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A. 4163210⨯B. 71.63210⨯C. 61.63210⨯D. 516.3210⨯【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,10n a ⨯的形式中a 的取值范围必须是110,a ≤<10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.⨯的故选:B .【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1. 4. 已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,∵ 角形的两边长分别为5cm 和8cm ,∴3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键. 5. 观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )A. 5B. 6C. 7D. 8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组频数为8,故选:D .【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.的6. 如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A. SSSB. SASC. AASD. HL【答案】B【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案. 【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确.故选:B . 【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7. 如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A. 超市B. 医院C. 体育场D. 学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,=,=,=,=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8. 如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C .【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9. 一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A. (43sin )m α+B. (43tan )m α+C. 34m sin α⎛⎫+ ⎪⎝⎭ D. 34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【解析】【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形, ∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10. 如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A. C. 207 D. 83【答案】A【解析】【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F '=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=x ,最后求出ADAB 的值.【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =,∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=,由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CGA GCF B F '=', 则53232x yxx y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=x , EH=-(舍),∴AB=,∴AD AB ==.故选:A .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y =3x 的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11. 因式分解:29x -=______.【答案】()()33x x +-【解析】【分析】根据平方差公式()()22a b a b a b -=+-直接进行因式分解即可. 【详解】解:29x -223x =-()()33x x =+-,故答案为:()()33x x +-.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键. 12. 若分式23x -的值为2,则x 的值是_______. 【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13. 一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______. 【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵ 所有等可能性有10种,红球事件的可能性有7种, ∴摸到红球的概率是710, 故答案:710. 【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键. 14. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C '''V ,连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴==∵把ABC 沿AB 方向平移1cm ,得到A B C '''V ,∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+为故答案为:8+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15. 如图,木工用角尺的短边紧靠⊙O 于点A ,长边与⊙O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则⊙O 的半径为_____cm .【答案】253##183【解析】 【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+, 即r 2=(r −6)2+82, 解得:253r =, 即O 的半径为253cm .故答案为:253. 【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.16. 图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m . (2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 ①. 9②.7.5αβ-=︒【解析】【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG (2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G . ∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m , ∵∠AFG =45°, ∴FG =AG =EB =8m , ∴EF =FG +EG =9(m ). 故答案为:9;(2)7.5αβ-=︒.理由如下: ∵∠A 'B 'E =∠B 'EG =∠EG A '=90°, ∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n , ∵ 光线是平行的, ∴AN ∥A 'M , ∴∠GAN =∠G A 'M , ∴45°+2m =30°+2n , 解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'' , ∴9090m n n m αβ-=--+=- , 故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17. 计算:0(2022)2tan 45|2|--︒+-. 【答案】4 【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键. 18. 解不等式:2(32)1x x ->+. 【答案】1x > 【解析】【分析】按照解不等式的基本步骤解答即可. 【详解】解:2(32)1x x ->+,641x x ->+,641x x ->+, 55x >,∴1x >.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式解法的基本步骤是解题的关键.19. 如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长. (2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36 【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. 【小问1详解】解:∵直角三角形较短的直角边122a a =⨯=, 较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;【小问2详解】解:22(3)69S a a a =+=++小正方形, 当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.20. 如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围. 【答案】(1)4k =,(4,1);(2)24x ≤≤; 【解析】【分析】(1)由C 点坐标可得k ,再由D 点纵坐标可得D 点横坐标; (2)由C 、D 两点的横坐标即可求得P 点横坐标取值范围; 【小问1详解】解:把C (2,2)代入k y x=,得22k=,4k =,∴反比例函数函数为4y x=(x >0), ∵AB ⊥x 轴,BD =1, ∴D 点纵坐标为1,把1y =代入4y x=,得4x =, ∴点D 坐标为(4,1); 【小问2详解】解:∵P 点在点C (2,2)和点D (4,1)之间, ∴点P 的横坐标:24x ≤≤;【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.21. 学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题: 演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表: 内容 表达 风度 印象 总评成绩 小明 8 7 8 8 m 小亮 7 8 8 9 785小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整? 【答案】(1)108︒;(2)7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;.(3)班级制定的各部分所占比例不合理,见解析;【解析】【分析】(1)由“内容”所占比例×360°计算求值即可;(2)根据各部分成绩所占的比例计算加权平均数即可;(3)根据 “内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;【小问1详解】---=,解:∵“内容”所占比例为115%15%40%30%=︒⨯=︒;∴“内容”的扇形的圆心角36030%108【小问2详解】m=⨯+⨯+⨯+⨯=,解:830%740%815%815%7.6>>,∵7.857.87.6∴三人成绩从高到低的排名顺序为:小亮,小田,小明;【小问3详解】解:各部分所占比例不合理,“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.22. 如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连AM MN NA.接,,∠的度数.(1)求ABC是正三角形吗?请说明理由.(2)AMN(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.【答案】(1)108︒(2)是正三角形,理由见解析(3)15n = 【解析】【分析】(1)根据正五边形的性质以及圆的性质可得 BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论. 【小问1详解】解:∵正五边形ABCDE .∴ BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵ 3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; 【小问2详解】解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =, ∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形, ∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形;【小问3详解】 ∵AMN 是正三角形, ∴2120A N A N M O =∠=︒∠. ∵ 2AD AE =,∴272144AOD ∠=⨯︒=︒,∵ DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.23. “八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2(吨)关于售价x (元/千克)的函数表达式为2,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c=-=(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w 元,根据w x x =-售价成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x 的值,再求出总利润即可. 【小问1详解】 把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得97.2,16 5.8.a c a c +=⎧⎨+=⎩①② ②-①,得7 1.4a =-, 解得15a =-, 把15a =-代入①,得9c =, ∴1,95a c =-=. 【小问2详解】设这种蔬菜每千克获利w 元,根据题意, 有211323242w x x t t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本, 化简,得221121(4)344w t t t =-+-=--+, ∵10,44t -<=在17t ≤≤的范围内, ∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大. 【小问3详解】由y y =需求供给,得21195x x -=-+, 化简,得25500x x +-=,解得125,10x x ==-(舍去), ∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克), 把5x =代入122x t =+售价,得6t =,把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=, ∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点睛】此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.24. 如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5 (3)1s =或3225s =或327s =或1012s ≤≤ 【解析】【分析】(1)证明△AFG 是等腰三角形即可得到答案;(2)记AC 中点为点O .分点E 在BC 上和点E 在CD 上两种情况进行求解即可;(3)过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .分点E 在线段BM 上时,点E 在线段MC 上时,点E 在线段CN 上,点E 在线段ND 上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.【小问2详解】解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵Rt ABM 中,365AM AB ==,∴8BM ===.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥, ∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,在过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.【小问3详解】解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===, ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33244x x =-,解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅱ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33424x x =-, 此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=, ∴GH BE CH EF=, ∴34423x x =-, 解得87x =, 经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴662s s =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴626s s =-,解得1s =±经检验,1s =±∵810s <≤,∴1s =±③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键。

