电磁场课后习题第五章

合集下载

电磁场与电磁波 第五章答案

电磁场与电磁波 第五章答案

第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。

但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。

说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。

讲解恒定磁场时,应与静电场进行对比。

例如,静电场是无散场,而恒定磁场是无旋场。

在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。

重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。

3,I ⎰=⋅ll B 0d μ安培环路定律。

面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。

电磁场课后答案5

电磁场课后答案5

k1 sin θ B = k 2 sin θ 2

ε 2 k1 cosθ B = ε 1k 2 cosθ 2
cos θ 2 =

= 0, k z2 ε 1 − k z1 ε 2 = 0
ww w
Z 2 − Z 1 ωε 2 = k z2 Z 2 + Z1
− +
ωε 2
.k hd
k z1
对于 TM 模
ωε 1
所以
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
θ B = arccos
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
co
m
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2

μ1 = μ 2 ,θ B = arccos
ε1 + ε 2
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ρs
y =d
=0


ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠

电磁学第5章习题答案

电磁学第5章习题答案
子电流数目,然后沿环路L积分。
以 d为轴线, a为底 l
面作圆柱体,则
dl 线元所穿过的分子电流数目为 dl 线元所穿过的分子电流总强度为
V adl cos a dl
N nV na dl
IN nIa dl M dl
L m轨 B0
在力矩作用下,电子的角动量绕外磁场方向 进动。 由于进动,电子产生了附加磁矩.
太原理工大学物理系李孟春编写
不管电子轨道运动方向如何, 附加磁矩总与外磁场方向相反。
对自旋磁矩,外磁场也有同 样作用。
e
电子轨道平面 对顺磁质
角动量
m分 m
附加磁矩可以忽略
m轨
太原理工大学物理系李孟春编写
不与S相交——如A分子, 对∑I 无贡献。 整个为S所切割,即分子电流与S相交两次——如 B分子,对∑I 无贡献。 被L穿过的分子电流,即与S相交一次——如C分 子,对∑I 有贡献。
太原理工大学物理系李孟春编写
在闭合环路上取线元为 d,计算该线元所穿过的分 l
金属有:锂、钠、铂、铝;非金属有:氧; 化合 物有:氧化铜、氯化铜、氧化钾 等 抗磁质:磁介质在磁化过程中,磁介质所产生 的附加磁场与外磁场相反。 金属有:汞、铜、锌、金、银;非金属有:硫、 碳、氮等;化合物有:水、二氧化碳、氧化钠、 硫酸 等
太原理工大学物理系李孟春编写
二、顺磁质的磁化 1.顺磁质分子结构特征:分子的固有磁矩不为零 即:无外磁场时, m分 0
B B0 B' B0与B' 反方向, B' B0
采用一些物理量来定量描述磁介质在外场中的磁 化行为。
不论顺磁质还是抗磁质,在外磁场中的磁化 微观机制不同,但宏观上有共同之处。

电磁场与电磁波课后习题解答(第五章)

电磁场与电磁波课后习题解答(第五章)

习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。

导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。

当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为 2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。

也可以用静电能计算。

在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+= 移动点电荷Q 到无穷远处以后,系统的静电能为零。

因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。

5.2 一个点电荷放在直角导体部(如图5-1),求出所有镜像电荷的位置和大小。

解:需要加三个镜像电荷代替 导体面上的感应电荷。

在(-a ,d ) 处,镜像电荷为-q ,在(错误!无效。

镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。

5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为 ]2)22(2[04R D DRq D D qR Q q F--+=επ 其中D 是q 到球心的距离(D >R )。

证明:使用镜像法分析。

由于导体球不接地,本身又带电Q ,必须在导体球加上两个镜像电荷来等效导体球对球外的影响。

在距离球心b=R 2/D 处,镜像电荷为q '= -Rq/D ;在球心处,镜像电荷为D Rq Q q Q q /2+='-=。

大学物理习题电磁学。

大学物理习题电磁学。

第五章 电磁感应 电磁场习 题1. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)-(D)的☜--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]2. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]3.半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ ]4.磁场B 中,另一半位于磁场之外,如图所示.磁场B 应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱.5. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB (C) t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ωt |. [ ]6. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭头所示.(B) 螺线管右端感应呈S 极. (C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]7. 如图所示,导体棒AB 在均匀磁场B中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ′ 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B点. [ ]8. 势与原电流I的方向相反.(A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出.9. 用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为d B /d t =_______________________________. 10. 一段导线被弯成圆心在O 点、半径为R 的三段圆弧ab 、bc 、ca ,它们构成了一个闭合回路,ab 位于xOy 平面内,bc 和ca 分别位于另两个坐标面中(如图).均匀磁场B 沿x 轴正方向穿过圆弧bc 与坐标轴所围成的平面.设磁感强度随时间的变化率为K (K >0),则闭合回路abca 中感应电动势的数值为______________;圆弧bc 中感应电流的方向是_________________. 11. 磁换能器常用来检测微小的振动.如图,在振动杆的一端固接一个N 匝的矩形线圈,线圈的一部分在匀强磁场B中,设杆的微小振动规律为x =A cos ω t ,线圈随杆振动时,线圈中的感应电动势为_______________________. 12. 在国际单位制中,磁场强度的单位是__________.磁感强度的单位是______,用H B ⋅21表示的单位体积内储存的磁能的单位是__________.13. 半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 _________________________________.14. 在一马蹄形磁铁下面放一铜盘,铜盘可自由绕轴转动,如图所示.当上面的磁铁迅速旋转时,下面的铜盘也跟着以相同转向转动起来.这是因为____________________________________________________________________.xx×××15. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc=L ),位于xy 平面中;磁感强度为B 的匀强磁场垂直于xy 平面.当aOc 以速度v 沿x 轴正向运动时,导线上a 、c两点间电势差U ac =____________;当aOc 以速度v 沿y轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.16. 金属杆AB 以匀速v =2 m/s 平行于长直载流导线运动,导线与AB 共面且相互垂直,如图所示.已知导线载有电流I = 40 A ,则此金属杆中的感应电动势i ε =____________,电势较高端为______.(ln2 = 0.69)17. 两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求x =NR 时(N 为正数)小线圈回路中产生的感应电动势的大小.18. 如图所示,真空中一长直导线通有电流I (t ) =I 0e -λt(式中I 0、λ为常量,t 为时间),矩形导线框与长直导线平行共面,二者相距a线框的滑动边与长直导线垂直,它的长度为b以匀速v (方向平行长直导线)自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势i ε并讨论i ε19. 一导线弯成如图形状,放在均匀磁场B 中,B的方向垂直图面向里. ∠bcd =60°,bc =cd =a .使导线绕轴OO '旋转,如图,转速为每分钟n 转.计算i εOO '.20.一球形电容器, 内导体半径为R 1,外导体半径为R 2.两球间充有相对介电常数为εr 的介质. 在电容器上加电压,内球对外球的电压为 U = U 0sin ωt .假设ω不太y x ×× ×××I (t ) vB大,以致电容器电场分布与静态场情形近似相同,求介质中各处的位移电流密度,再计算通过半径为r (R 1 < r < R 2) 的球面的总位移电流. 21. 如图所示,一电荷线密度为λ的长直带电线(形线圈共面并与其一对边平行)以变速率v =v (t )度方向运动,正方形线圈中的总电阻为R ,求t 圈中感应电流i (t )的大小(不计线圈自身的自感).22. 如图所示,一长直导线通有电流I ,其旁共面地放置一匀质金属梯形线框abcda ,已知:da =ab =bc =L 边与下底边夹角均为60°,d 点与导线相距l 止开始自由下落H 共面,求: (1) 下落高度为H 少?(2) 电势差为多少?23. 如图所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内,以恒定的速度v 沿与棒成θ角的方向移动.开始时,棒的A 端到导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高. 24. 如图所示,在竖直面内有一矩形导体回路abcd 置于均匀磁场B 中,B的方向垂直于回路平面,abcd 回路中的ab 边的长为l ,质量为m ,可以在保持良好接触的情况下下滑,且摩擦力不计.ab 边的初速度为零,回路电阻R 集中在ab 边上. (1) 求任一时刻ab 边的速率v 和t 的关系; (2) 设两竖直边足够长,最后达到稳定的速率为若干?I a b。

电磁场与电磁波(第4版)第5章部分习题参考解答

电磁场与电磁波(第4版)第5章部分习题参考解答

电磁场与电磁波(第4版)第5章部分习题参考解答GG5.1 在自由空间中,已知电场E(z,t)=ey103sin(ωt?βz)V/m,试求磁场强度G H(z,t)。

解:以余弦为基准,重新写出已知的电场表示式GπGE(z,t)=ey103cos(ωt?βz?V/m 2这是一个沿+z方向传播的均匀平面波的电场,其初相角为?90D。

与之相伴的磁场为G1GG1GGπH(z,t)=ez×E(z,t)=ez×ey103cos(ωt?βz?η0η023πG10G=?excos(ωt?βz?)=?ex2.65sin(ωt?βz) A/m120π25.2 理想介质(参数为μ=μ0、ε=εrε0、ζ=0)中有一均匀平面波沿x方向传播,已知其电场瞬时值表达式为GGE(x,t)=ey377cos(109t?5x) V/m GG试求:(1) 该理想介质的相对介电常数;(2) 与E(x,t)相伴的磁场H(x,t);(3) 该平面波的平均功率密度。