2023年浙江省金华市中考数学真题试卷附解析

2023年浙江省金华市中考数学真题试卷附解析

2023年浙江省金华市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小帆走路时发现自己的影子越来越长,这是因为()A.走到路灯下,离路灯越来越近 B.从路灯下走开,离路灯越来越远C.路灯的灯光越来越亮 D.人与路灯的距离与影子的长短无关3.在一个晴朗的好天气里,小明向正北方向走路时,发现自己的身影向右偏,则小明当时所处的时间是()A.上午 B.中午 C.下午 D.无法确定4.如图,AC 是⊙O的直径,点 B.D在⊙O上,图中等于12∠BOC的角有()A.1 个B. 2 个C.3 D.45.下列图形不是中心对称图形的是()A.圆B.平行四边形C.菱形D.等腰梯形6.如图所示,下列条件中,不能判定AB∥CD的是()A.∠PEB=∠EFD B.∠AEG=∠DFH C.∠BEF+∠EFD=180°D.∠AEF=∠EFD7.数据3,19,35,26,26,97,96的极差为()A.94 B.77 C.9 D.无法确定8.在x轴上的点的横坐标是()A.0 B.正数C.负数D.实数9.将点M(-3,-5)向上平移7个单位得到点N的坐标为()A .(-3,2)B .(-2,-l2)C (4,-5)D .(-10,-5)10.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个 11.下列用词中,与“一定发生”意思一致的是( ) A . 可能发生B . 相当可能发生C .有可能发生D . 必然发生 12.下列各式中,变形不正确的是( ) A .2233x x =-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 13.下列说法正确的是( )A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数14.若a 、b 是整数,且12ab =,则a b +的最小值是( )A .-13B .-7C .8D . 7 15.在数12-,0,4.5,9,-6.79中,属于正数的有( )A .2个B .3个C .4个D .5个二、填空题16.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数有 个.17.如图,⊙O 的直径为 10,弦AB= 8,P 是 AB 上的一个动点,那么OP 长的取值范围是 .18.计算题: (1) 12-18-5.0+31 (2) ⎪⎪⎭⎫ ⎝⎛-÷1213112 (3)221811139134187⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-19.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.20.已知三角形的三边长为 3、1x +,4,则x 的取值范围是 .21.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .22.计算:2133m m m--=-- . 23.如图,∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .三、解答题24.如图,△ABC 中,∠A=30°,∠B=45°,CD 为高,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?25.如图,正方形ABCD的边长为l,G为CD边上的一个动点(点G与C,D不重合),以CG 为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于H.(1)求证:①△BCG≌△DCE;②BH⊥DE.26.如图所示,□ABCD 中,E,F分别是CD,AB上的点,且AF=CE.求证:∠BFD=∠BED.27.如图所示,是由同样大小的小正方体叠在一起所形成的图形,你能数出图形中小正方体一共有多少块吗?28.如图,已知图形“”和点0,以点O为旋转中心,将图形按顺时针方向旋转90°,作出经旋转变换后的像,经几次旋转变换后的像可以与原图形重合?29.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.30.将2627-,206207-,20062007-按从小到大的顺序排列起来.200620626 200720727 -<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.C5.D6.B7.A8.D9.A10.D11.DD13.D14.A15.A二、填空题16.517.3≤OP ≤518. ⑴227337-; ⑵12; ⑶ 0. 19.15,2020.0<x<621.2322. -123.360°三、解答题24.25.(1)略;(2)距C 点1)处26.先证明DE ∥BF ,DE=BF ,四边形DFBE 为平行四边形,则∠BFD=∠BED 27.28.图略,经4次旋转变换29.高峰时段三环路、四环路的车流量分别是每小时11000辆和每小时13000辆.30.200620626-<-<-200720727。

2023浙江省金华市数学中考真题及答案

2023浙江省金华市数学中考真题及答案

2023年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是﹣20℃,﹣10℃,0℃,2℃,其中最低气温是( )A.﹣20℃B.﹣10℃C.0℃D.2℃2.(3分)某物体如图所示,其俯视图是( )A.B.C.D.3.(3分)在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为( )A.1.23×103B.123×103C.12.3×104D.1.23×1054.(3分)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是( )A.1cm B.2cm C.13cm D.14cm5.(3分)要使有意义,则x的值可以是( )A.0B.﹣1C.﹣2D.26.(3分)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5,这组数据的众数是( )A.1时B.2时C.3时D.4时7.(3分)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )A.120°B.125°C.130°D.135°8.(3分)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称9.(3分)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B (m,﹣2),则不等式ax+b的解是( )A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>310.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是( )A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)因式分解:x2+x= .12.(4分)如图,把两根钢条OA,OB的一个端点连在一起,点C,D分别是OA,OB的中点,若CD=4cm,则该工件内槽宽AB的长为 cm.13.(4分)如表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是 .“偏瘦”“标准”“超重”“肥胖”80350462414.(4分)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 .15.(4分)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 cm.16.(4分)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2023)0+﹣2sin30°+|﹣5|.18.(6分)已知,求(2x+1)(2x﹣1)+x(3﹣4x)的值.19.(6分)为激发学生参与劳动的兴趣,某校开设了以“端午”为主题的活动课程,要求每位学生在“折纸龙”“采艾叶”“做香囊”与“包粽子”四门课程中选且只选其中一门,随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图,请根据图表信息回答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙“课程的教室至少需要几间.20.(8分)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=,求弦CD的长.21.(8分)如图,为制作角度尺,将长为10,宽为4的矩形OABC分割成4×10的小正方形网格,在该矩形边上取点P,来表示∠POA的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB 上取点P 1,使CP 1=4.∠P 1OA =45°,点P 1表示45°.②以O 为圆心,8为半径作弧,与BC 交于点P 2.∠P 2OA =30°,点P 2表示30°.③分别以O ,P 2为圆心,大于OP 2长度一半的长为半径作弧,相交于点E ,F ,连接EF 与BC 相交于点P 3.…④以P 2为圆心,OP 2的长为半径作弧,与射线CB 交于点D ,连结OD 交AB 于点P 4.…(1)分别求点P 3,P 4表示的度数.(2)用直尺和圆规在该矩形的边上作点P 5,使该点表示37.5°(保留作图痕迹,不写作法).22.(10分)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a 的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.23.(10分)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.24.(12分)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD 相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.2023年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是﹣20℃,﹣10℃,0℃,2℃,其中最低气温是( )A.﹣20℃B.﹣10℃C.0℃D.2℃【分析】明确在实数中负数小于0小于正数,且负数之间比较大小绝对值越大负数越小.【解答】解:由题可知:﹣20<﹣10<0<2,所以最低气温是﹣20℃.故选:A.【点评】本题考查了实数的比较大小,题目难度较小,一般出现在期末第一题.2.(3分)某物体如图所示,其俯视图是( )A.B.C.D.【分析】根据俯视图的定义和画法进行判断即可.【解答】解:该物体的俯视图是:B.故选:B.【点评】本题考查简单组合体的主视图,俯视图就是从上面看物体所得到的图形.3.(3分)在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为( )A.1.23×103B.123×103C.12.3×104D.1.23×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:123000=1.23×105.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是( )A.1cm B.2cm C.13cm D.14cm【分析】首先设第三条线段长为xcm,再利用三角形的三边关系可得x的范围,然后可得答案.【解答】解:设第三条线段长为xcm,由题意得:8﹣6<x<8+6,解得:2<x<14,只有13cm适合,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.5.(3分)要使有意义,则x的值可以是( )A.0B.﹣1C.﹣2D.2【分析】根据二次根式有意义的条件列出不等式,解不等式求出x的范围,判断即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,则x的值可以是2,故选:D.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.6.(3分)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5,这组数据的众数是( )A.1时B.2时C.3时D.4时【分析】根据众数的定义求解即可.【解答】解:这组数据4出现的次数最多,故众数为4,故选:D.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握众数的定义.7.(3分)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )A.120°B.125°C.130°D.135°【分析】由同位角相等两直线平行得到a与b平行,再由两直线平行同旁内角互补,求出∠5的度数,根据对顶角相等即可求出∠4的度数.【解答】解:∵∠1=∠3=50°,∴a∥b,∴∠5+∠2=180°,∵∠2=50°,∴∠5=130°,∴∠4=∠5=130°.故选:C.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.8.(3分)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是( )A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【分析】根据平移规律确定B′的坐标即可得出结论.【解答】解:∵点B′由点B(1,2)向右平移2个单位,再向上平移1个单位得到∴此时B′坐标为(3,3).∴A与B′关于y轴对称.故选:B.【点评】本题考查了点的平移规律以及点的对称性,掌握规律轻松解答,属于基础题型.9.(3分)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B (m,﹣2),则不等式ax+b的解是( )A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>3【分析】依据题意,首先求出B点的横坐标,再直观得出一次函数值大于反比例函数值时自变量的取值范围,即为不等式的解集.【解答】解:∵A(2,3)在反比例函数上,∴k=6.又B(m,﹣2)在反比例函数上,∴m=﹣3.∴B(﹣3,﹣2).结合图象,∴当ax+b>时,﹣3<x<0或x>2.故选:A.【点评】本题主要考查反比例函数、一次函数的图象和性质,通过图象直接得出一次函数的值大于反比例函数值时自变量x的取值范围.10.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q,若HF=FG,则的值是( )A.B.C.D.【分析】由正方形的性质得AB=AF,AC=AH,∠BAF=∠CAH=90°,则∠BAC=∠FAH =90°﹣∠CAF,可证明△ABC≌△AFH,得BC=HF,而HF=FG,所以BC=FG,再证明△BCQ≌△FGP,得CQ=GP,设AC=AH=GH=2m,则HF=FG=BC=m,可求得BE=AF=m,由==tan∠GFP=tan∠HAF==,得CQ=BC=m ,由===tan∠PBE,得PE=BE=m,即可求得S四边形PCQE=m2,S正2,则==,于是得到问题的答案.方形ABEF=5m【解答】解:∵四边形ABEF、四边形ADGH、四边形BDMN都是正方形,∴AB=AF,AC=AH,∠BAF=∠CAH=90°,∴∠BAC=∠FAH=90°﹣∠CAF,∴△ABC≌△AFH(SAS),∴BC=HF,∵HF=FG,∴BC=FG,∵∠ACG=∠ACB=∠BCM=90°,∴∠ADB+∠ACB=180°,∠ACB+∠BCM=180°,∴B、C、G三点在同一条直线上,A、C、M三点在同一条直线上,∵∠BCQ=∠G=∠E=90°,∠BPE=∠FPG,∴∠CBQ=90°﹣∠BPE=90°﹣∠FPG=∠GFP,∴△BCQ≌△FGP(ASA),∴CQ=GP,设AC=AH=GH=2m,则HF=FG=BC=m,∴BE=AF==m,∵∠G=∠H=∠AFE=90°,∴∠GFP=∠HAF=90°﹣∠AFH,∴==tan∠GFP=tan∠HAF==,∴CQ=BC=m,∵∠E=∠BCQ=90°,∴===tan∠PBE,∴PE=BE=×m=m,∴S四边形PCQE=m×m﹣m×m=m2,∵S正方形ABEF=(m)2=5m2,∴==,故选:B.【点评】此题重点考查正方形的性质、全等三角形的判定与性质、勾股定理、锐角三角函数与解直角三角形等知识,证明△ABC≌△AFH及△BCQ≌△FGP是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)因式分解:x2+x= x(x+1) .【分析】根据观察可知原式公因式为x,直接提取可得.【解答】解:x2+x=x(x+1).【点评】本题考查了提公因式法分解因式,通过观察可直接得出公因式,直接观察法是解此类题目的常用的方法.12.(4分)如图,把两根钢条OA,OB的一个端点连在一起,点C,D分别是OA,OB的中点,若CD=4cm,则该工件内槽宽AB的长为 8 cm.【分析】根据三角形中位线定理即可得到结论.【解答】解:∵点C,D分别是OA,OB的中点,∴CD是△AOB的中位线,∴AB=2CD,∵CD=4cm,∴AB=2CD=8(cm),故答案为:8.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.13.(4分)如表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是 .“偏瘦”“标准”“超重”“肥胖”803504624【分析】根据概率公式计算即可.【解答】解:七年级共有500名学生,体重“标准”的学生有350名,∴.故答案为:.【点评】本题主要考查了概率的计算.某事件的概率=这个事件发生的结果数除以总的结果数.14.(4分)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标 (﹣5,4) .【分析】利用旋转变换的性质作出图形可得结论.【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是正确作出图形,利用图象法解决问题.15.