G解:(1) 理想介质中的均匀平面波的电场E应满足波动方程G2G?E?2E?με2=0 ?tG据此即可求出欲使给定的E满足方程所需的媒质参数。

方程中2G?EyGGG229et?5x) ?E=ey?Ey=ey=?y9425cos(102?xG22?EG?EyG18937710cos(10eet?5x) ==?×yy22 ?t?x 故得?9425cos(109t?5x)+με*377×1018cos(109t?5x)+=0即9425με==25×10?18 18377×10故25×10?18εr==25×10?18×(3×108)2=2.25 μ0ε0其实,观察题目给定的电场表达式,可知它表征一个沿+x方向传播的均匀平面ω109波,其相速为vp===2×108m/s k5而vp====3×108 3故εr=()2=2.25 2GGGGG(2) 与电场E相伴的磁场H可由?×E=?jωμ0H求得。

电磁场与电磁波(西安交大第三版)第5章课后答案解析

电磁场与电磁波(西安交大第三版)第5章课后答案解析

第五章 习题5.1如图所示的电路中,电容器上的电压为)(t u c ,电容为C, 证明电容器中的位移电流等于导线中的传导电流。

解:设电容器极板面积为S ,电容器中的位移电流为D i ,传导电流为c i c C C S D D i tu C t C u t q t S t D S SJ i =∂∂=∂∂=∂∂=∂∂=∂∂==)(ρ5.2由麦克斯韦方程组推导H满足的波动方程。

解:解:对麦克斯韦的旋度方程tE J H ∂∂+=⨯∇ε两边取旋度得tEJ H ∂∂⨯∇+⨯∇=⨯∇⨯∇ε上式左边利用矢量恒等式A A A 2∇-⋅∇∇=⨯∇⨯∇,并考虑到0=⋅∇H ,上式右端代入麦克斯韦方程t HE ∂∂-=⨯∇μ,得J tH H ⨯-∇=∂∂-∇222με5.3 在线性、均匀,各向同性的导电媒质中,证明),(t r H满足下列方程0222=∂∂-∂∂-∇t H tH H μσμε 解:在线性、均匀,各向同性的导电媒质中,麦克斯韦旋度方程为tE E H ∂∂+=⨯∇εσ两边取旋度得tEE H ∂∂⨯∇+⨯∇=⨯∇⨯∇εσ上式左边利用矢量恒等式A A A 2∇-⋅∇∇=⨯∇⨯∇,并考虑到0=⋅∇H ,上式右端代入麦克斯韦方程t HE ∂∂-=⨯∇μ,得0222=∂∂-∂∂-∇t H tH H σμμε 5.4 在11,με和22,με两种理想介质分界面上z E y E xE E z y x ˆˆˆ0001++=z H y H xH H z y x ˆˆˆ0001++=求22,H E。