(4分)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为 π cm.【分析】连接OE,OD,由等腰三角形的性质推出∠C=∠ODB,得到OD∥AC,推出∠EOD=∠AEO,由OE=OA,∠OEA=∠BAC=50°,因此∠∠EOD=∠BAC=50°,由弧长公式即可求出的长.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.【点评】本题考查弧长的计算,等腰三角形的性质,平行线的性质,关键是由等腰三角形的性质推出OD∥AC,从而求出∠EOD的度数.16.(4分)如图是一块矩形菜地ABCD,AB=a(m),AD=b(m),面积为s(m2),现将边AB增加1m.(1)如图1,若a=5,边AD减少1m,得到的矩形面积不变,则b的值是 6 .(2)如图2,若边AD增加2m,有且只有一个a的值,使得到的矩形面积为2s(m2),则s的值是 6+4 .【分析】(1)根据边AD减少1m,得到的矩形面积不变,得5b=(5+1)×(b﹣1),可解得答案;(2)由边AB增加1m,边AD增加2m,得到的矩形面积为2s(m2),知(a+1)(b+2)=2s,故(a+1)(+2)=2s,2a2+(2﹣s)a+s=0,又有且只有一个a的值使得到的矩形面积为2s,可得(2﹣s)2﹣8s=0,可解得答案.【解答】解:(1)∵边AD减少1m,得到的矩形面积不变,∴5b=(5+1)×(b﹣1),解得:b=6,故答案为:6;(2)根据题意知b=,∵边AB增加1m,边AD增加2m,得到的矩形面积为2s(m2),∴(a+1)(b+2)=2s,∴(a+1)(+2)=2s,整理得:2a++2﹣s=0,∴2a2+(2﹣s)a+s=0,∵有且只有一个a的值使得到的矩形面积为2s,∴Δ=0,即(2﹣s)2﹣8s=0,解得s=6﹣4(不符合题意舍去)或s=6+4,故答案为:6+4.【点评】本题考查整式的混合运算,涉及矩形面积,一元二次方程的判别式等,解题的关键是由有且只有一个a的值,使得到的矩形面积为2s列出关于s的方程.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2023)0+﹣2sin30°+|﹣5|.【分析】先计算零次幂、化简二次根式,再代入特殊值的函数值算乘法并化简绝对值,最后算加减得结论.【解答】解:(﹣2023)0+﹣2sin30°+|﹣5|=1+2﹣2×+5=1+2﹣1+5=7.【点评】本题考查了实数的混合运算,掌握零次幂、绝对值的意义,二次根式的性质及特殊角的函数值等知识点是解决本题的关键.18.(6分)已知,求(2x+1)(2x﹣1)+x(3﹣4x)的值.【分析】先根据单项式乘以多项式的法则和平方差公式进行计算,再合并同类项,最后代入求出答案即可【解答】解:原式=4x2﹣1+3x﹣4x2=3x﹣1当时,原式=3×﹣1=0.【点评】本题考查了整式的化简求值,能正确根据整式的运算法则进行计算是解此题的关键.19.(6分)为激发学生参与劳动的兴趣,某校开设了以“端午”为主题的活动课程,要求每位学生在“折纸龙”“采艾叶”“做香囊”与“包粽子”四门课程中选且只选其中一门,随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图,请根据图表信息回答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙“课程的教室至少需要几间.【分析】(1)从两个统计图可知,样本中选择“包粽子”的学生有18人,占被调查人数的36%,根据频率=进行计算即可,求出选择“采艾叶”的学生人数即可补全条形统计图;(2)求出样本中,选择“折纸龙”的学生所占的百分比,进而估计总体中选择“折纸龙”所占的百分比,再根据频率=即可求出总体中选择“折纸龙”的学生人数,进而求出所需要的教室的数量.【解答】解:(1)18÷36%=50(人),选择“采艾叶”的学生人数为:50﹣8﹣18﹣10=14(人),补全条形统计图如图所示:(2)1000×=160(人),160÷30≈6(间),答:开设“折纸龙“课程的教室至少需要6间.【点评】本题考查条形统计图、扇形统计图以及样本估计总体,掌握频率=是正确解答的前提.20.(8分)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=,求弦CD的长.【分析】(1)根据切线的性质得到AB⊥x轴根据垂直的定义得到∠AHO=∠HOB=∠OBA=90°,根据矩形的判定定理得到四边形AHOB是矩形;(2)连接AD,根据矩形的性质得到AH=OB=,根据勾股定理得到DH===3,根据垂径定理即可得到结论.【解答】(1)证明:∵⊙A与x轴相切于点B,∴AB⊥x轴又∵AH⊥CD,HO⊥OB,∴∠AHO=∠HOB=∠OBA=90°,∴四边形AHOB是矩形;(2)解:连接AD ,∵四边形AHOB 是矩形,∴AH =OB =,∵AD =AB =4,∴DH ===3,∵AH ⊥CD ,∴CD =2DH =6.【点评】本题考查了切线的性质,矩形的判定和性质,勾股定理,垂径定理,正确都作出辅助线是解题的关键.21.(8分)如图,为制作角度尺,将长为10,宽为4的矩形OABC 分割成4×10的小正方形网格,在该矩形边上取点P ,来表示∠POA 的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB 上取点P 1,使CP 1=4.∠P 1OA =45°,点P 1表示45°.②以O 为圆心,8为半径作弧,与BC 交于点P 2.∠P 2OA =30°,点P 2表示30°.③分别以O ,P 2为圆心,大于OP 2长度一半的长为半径作弧,相交于点E ,F ,连接EF 与BC 相交于点P 3.…④以P 2为圆心,OP 2的长为半径作弧,与射线CB 交于点D ,连结OD 交AB 于点P 4.…(1)分别求点P3,P4表示的度数.(2)用直尺和圆规在该矩形的边上作点P5,使该点表示37.5°(保留作图痕迹,不写作法).【分析】(1)根据矩形的性质可求出∠OP2C度数,根据线段垂直平分线的性质∠P2OP3度数,即可求出∠P3OA的度数,从而知道P3点表示度数;利用半径相等即可求出∠P2OD=∠P2DO,再根据平行线的性质即可求出∠P2OD=∠DOA,从而得P3表示度数;(2)利用角平分线的性质作图即可求出答案.【解答】解:①∵四边形OABC是矩形,∴BC∥OA,∴∠OP2C=∠P2OA=30°,由作图可知,EF是OP2的中垂线,∴OP3=P3P2;∴∠P3OP2=∠P3P2O=30°,∴∠P3OA=∠P3OP2+∠P2OA=60°,∴点P3表示60°;②作图可知,P2D=P2O,∴∠P2OD=∠P2DO,∵CB∥OA,∴∠P2DO=∠DOA;∴,∴点P4表示15°;答:点P3表示60°,点P4表示15°;(2)作∠P3OP4的角平分线交BC于P5,点P5即为所求作的点,如图:∵点P3表示60°,点P4表示15°,∴∠P3OP4=60°﹣15°=45°,∴∠P3OP4+∠P4OA=22.5°+15°=37.5°,∴P5表示37.5°.【点评】本题考查的是尺规作图的应用,涉及到的知识点有线段垂直平分线、角平分线性质、圆的相关性质,解题的关键需要正确理解题意,掌握用到的相关知识点.22.(10分)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.【分析】(1)由A(8,800)可知哥哥的速度.(2)①根据时间=路程÷速度可知妹妹到书吧所用的时间,再根据题意确定a得值即可.②分别求出哥哥与妹妹返程时的函数解析式,再联立方程组即可得出结论.【解答】解:(1)由A(8,800)可知哥哥的速度为:800÷8=100(m/min).(2)①∵妹妹骑车到书吧前的速度为200米/分,∴妹妹所用时间t为:800÷200=4(min).∵妹妹比哥哥迟2分钟到书吧,∴a=8+2﹣4=6.②由(1)可知:哥哥的速度为100m/min,∴设BC所在直线为s1=100t+b,将B(17,800)代入得:800=100×17+b,解得b=﹣900.∴BC所在直线为:s1=100t﹣900.当s1=1900时,t哥哥=28.∵返回时妹妹的速度是哥哥的1.6倍,∴妹妹的速度是160米/分.∴设妹妹返回时得解析式为s2=160t+b,将F(20,800)代入得800=160×20+b,解得b=﹣2400,∴s2=160t﹣2400.令s1=s2,则有100t﹣900=160t﹣2400,解得t=25<28,∴妹妹能追上哥哥,此时哥哥所走得路程为:800+(25﹣17)×100=1600(米).兄妹俩离家还有1900﹣1600=300(米),即妹妹能追上哥哥,追上时兄妹俩离家300米远.【点评】本题考查了一次函数的应用,观察图象以及利用待定系数法求解析式是解决该类问题的关键.23.(10分)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l 的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.【分析】探究1:根据图形即可判断出CDEH1形状;根据等腰三角形性质可求出AM长度,利用勾股定理即可求出CA长度,从而求出l值.探究2:①根据十二边形的特性可知∠CH1N=30°,利用特殊角正切值求出CH1长度,最后利用菱形的性质求出EH1的长度,从而求得l值.②根据正多边形的特性可知∠CH1N的度数,利用特殊角正切值求出CH1和H1N长度,最后利用菱形的性质求出EH1的长度,从而求得l值.【解答】解:探究1:①四边形CDEH1是菱形,理由如下:由图1可知,CD∥EH1,ED∥CH1,∴CDEH1为平行四边形,∵桥梁的规格是相同的,∴桥梁的宽度相同,即四边形CDEH1每条边上的高相等,∵平行四边形CDEH1的面积等于边长乘这条边上的高,∴CDEH1每条边相等,∴CDEH1为菱形.②如图1,过点C作CM⊥AB于点M.由题意,得CA=CB,CM=12cm,AB=32cm,∴AM=AB=16cm,在Rt△CAM中,CA2=AM2+CM2,∴CA=20(cm),∴l=CA+2=22(cm),故答案为:l=22cm.探究2:①如图2,过点C作CN⊥H1H2于点N,由题意,得∠H1CH2=120°,CH1=CH2,CN=3cm,∴∠CH1N=30°,∴CH1=2CN=6cm,H1N=cm,又∵四边形CDEH1是菱形,∴EH1=CH1=6cm,∴l=2(2+6+3)=(16+6)cm,故答案为:l=(16+6)cm.②如图3,过点C作CN⊥H1H2于点N.由题意,形成的多边形为正n边形,∴外角∠CH1H2=,在Rt△CNH1中,H1N=(cm),又∵CH1=CH2,CN⊥H1H2,∴H1H2=2H1N=cm,∴形成的多边形的周长为()cm.故答案为:()cm.【点评】实际应用题,考查的是菱形的性质和判定、锐角三角函数、勾股定理,解题的关键在于将生活实际和有关数学知识有效结合以及熟练掌握相关性质.24.(12分)如图,直线y=与x轴,y轴分别交于点A,B,抛物线的顶点P在直线AB上,与x轴的交点为C,D,其中点C的坐标为(2,0),直线BC与直线PD 相交于点E.(1)如图2,若抛物线经过原点O.①求该抛物线的函数表达式;②求的值.(2)连结PC,∠CPE与∠BAO能否相等?若能,求符合条件的点P的横坐标;若不能,试说明理由.【分析】(1)①由抛物线经过原点O(0,0)、C(2,0),可得抛物线的顶点P(1,),利用待定系数法可得抛物线的函数表达式为y=﹣x2+3x;②先求出A(﹣2,0),B(0,),运用待定系数法可得直线OP的解析式为y=x,过点B作BF∥x轴交OP于点F,F(,),可得BF=,再由BF∥OC,得出△BEF∽△CEO,进而可得===;(2)过点P作PF⊥x轴于点F,设P(m,m+),则F(m,0),利用勾股定理可得AP2=AF2+PF2=(m+2)2+(m+)2=m2+9m+9,若∠CPE=∠BAO,可得△CPD∽△CAP,得出∠CDP=∠CPA,再结合∠CDP=∠ACP,可得∠PCD=∠CPA ,进而可得AP=AC,建立方程求解即可得出答案.【解答】解:(1)①∵抛物线经过原点O(0,0)、C(2,0),∴对称轴为直线x=1,当x=1时,y=×1+=,∴抛物线的顶点P(1,),设抛物线的解析式为y=a(x﹣1)2+,把C(2,0)代入,得a+=0,解得:a=﹣,∴y=﹣(x﹣1)2+=﹣x2+3x,∴该抛物线的函数表达式为y=﹣x2+3x;②∵直线y=与x轴,y轴分别交于点A,B,∴A(﹣2,0),B(0,),设直线OP的解析式为y=kx,把P(1,)代入,得:k=,∴直线OP的解析式为y=x,如图,过点B作BF∥x轴交OP于点F,则点F的纵坐标与点B的纵坐标相同,∴=x,解得:x=,∴F(,),∴BF=,∵BF∥OC,∴△BEF∽△CEO,∴===,∴的值为.(2)如图,过点P作PF⊥x轴于点F,设P(m,m+),则F(m,0),∴PF=m+,AF=m﹣(﹣2)=m+2,AC=2﹣(﹣2)=4,在Rt△APF中,AP2=AF2+PF2=(m+2)2+(m+)2=m2+9m+9,若∠CPE=∠BAO,∵∠PCD=∠ACP,∴△CPD∽△CAP,∴∠CDP=∠CPA,∵PC=PD,∴∠CDP=∠ACP,∴∠PCD=∠CPA,∴AP=AC,∴m2+9m+9=16,解得:m1=﹣(舍去),m2=,∴∠CPE与∠BAO能相等,点P的横坐标为.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,一次函数与二次函数综合运用,勾股定理,等腰三角形性质,相似三角形的判定和性质等,添加辅助线构造相似三角形是解题关键.。

最新浙江省金华市中考数学真题试卷附解析

最新浙江省金华市中考数学真题试卷附解析

浙江省金华市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆的切线()A.垂直于半径 B.平行于半径C.垂直于经过切点的半径 D.以上都不对2.从某班学生中随机选取一名学生是男生的概率为35,则该班男生与女生的人数比是()A.35B.23C.32D.253.使式子4x-有意义且取得最小值的x的取值是()A.0 B.4 C.2 D.不存在4.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A. B C.D.5.在同一平面内,作已知直线l的平行线,且到l的距离为7 cm,这样的平行线最多可以作()A.1 条B.2 条C.3 条D.无数条6.如图,在△ABC中,DE是边AB的垂直平分线,AB=6,BC=8,AC=5,则△ADC的周长是()A.14 B.13 C.11 D. 97.方程组251x yx y-=⎧⎨+=⎩的解是()A.31xy=⎧⎨=⎩B.1xy=⎧⎨=⎩C.21xy=⎧⎨=-⎩D.21xy=-⎧⎨=⎩8.从一副扑克牌中任意抽出一张,可能性相同的的是()A.大王与黑桃B.大王与10 C.10与红桃D.红桃与梅花9.一组学生去春游,预计共需费用 120 元,后来又有 2 个同学参加进来,总费用不变,于是每人可少分摊 3 元,原来这组学生的人数是()A.8 人B.10人C. 12人D. 30 人10.如图①,有 6 张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图③摆放,从中任意翻开一张是汉字“自”的概率是()A.12B.13C.23D.16二、填空题11.袋中共有 5 个大小相同的红球和自球,任意摸出一球为红球的概率是25,则袋中红球有个,白球有个,任意模出两个球均为红球的概率是.12.如图,在直角梯形ABCD中,AB//CD,AD⊥CD,AB=1cm,AD=2cm,CD=4cm,则BC= .13.若两个连续整数的乘积比它们的和大29,•其中较小的数为x,•则可列方程为.14.如图所示,一道斜坡的坡比为 1:8,已知 AC= 16,则斜坡 AB 的长为.15.在正数范围内定义一种运算☆,其规则为a☆b=11b+,根据这个规则x☆3(1)2xx+=的解为 .解答题16.有 A,B,C 三个箱子,A 箱放 2个白球,B箱和C箱都各放1个白球和 1个红球,从这三个箱子中任取一球恰是红球的概率是.17.两个有理数相乘,若把一个因数换成它的相反数,所得的积是原来积的.18.在 Rt△ABC 中,C= 90°,CD⊥AB,BC=3,若以 C为圆心,以 2 为半径作⊙C,则点A 在⊙C ,点B在⊙C ,点 D在⊙C .三、解答题19.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)20.如图所示,它是函数5y x=的大致图象,其中点A 在其图象上,A 点的横坐标为2. (1)求点A 的坐标;(2)求出点A 关于原点的对称点A 的坐标,并证明 A ′点也在5y x=的图象上; (3)过A 作x 轴、y 轴的平行线,过A ′作x 轴、y 轴的平行线,分别交于 B .C 两点,证明平行四边形 ABA'C 为矩形,并求其面积.21.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?22.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,求2222a b a b--的值.23.已知直线y=2x-1.(1)求已知直线与x 轴、y 轴交点A 、B 的坐标;(2)若直线y=kx+b 与已知直线关于x 轴对称,求其解析式,并在同一坐标系内画出两条直线的图象.24.已知△ABF ≌△DCE ,E 与F 是对应顶点.(1)△DCE 可以看成是由△ABF 通过怎么样的运动得到的? (2)AF 与DE 平行吗?试说明理由.25.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.26.如图所示,铁路上A 、B 两站相距25 km ,C .D 为村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15 km ,CB=10 km ,现在要在铁路的A 、B 两站间建一个土产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在离A 站多远处?27.如图,一个弯形管道 ABCD 的拐角∠ABC=120°,∠BCD=60°,这说明管道AB ∥CD 吗?为什么?28.如图,一个被等分成 4个扇形的圆形转盘,其中 3个扇形分别标有数字 2、5、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率;,(2)请在 4、7、8、9这 4个数字中选出一个数字填写在没有标数字的扇形内,使得分别砖动转盘2次,转盘自由停止后指针所指扇形的数字之和分别为奇数与偶数的概率相等,并说明理由.29.某班同学去社会实践基地参加实践活动,一部分同学抬土,另一部分同学挑土. 已知全班共有竹筐 58 只,扁担 37 根,要使每一位同学都能同时参加抬土或挑土,应怎样分配抬土和挑土人数?30.已知 m、n互为相反数.(1)在如图的数轴上标出数n;(2)在如图的数轴上补上原点 0,并标出数n.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.D5.B6.B7.C8.D9.A10.A二、填空题11. 2,3,11012.13 13.x (x+1)=x+(x+1)+2914.26515.1x =16. 1317. 相反数18.上,外,内三、解答题 19.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈. 即改善后的台阶会加长1.55米. (2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.20.(1)把x=2代入5y x=得A 点坐 (2,52)(2)∵A 与 A ′关于原点对称,∴.A ′的坐标是(—2,52-)5(2)()52-⨯-=,∴A ′点也在5y x=的图象上..(3)∵x 轴⊥y 轴于点O ,∴∠.CAB=90°,同理可知∠B=∠C=∠CA ′B =90°. ∴ 平行四边形 ABA ′C 为矩形,4520AC AB =⋅=⨯=面积.21.P 运动到∠A 的平分线与BC 的交点22.523.(1)A(12,0),B(0,-l);(2)y=-2x+1,图象略24.(1)△ABF 先沿BC 方向平移,使点F 与E 重合,再绕点E 顺时针旋转180°即可. (2)平行.∵△ABF ≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF ∥DE25.是直角三角形,理由略26.10 km27.AB ∥CD(同旁内角互补,两直线平行)28.(1)因为没有标数字的扇形面积为整个圆盘面积的14,所以指针指向没有标数字扇形的概率P=14.(2)填人的数字为 7或 9时,两数之和分别为奇数与为偶数的概率相等. 理由如下;设填入的数字为x ,则有下表:和x2 5 6 x2x (偶)2x +5x +6x +2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 66+x偶奇偶从上表可看出,为使两数之和分别为奇数与偶数的概率相等,则应满足2x +,5x +,6x +三个数中有2个奇数,一个偶数,将所给的数字代入验算知,只有数字7和 9满足条件,所以填入的数字为 7或9.29.分配抬土 32 人,挑土21 人30.略。