题5.4图解:由两种理介质分界面的边界条件 t t E E 21= n n E E 2211εε= t t H H 21= n n H H 2211μμ=得 z E y E xE E z y x ˆˆˆ021002εε++= ,z H y H x H H z y x ˆˆˆ021002μμ++=5.5在法线方向为x nˆˆ=的理想导体面上 t J y t J zJ y z S ωωcos ˆsin ˆ00-=求导体表面上的H。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 5 章 恒定磁场
3-1四条平行的载流 I 无限长直导体垂直地通过一边长为 a 的正方形定点,求正
方形中心点P处的磁感应强度值。
解:利用无限长直导线,若有线电流 I 通过,在真空中产
生的磁感应强度为
B 0I 2
再利用叠加定理可求出四条平行载流长直导线载 P点所产生的 磁感应强度。 由右手螺旋法则,可以判断出其方向如图所示 垂直向下,大小为
心连线为x的正方向,则P点的磁感应强度应为两圆柱各自在P点产生的磁感应强 度的矢量和
u v u u v u u v B B 1 B 2 B 1 x B 2 x B 1 y B 2 y
0 2 J 0 [ ( 1 s i n 1 2 s i n 2 ) e v x (1 c o s 1 2 c o s 2 ) e v y ]
中 0。
解:⑴由于两个无限大电流片的电流方
向相反,因此在区域①,③内
H1 H3 0 B1 B3 0 M1 M3 0
在区域②内
B u u v 2B u u v 2B u u v 2 2 K e u u v y2 K e u u v y
u u v
u u v
0 . 9 9 8 0 8 0 e y 1 0 0 . 9 1 0 6 e yT
3-4 真空中由一厚度为d 的无限大载流(均匀密度 J 0 e z )平板,在其中心位置由
一半径等于 a 的圆柱形空洞,如图所示。求各处的磁感应强度。
uuv 解: 与上题思路相同,假设空洞中存在 J 0 e z 和
uuv (J0ez ) 的电流,求各点处的磁感应强度可视为
uuv 一个无限大均匀载流 J 0 e z 的平板与一个载流为
uuv (J0ez ) 的无限长直圆柱各自在该处产生的磁感
应强度的矢量和。
vv JJ0ez 的无限大平板在该点产生的磁感应强度,可以利用安培环路定律求出
u uv
0J 0d
v ex
2v
B1 0J0yex
0J 0d
v ex
2
uuv
y d 2
d y d
2
2
yd 2
有 JJ0ez 的无限长直圆柱产生的磁感应强度,也可利用安培环路定律求出
uuv B2
0 J0a2
2(x2 y2 )
0J0 [
2
[ yex xey yex xey ]
]
a a
各处的场强为它们的矢量和
uv uuv uuv BB1B2
uuv uuv 3-5 一电流密度为 KK0ez的无限大电流片,置于 x 0 平面,如取 Z 0
uuv v
Ñ 平面上半径为 a 的一个圆为积分回路,求 Hgdl l
uuv
uuuv H2
B2
uuv 80ey
A
/
m
M uuuv 2B uuv 2H uuuv 20.16euuv y A / m
⑵在区域①,③内与上面的结论一致,在区域②内
uuuv H2
uuv B2
uuv 80ey
A/m
u u v u u u v
u u v u u v
B 2 H 2 1 0 0 0 0 8 0 e y 0 . 1 0 0 5 e y T
Ñ SB u v g d S v 0SJ v d S v
2B1=0J012
B1=
0
J0 2
1
其方向用右手螺旋法则判断,它以大圆柱轴线为中心, 1 为半径圆环的切线方
向。对半径为 a 的小圆柱,在空洞内P点所产生的磁感uv 其方向也由右手螺旋法则判断,只是电流沿( e z ) 方向。若设大圆柱与小圆柱中
解: 利用安培环路定律
uuv v
Ñ lHgdlI
u u vv
Il(kg en)d l 2 a K 0
u u vv
Ñ lH g d l2 a K 0
uv uuv u uv 3-6 如图所示的两个无限大电流片,试分别确定区域①、②、③中的 B ,H ,M 。
设已知:⑴所有区域中 r 0.998 ;⑵区域②中 r 1000,区域①、③
M u u u v 2 B u u v 2 H u u u v 2 1 0 0 0 8 0 e u u v y 8 0 e u u v y 7 9 9 2 0 e u u v y A / m 0
uuv 3-7半径为 a ,长度为 l 的圆柱,被永久磁化到磁化强度为 M 0 e z ( Z 轴
B40I cos45o20I
2a
a
3-2 真空中,在 z 0 平面上的 0x10和 y 0 范围内,有以线密度
K500eyA/m均匀分布的电流,求在点(0,0,5)所产生的磁场感应强度。
解: 如图所示,选择dI kdx ,视为半
无 线长直导线,它在P点产生的磁感应强度的 大小为
dB10dI 0Kdx 2 2 4
其中 x2 52 。由右手螺旋法则可判断d B 的方向,并将分解为x方向和z
方向两个分量
dBxdBcos45 (x20 K52)dx
dBzdBsin4(x02K x52)dx
利用叠加定理,P点的磁感应强度的x分量和z分量分别为
Bx
10 0
45(x20K52)dx
Bx 01045(x20K52)dx
540K15arctan5x100 40Karctan244.10T
Bz 0104(xK 2x52)dx320T
u v u u v u u v
B 0 ( 4 4 .1 e x 3 2 e z) T
v 3-3 真空中一通有电流(密度 J J0ez )、半径为 b 的无限长圆柱内,有一半径
uv
为a 的不同轴圆柱形空洞,两轴之间相距 d ,如图所示。求空洞内任一点的B
0 2 J 0 [ ( 1h 12h 2 ) e v x (1x 1 12x 1 2 )e v y ]
B u v0 2 J0(x1x2)e v y0 2 J0de v y
式中为P点到x轴的垂直距离,x 1 为 1 到x轴上的投影,x 2 为 2 在x轴上的投影,
d 为两圆柱轴线的距离。
uuv
解: 若假设空洞处有一大小同为J ,但流向
u uv
uuv
分别为 e z 方向和 ( e z ) 方向的电流,这样
可将此问题视为半径为 b 的无限长圆柱内整
体载有电流 J 0 e z 和半径为 a 的无限长圆柱内 uuv
载有电流 (J0ez ) 的两个圆柱在P点产生的
磁感应强度的叠加。
利用安培环路定律,半径为b 的大圆柱在空洞内P点产生的磁感应强度大小为
相关文档
最新文档