最新最全浙江省金华市中考数学试卷答案与解析

最新最全浙江省金华市中考数学试卷答案与解析

2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题〔此题有10小题,每题3分,共30分〕1.〔3分〕〔2021•金华〕实数﹣的绝对值是〔〕A.2 B.C.﹣D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.应选:B.【点评】此题考查了实数的性质,负数的绝对值是它的相反数.2.〔3分〕〔2021•金华〕假设实数a,b在数轴上的位置如下图,那么以下判断错误的选项是〔〕A.a<0 B.ab<0 C.a<b D.a,b互为倒数【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;应选:D.【点评】此题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.3.〔3分〕〔2021•金华〕如图是加工零件的尺寸要求,现有以下直径尺寸的产品〔单位:mm〕,其中不合格的是〔〕【考点】正数和负数.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.应选:B.【点评】此题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.〔3分〕〔2021•金华〕从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如下图,那么该几何体的左视图正确的选项是〔〕A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如下图:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.应选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.〔3分〕〔2021•金华〕一元二次方程x2﹣3x﹣2=0的两根为x1,x2,那么以下结论正确的选项是〔〕A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2〞,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.应选C.【点评】此题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.此题属于根底题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.〔3分〕〔2021•金华〕如图,∠ABC=∠BAD,添加以下条件还不能判定△ABC≌△BAD的是〔〕A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,〔SSA〕三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD〔ASA〕,故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD〔AAS〕,故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD〔SAS〕,故D正确;应选:A.【点评】此题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.7.〔3分〕〔2021•金华〕小明和小华参加社会实践活动,随机选择“清扫社区卫生〞和“参加社会调查〞其中一项,那么两人同时选择“参加社会调查〞的概率为〔〕A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:解:可能出现的结果小明清扫社区卫生清扫社区卫生参加社会调查参加社会调查小华清扫社区卫生参加社会调查参加社会调查清扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查〞的结果有1种,那么所求概率P1=,应选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.〔3分〕〔2021•金华〕一座楼梯的示意图如下图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,CA=4米,楼梯宽度1米,那么地毯的面积至少需要〔〕A.米2B.米2C.〔4+〕米2D.〔4+4tanθ〕米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ〔米〕,∴AC+BC=4+4tanθ〔米〕,∴地毯的面积至少需要1×〔4+4tanθ〕=4+tanθ〔米2〕;应选:D.【点评】此题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.9.〔3分〕〔2021•金华〕足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在〔〕A.点C B.点D或点EC.线段DE〔异于端点〕上一点D.线段CD〔异于端点〕上一点【考点】角的大小比拟.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,再比拟∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE〔异于端点〕上一点,应选C.【点评】此题考查了比拟角的大小,一般情况下比拟角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比拟,使两个角的顶点及一边重合,观察另一边的位置.10.〔3分〕〔2021•金华〕在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,那么y关于x的函数关系用图象大致可以表示为〔〕A.B.C.D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.应选D.【点评】此题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围确实定,属于中考常考题型.二、填空题〔此题有6小题,每题4分,共24分〕11.〔4分〕〔2021•金华〕不等式3x+1<﹣2的解集是x<﹣1.【考点】解一元一次不等式.【分析】利用不等式的根本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】此题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的根本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.〔4分〕〔2021•金华〕能够说明“=x不成立〞的x的值是﹣1〔写出一个即可〕.【考点】算术平方根.【专题】计算题;实数.【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立〞的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解此题的关键.13.〔4分〕〔2021•金华〕为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.假设这6次水质检测氨氮含量平均数为1.5mg/L,那么第3次检测得到的氨氮含量是1mg/L.【考点】算术平均数;折线统计图.【专题】统计与概率.【分析】根据题意可以求得这6次总的含量,由折线统计图可以得到除第3次的含量,从而可以得到第3次检测得到的氨氮含量.【解答】解:由题意可得,第3次检测得到的氨氮含量是:1.5×6﹣〔1.6+2+1.5+1.4+1.5〕=9﹣8=1mg/L,故答案为:1.【点评】此题考查算术平均数、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.14.〔4分〕〔2021•金华〕如图,AB∥CD,BC∥DE.假设∠A=20°,∠C=120°,那么∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】此题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.〔4分〕〔2021•金华〕如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD 为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.假设△DEB′为直角三角形,那么BD的长是2或5.【考点】翻折变换〔折叠问题〕.【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,那么AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即〔6+x〕2+〔8﹣x〕2=102.解得:x1=2,x2=0〔舍去〕.∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,那么CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=〔8﹣x〕2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.【点评】此题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.16.〔4分〕〔2021•金华〕由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.〔铰接点长度忽略不计〕〔1〕转动钢管得到三角形钢架,如图1,那么点A,E之间的距离是米.〔2〕转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,那么所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】〔1〕只要证明AE∥BD,得=,列出方程即可解决问题.〔2〕分别求出六边形的对角线并且比拟大小,即可解决问题.【解答】解:〔1〕如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,故答案为.〔2〕如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】此题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.三、解答题〔此题有8小题,共66分,各小题都必须写出解答过程〕17.〔6分〕〔2021•金华〕计算:﹣〔﹣1〕2021﹣3tan60°+〔﹣2021〕0.【考点】实数的运算.【分析】首先利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.【解答】解:原式=3﹣1﹣3×+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.〔6分〕〔2021•金华〕解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程〔组〕及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.那么原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.〔6分〕〔2021•金华〕某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取局部学生,统计了训练前后两次考核成绩,并按“A,B,C〞三个等次绘制了如图不完整的统计图.试根据统计图信息,解答以下问题:〔1〕抽取的学生中,训练后“A〞等次的人数是多少?并补全统计图.〔2〕假设学校有600名学生,请估计该校训练后成绩为“A〞等次的人数.【考点】条形统计图.【分析】〔1〕将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A 等级人数;〔2〕将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:〔1〕∵抽取的人数为21+7+2=30,∴训练后“A〞等次的人数为30﹣2﹣8=20.补全统计图如图:〔2〕600×=400〔人〕.答:估计该校九年级训练后成绩为“A〞等次的人数是400.【点评】此题主要考查条形统计图,根据统计图读出训练前后各等级的人数及总人数间的关系是解题的关键,也考查了样本估计总体.20.〔8分〕〔2021•金华〕如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.〔1〕设北京时间为x〔时〕,首尔时间为y〔时〕,就0≤x≤12,求y关于x的函数表达式,并填写下表〔同一时刻的两地时间〕.北京时间7:30 11:152:50首尔时间8:3012:15 3:50〔2〕如图2表示同一时刻的英国伦敦时间〔夏时制〕和北京时间,两地时差为整数.如果现在伦敦〔夏时制〕时间为7:30,那么此时韩国首尔时间是多少?【考点】一次函数的应用.【分析】〔1〕根据图1得到y关于x的函数表达式,根据表达式填表;〔2〕根据如图2表示同一时刻的英国伦敦时间〔夏时制〕和北京时间得到伦敦〔夏时制〕时间与北京时间的关系,结合〔1〕解答即可.【解答】解:〔1〕从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50〔2〕从图2看出,设伦敦〔夏时制〕时间为t时,那么北京时间为〔t+7〕时,由第〔1〕题,韩国首尔时间为〔t+8〕时,所以,当伦敦〔夏时制〕时间为7:30,韩国首尔时间为15:30.【点评】此题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.21.〔8分〕〔2021•金华〕如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=〔k>0〕图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.〔1〕求点A的坐标.〔2〕假设AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】〔1〕令一次函数中y=0,解关于x的一元一次方程,即可得出结论;〔2〕①过点C作CF⊥x轴于点F,设AE=AC=t,由此表示出点E的坐标,利用特殊角的三角形函数值,通过计算可得出点C的坐标,再根据反比例函数图象上点的坐标特征可得出关于t的一元二次方程,解方程即可得出结论;②根据点在直线上设出点D的坐标,根据反比例函数图象上点的坐标特征可得出关于点D横坐标的一元二次方程,解方程即可得出点D的坐标,结合①中点E的坐标即可得出结论.【解答】解:〔1〕当y=0时,得0=x﹣,解得:x=3.∴点A的坐标为〔3,0〕.:〔2〕①过点C作CF⊥x轴于点F,如下图.设AE=AC=t,点E的坐标是〔3,t〕,在Rt△AOB中,tan∠OAB==,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=t,AF=AC•cos30°=t,∴点C的坐标是〔3+t,t〕.∴〔3+t〕×t=3t,解得:t1=0〔舍去〕,t2=2.∴k=3t=6.②点E与点D关于原点O成中心对称,理由如下:设点D的坐标是〔x,x﹣〕,∴x〔x﹣〕=6,解得:x1=6,x2=﹣3,∴点D的坐标是〔﹣3,﹣2〕.又∵点E的坐标为〔3,2〕,∴点E与点D关于原点O成中心对称.【点评】此题考查了反比例函数与一次函数的交点问题、解一元二次方程以及反比例函数图象上点的坐标特征,解题的关键是:〔1〕令一次函数中y=0求出x的值;〔2〕根据反比例函数图象上点的坐标特征得出一元二次方程.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出关于点的横坐标的一元二次方程是关键.22.〔10分〕〔2021•金华〕四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.〔1〕利用图1,求证:四边形ABCD是菱形.〔2〕如图2,假设CD的延长线与半圆相切于点F,直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.【考点】菱形的判定与性质;切线的性质.【分析】〔1〕先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;〔2〕①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得S△ABD,由OE为△ABD的中位线可得S△OBE=S△ABD;②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB==知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案【解答】解:〔1〕∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.〔2〕①连结OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF.∵FC∥AB,∴OF即为△ABD中AB边上的高.∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4.②过点D作DH⊥AB于点H.∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°.∴四边形OHDF为矩形,即DH=OF=4.∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°.∵点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°.∴∠AOE=180°﹣∠EOB=150°.∴弧AE的长==.【点评】此题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.23.〔10分〕〔2021•金华〕在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点〔点B在第一象限〕,点D在AB的延长线上.〔1〕a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,假设BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.〔2〕如图3,假设BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.【考点】二次函数综合题.【分析】〔1〕①根据函数解析式求出点A、B的坐标,求出AC的长;②作抛物线L2的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系数法求出抛物线的函数表达式;〔2〕过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B〔t,at2〕,求出的值,根据抛物线上点的坐标特征求出的值.【解答】解:〔1〕①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a〔x﹣〕2,由①得,B点的坐标为〔,2〕,∴2=a〔﹣〕2,解得a=4.抛物线L2的函数表达式为y=4〔x﹣〕2;〔2〕如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,那么AB=BD=2t,点B的坐标为〔t,at2〕,根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x〔x﹣4t〕,∵该抛物线过点B〔t,at2〕,∴at2=a3t〔t﹣4t〕,∵t≠0,∴=﹣,由题意得,点P的坐标为〔2t,﹣4a3t2〕,那么﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.【点评】此题考查的是二次函数的图象和性质、待定系数法求函数解析式,灵活运用待定系数法求出函数解析式、掌握抛物线的对称性、正确理解抛物线上点的坐标特征是解题的关键.24.〔12分〕〔2021•金华〕在平面直角坐标系中,点O为原点,点A的坐标为〔﹣6,0〕.如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.〔1〕如图2,假设α=60°,OE=OA,求直线EF的函数表达式.〔2〕假设α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.〔3〕当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?假设能,求点P的坐标;假设不能,试说明理由【考点】正方形的性质;待定系数法求一次函数解析式.【分析】〔1〕先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;〔2〕判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;〔3〕由△OEP的其中两边之比为:1分三种情况进行计算即可.【解答】解:〔1〕如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH==3.∴E〔﹣3,3〕.∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM=,即=,∴OM=4.∴M〔0,4〕.设直线EF的函数表达式为y=kx+4,∵该直线过点E〔﹣3,3〕,∴﹣3k+4=3,解得k=,所以,直线EF的函数表达式为y=x+4.〔2〕如图2,射线OQ与OA的夹角为α〔α为锐角,tanα〕.无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,那么OE=2a,∴a2+〔2a〕2=62,解得a1=,a2=﹣〔舍去〕,∴OE=2a=,∴S正方形OEFG=OE2=.〔3〕设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为〔0,6〕.在图3的根底上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在=〔图4〕和=〔图5〕两种情况.如图4,△EFP是等腰直角三角形,有=,即=,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE=OA=6,∴PE=OE=12,PA=PE+AE=18,∴点P2的坐标为〔﹣6,18〕.如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+〔m+n〕2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当=时,∴PO2=2PE2.∴2m2+2mn+n2=2〔m2+n2〕,得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴=,∴AH=4OA=24,即OH=18,∴m=9.在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,∴点P3的坐标为〔﹣18,36〕.当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE.∴点P4的坐标为〔﹣6,0〕.在图6的根底上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在=〔图7〕这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,在Rt△PEF中,PE2=PF2+FE2=〔m+n 〕2+m2=2m2+2mn+n2.当=时,∴PE2=2PO2.∴2m2+2mn+n2=2n2+2m2,∴n=2m,由于NG=OG=m,那么PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.在等腰Rt△ONG中,ON=m,∴12=m,∴m=6,在等腰Rt△PRN中,RN=PR=6,∴点P5的坐标为〔﹣18,6〕.所以,△OEP的其中两边的比能为:1,点P的坐标是:P1〔0,6〕,P2〔﹣6,18〕,P3〔﹣18,36〕,P4〔﹣6,0〕,P5〔﹣18,6〕.【点评】此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解此题的关键是灵活运用勾股定理进行计算.。

2020年浙江省金华市中考数学试卷(解析版)

2020年浙江省金华市中考数学试卷(解析版)

2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:﹣3.故选:A.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣5【分析】利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.【解答】解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.3.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a﹣b2不能运用平方差公式分解,故此选项错误;C、a2﹣b2能运用平方差公式分解,故此选项正确;D、﹣a2﹣b2不能运用平方差公式分解,故此选项错误;故选:C.4.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.【分析】根据概率公式直接求解即可.【解答】解:∵共有6张卡片,其中写有1号的有3张,∵从中任意摸出一张,摸到1号卡片的概率是=;故选:A.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∵b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a∵AB,b∵AB,∵a∵b(垂直于同一条直线的两条直线平行),故选:B.7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,∵函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∵b>c>0,a<0,∵a<c<b.故选:C.8.(3分)如图,∵O是等边∵ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∵EPF 的度数是()A.65°B.60°C.58°D.50°【分析】如图,连接OE,OF.求出∵EOF的度数即可解决问题.【解答】解:如图,连接OE,OF.∵∵O是∵ABC的内切圆,E,F是切点,∵OE∵AB,OF∵BC,∵∵OEB=∵OFB=90°,∵∵ABC是等边三角形,∵∵B=60°,∵∵EOF=120°,∵∵EPF=∵EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【分析】直接利用表示十位数的方法进而得出等式即可.【解答】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】证明∵BPG∵∵BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.【解答】解:∵四边形EFGH为正方形,∵∵EGH=45°,∵FGH=90°,∵OG=GP,∵∵GOP=∵OPG=67.5°,∵∵PBG=22.5°,又∵∵DBC=45°,∵∵GBC=22.5°,∵∵PBG=∵GBC,∵∵BGP=∵BG=90°,BG=BG,∵∵BPG∵∵BCG(ASA),∵PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∵EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∵BF=CG=x,∵BG=x+x,∵BC2=BG2+CG2==,∵=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..【分析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.【解答】解:∵点P(m,2)在第二象限内,∵m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是3.【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为20cm2.【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∵∵D=180°﹣∵C=60°,∵∵α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.【分析】如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.求出BH,AH即可解决问题.【解答】解:如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=a.观察图象可知:BH=a,AH=a,∵AT∵BC,∵∵BAH=β,∵tanβ===.故答案为.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE∵AC于点E,OF∵BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∵EF=2cm,∵AB=CD=2cm,∵此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∵CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∵EH==(cm),∵EF=2EH=(cm)∵EF∵AB,∵==,∵AB=×=(cm).故答案为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【解答】解:原式=1+2﹣1+3=5.18.(6分)解不等式:5x﹣5<2(2+x).【分析】去括号,移项、合并同类项,系数化为1求得即可.【解答】解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【分析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,的半径OA=2,OC∵AB于点C,∵AOC=60°.(1)求弦AB的长.(2)求的长.【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∵AOC=60°,可以得到∵AOB的度数,然后根据弧长公式计算即可.【解答】解:(1)∵的半径OA=2,OC∵AB于点C,∵AOC=60°,∵AC=OA•sin60°=2×=,∵AB=2AC=2;(2)∵OC∵AB,∵AOC=60°,∵∵AOB=120°,∵OA=2,∵的长是:=.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6∵,气温T(∵)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6∵,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6∵,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∵13.2﹣1.2=12,∵高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∵T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∵该山峰的高度大约为15百米.22.(10分)如图,在∵ABC中,AB=4,∵B=45°,∵C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将∵AEF折叠得到∵PEF.∵如图2,当点P落在BC上时,求∵AEP的度数.∵如图3,连结AP,当PF∵AC时,求AP的长.【分析】(1)如图1中,过点A作AD∵BC于D.解直角三角形求出AD即可.(2)∵证明BE=EP,可得∵EPB=∵B=45°解决问题.∵如图3中,由(1)可知:AC==,证明∵AEF∵∵ACB,推出=,由此求出AF即可解决问题.【解答】解:(1)如图1中,过点A作AD∵BC于D.在Rt∵ABD中,AD=AB•sin45°=4×=4.(2)∵如图2中,∵∵AEF∵∵PEF,∵AE=EP,∵AE=EB,∵BE=EP,∵∵EPB=∵B=45°,∵∵PEB=90°,∵∵AEP=180°﹣90°=90°.∵如图3中,由(1)可知:AC==,∵PF∵AC,∵∵PF A=90°,∵∵AEF∵∵PEF,∵∵AFE=∵PFE=45°,∵∵AFE=∵B,∵∵EAF=∵CAB,∵∵AEF∵∵ACB,∵=,即=,∵AF=2,在Rt∵AFP,AF=FP,∵AP=AF=2.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m的值即可判断.【解答】解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∵此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∵x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∵m≠1,∵抛物线的顶点A的坐标是(m,4),∵抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∵点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∵点B(0,4),∵﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∵B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出∵ADE的面积即可解决问题.(3)首先证明AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.∵如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1中,∵AE∵DF,AD∵EF,∵四边形AEFD是平行四边形,∵四边形ABCD是正方形,∵AC=AB=OC=OB,∵ACE=∵ABD=90°,∵E,D分别是OC,OB的中点,∵CE=BD,∵∵CAE∵∵ABD(SAS),∵AE=AD,∵四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S∵ADB=S∵ACE=×8×4=16,S∵EOD=×4×4=8,∵S∵AED=S正方形ABOC﹣2S∵ABD﹣S∵EOD=64﹣2×16﹣8=24,∵S菱形AEFD=2S∵AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK∵DE,∵KE=KD,∵OK=KE=KD=2,∵AO=8,∵AK=6,∵AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN∵x轴于N,交AC于M,设AM=t.∵菱形P AQG∵菱形ADFE,∵PH=3AH,∵HN∵OQ,QH=HP,∵ON=NP,∵HN是∵PQO的中位线,∵ON=PN=8﹣t,∵∵MAH=∵PHN=90°﹣∵AHM,∵PNH=∵AMH=90°,∵∵HMA∵∵PNH,∵===,∵HN=3AM=3t,∵MH=MN﹣NH=8﹣3t,∵PN=3MH,∵8﹣t=3(8﹣3t),∵t=2,∵OP=2ON=2(8﹣t)=12,∵P(12,0).如图3中,过点H作HI∵y轴于I,过点P作PN∵x轴交IH于N,延长BA交IN于M.同法可证:∵AMH∵∵HNP,∵===,设MH=t,∵PN=3MH=3t,∵AM=BM﹣AB=3t﹣8,∵HI是∵OPQ的中位线,∵OP=2IH,∵HIHN,∵8+t=9t﹣24,∵t=4,∵OP=2HI=2(8+t)=24,∵P(24,0).∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM∵OC于M,过D点P作PN∵MH于N.∵MH是∵QAC的中位线,∵MH=AC=4,同法可得:∵HPN∵∵QHM,∵===,∵PN=HM=,∵OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∵3t=8﹣,∵t=,∵OP=MN=4+t=,∵点P的坐标为(,0).如图5中,QH=3PH,过点H作HM∵x轴于M交AC于I,过点Q作QN∵HM于N.∵IH是∵ACQ的中位线,∵CQ=2HI,NQ=CI=4,同法可得:∵PMH∵∵HNQ,∵===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∵3t=8+,∵t=,∵OP=OM﹣PM=QN﹣PM=4﹣t=,∵P(,0).∵如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM∵y轴于于点M,交AB于I,过点P作PN∵HM于N.∵HI∵x轴,AH=HP,∵AI=IB=4,∵PN=IB=4,同法可得:∵PNH∵∵HMQ,∵===,∵MH=3PN=12,HI=MH﹣MI=4,∵HI是∵ABP的中位线,∵BP=2IH=8,∵OP=OB+BP=16,∵P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年浙江省金华市中考数学试卷一、选择题(共10小题)1.(2012金华市)﹣2的相反数是()A.2B.﹣2C.D.考点:相反数。

解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.2.(2012金华市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图。

解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.3.(2012金华市)下列计算正确的是()A.a3a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

解答:解:A、a3a2=a3+2=a5,故此选项错误;B、a2和a4不是同类项,不能合并,故此选项错误;C、(a3)2=a6,故此选项正确;D、(3a)2=9a2,故此选项错误;故选:C.4.(2012金华市)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间考点:估算无理数的大小;算术平方根。

解答:解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选C.5.(2012金华市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A.﹣4和0B.﹣4和﹣1C.0和3D.﹣1和0考点:解一元一次不等式组;不等式的解集。

解答:解:,由②得,x>﹣2,故此不等式组的解集为:﹣2<x<2,x=﹣4,﹣1,0,3中只有﹣1、0满足题意.故选D.6.(2012金华市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2B.3C.4D.8考点:三角形三边关系。

解答:解:由题意,令第三边为X,则5﹣3<X<5+3,即2<X<8,∵第三边长为偶数,∴第三边长是4或6.∴三角形的三边长可以为3、5、4.故选:C.7.(2012金华市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.12考点:平移的性质。

解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选;C.8.(2012金华市)下列计算错误的是()A.B.C.D.考点:分式的混合运算。

解答:解:A、,故本选项错误;B、,故本选项正确;C、=﹣1,故本选项正确;D、,故本选项正确.故选A.9.(2012金华市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.B.C.D.考点:列表法与树状图法。

解答:解:将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.故选B.10.(2012金华市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④考点:二次函数综合题。

解答:解:∵①当x>0时,利用函数图象可以得出y2>y1;∴此选项错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴②当x<0时,根据函数图象可以得出x值越大,M值越大;∴此选项错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;∴③使得M大于2的x值不存在,此选项正确;∵使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,当y2=2x+2=1,解得:x=﹣,由图象可得出:当x=>0,此时对应y2=M,∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),∴当﹣1<x<0,此时对应y1=M,故M=1时,x1=,x=﹣,故④使得M=1的x值是或.此选项正确;故正确的有:③④.故选:D.11.(2012金华市)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法。

解答:解:x2﹣9=(x+3)(x﹣3).12.(2012金华市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.考点:平行线的性质;余角和补角。

解答:解:∵∠1=40°,∴∠3=180°﹣∠1﹣45°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.13.(2012金华市)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是90分,众数是90分.考点:众数;折线统计图;中位数。

解答:解:观察折线图可知:成绩为90的最多,所以众数为90;这组学生共10人,中位数是第5、6名的平均分,读图可知:第5、6名的成绩都为90,故中位数90.故答案为:90,90.14.(2012金华市)正n边形的一个外角的度数为60°,则n的值为6.考点:多边形内角与外角。

解答:解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.15.(2012金华市)近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为22.考点:算术平均数。

解答:解:根据平均数的求法:共5个数,这些数之和为:11+13+15+19+x=16×5,解得:x=22.故答案为:22.16.(2012金华市)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;(2)当AB为梯形的腰时,点P的横坐标是2.考点:圆周角定理;等边三角形的性质;梯形;解直角三角形。

解答:解:(1)如图1:当AB为梯形的底时,PQ∥AB,∴Q在CP上,∵△APQ是等边三角形,CP∥x轴,∴AC垂直平分PQ,∵A(0,2),C(0,4),∴AC=2,∴PC=AC•tan30°=2×=,∴当AB为梯形的底时,点P的横坐标是:;(2)如图2,当AB为梯形的腰时,AQ∥BP,∴Q在y轴上,∴BP∥y轴,∵CP∥x轴,∴四边形ABPC是平行四边形,∴CP=AB=2,∴当AB为梯形的腰时,点P的横坐标是:2.故答案为:(1),(2)2.17.(2012金华市)计算:|﹣2|+(﹣1)2012﹣(π﹣4)0.考点:实数的运算;零指数幂。

解答:解:原式=2+1﹣1,(4分)=2. (6)18.(2012金华市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(不添加辅助线).考点:全等三角形的判定。

解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.19.(2012金华市)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有16万人到市图书馆阅读,其中商人所占百分比是12.5%,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?考点:条形统计图;用样本估计总体;扇形统计图。

解答:解:(1)4÷25%=16 2÷16×100%=12.5%(2)职工人数约为:28000×=10500人…(6分)20.(2012金华市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.考点:切线的判定;圆周角定理;弧长的计算。

解答:解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为.21.(2012金华市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.考点:反比例函数综合题。

解答:解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.22.(2012金华市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.考点:一次函数的应用。

相关文档
最新文档