影响微生物生物降解的因素

合集下载

有关污染物生物降解的不利因素

有关污染物生物降解的不利因素

有关污染物生物降解的因素影响微生物生物降解的因素主要有微生物的特性、污染物的特性、环境的影响。

一、微生物的特性。

1、共代谢。

对污染物的降解是建立在其能为微生物提供生长所需的基本条件,然而许多污染物由于成分比较单一,能够提供的营养物质较为狭窄。

加之微生物缺乏许多污染物降解所需的酶系,微生物在这环境下缺乏生长的基本条件,这就需要多种微生物共同参与,进行优势互补,也即共代谢。

然而这同样增加了污染物的降解难度。

2、微生物可能受到环境和污染物的毒害。

比如氰类、重金属、蛋白质及核酸结构类似物,这些都会对微生物产生毒害,造成微生物结构变异,细胞结构遭到破坏,微生物间通信遭到阻断,有些物质会抑制酶的活性或使酶的活性丧失,导致大量微生物死亡甚至整个物种的灭绝,在一定程度上造成污染物的难降解。

3、微生物的变异可靠性较低。

微生物具有很强的适应能力,不利的环境会对微生物的变异进行自然选择,这样会使有利的变异得到扩大。

而微生物的变异不具有方向性,所有方向的变异率相等,即优利的变异所占的概率是很小的,变异不可能保障有利的情况一定会出现。

可靠性的低下结合污染物的复杂性,使微生物向分解污染物方向的变异变得举步维艰,极大地影响了微生物对污染物的生物降解。

二、污染物的特性。

1、污染物有些时候无法接触到微生物或者只能接触微生物的表面。

我们知道许多工业产物、有机合成物、生活物品等其结构中就含有抑制微生物生长的物质,或者其表面的防护物质直接将微生物阻止在污染物表面,这样污染物与微生物处在两个系统之中,无法接触也使微生物无法对污染物产生作用。

2、污染物的化学结构的多样性和复杂性给微生物对其的降解产生了极大的难度。

污染物中最难降解的有机物可以很清晰的说明这个问题。

有机物链的长短、链的稳定性、基团的复杂性及稳定性,侧链的位置多样性,都会对微生物的降解产生影响。

3、污染物的浓度也会影响微生物的活动。

我们知道微生物的生长是必须依赖于一定的物质浓度,浓度过高或过低都不利于微生物的生长。

生物降解技术的步骤

生物降解技术的步骤

生物降解技术的步骤生物降解技术是指利用微生物或其代谢产物降解有机废弃物的一种方法。

它通过利用微生物的各种代谢能力,将有机废弃物转化为水、二氧化碳、有机酸和其他无毒物质,在没有对环境造成污染的同时,也能获取能源和有机肥料。

下面是生物降解技术的基本步骤及流程:1.鉴定废弃物的组成和特性:首先,需要了解废弃物的组成和特性,以确定是否适合进行生物降解。

包括了解废弃物的化学成分、颗粒大小、含水率、酸碱性等因素。

2.选择适当的微生物:根据废弃物的成分和特性来选择合适的微生物。

常用的微生物包括细菌、真菌和酵母等。

选择微生物的关键是考虑其能够分解废弃物的能力和适应性。

3.制备培养基:根据所选微生物的需求制备合适的培养基。

培养基应包含养分和有机废弃物,以提供微生物生长所需的营养物质。

4.建立培养条件:根据所选微生物的最适生长条件调节环境因素,包括温度、pH值、氧气浓度等。

保持适宜的生长条件有利于微生物的繁殖和降解过程。

5.培养微生物:将所选的微生物接种到培养基中,并进行培养。

可以选择批量培养或连续培养的方法,视废弃物的量和降解的需要而定。

6.开展降解实验:实验过程中需要进行监测和调整,确保微生物可以有效地降解有机废弃物。

可以通过测量废弃物的降解率、有机物浓度和微生物数量等来评估降解效果。

7.优化降解条件:在实验过程中,可以对培养条件进行调整,以优化降解效果。

可以适当增加营养物质浓度、调节环境温度和pH值等。

8.观察和分析:通过实验得到的结果,观察微生物对废弃物的降解情况。

可以使用化学分析方法来测定废弃物中各种化学成分的浓度和变化,以评估降解效果。

9.将技术推广应用:在实验得到满意的结果后,可以将该技术进一步推广应用。

可以将降解技术用于大规模废弃物处理,例如污水处理、生活垃圾处理等。

10.监测和控制:在技术应用过程中,需要对微生物降解过程进行监测和控制。

可以通过监测废弃物的降解率、微生物的数量和活性来控制降解过程。

论影响微生物降解石油烃类物质的因素

论影响微生物降解石油烃类物质的因素

许多因素都会对石油烃的降解产生影响 , 它们不仅影
响微生物的数量并且对石油烃各成分的微生物利用度产生
C P及 CN。O ii i / / l e 等在 1 7 br 9 6年报道添加营养物质使海
洋 中石油烃的降解率 比没有投加营养物质时增加 2%。 3 虽
然一般经验都说 明施肥能促进 土壤 中石油的生物 降解 , 但 有些研究者的研究结果表明 , 有时加入氮磷等营养物质并
HO F U Ke a ( i lcec fh nvri f agz vr olg 3 0 0 Anmasi eo teU i syo Y n te e l e 4 2 ) n e t Ri c e 4
Ab t a t I e e ty a s a p l ai n m ir o g nim r c s i g c e sr o l t n a p c e e o me tv r u c ,, sr c : n r c n e r , ta p it o c o r a s p o e sn h mi y p l i s e td v lp n ey q ik c t u o
在一些被其他研究者所质疑的问题 , 如有的在时间上没有
能够持续较长久 以使添加的营养的效果显示 出来 , 有的同 时添加 了有机营养和无机营养 , 使结果难 以解释 。因为 在 有的情况下 , 有机营养的加入反而抑制 了微生物对有机 污 染物 的生物降解 , 这是由于有机 营养物可能 比有机污染物 更容易被微生物利用 。总之 , 添加氮磷对土壤 中石油污染 物 的生物降解的影 响是复杂的 , 需要进行更深入更系统的 研究 。另外 , 其他一些大量元素如铁 、 、 镁 钾等和一些微量 元素对微生物的降解作用也会有相应的影响。

高分子材料的生物降解性能与机理

高分子材料的生物降解性能与机理

高分子材料的生物降解性能与机理随着全球对环境保护意识的增强,对可持续发展的需求也日益迫切。

高分子材料的生物降解性能成为了一个备受研究关注的热点。

本文将探讨高分子材料的生物降解性能与机理。

一、生物降解性能的定义与重要性生物降解性是指高分子材料在自然环境中被微生物、酶或其他生物体分解为较小的分子,最终转化为无害的物质。

与传统的塑料材料相比,具有良好生物降解性能的高分子材料能够有效减少对环境的污染,并且能够循环利用,具有重要的经济和环境意义。

二、高分子材料的生物降解机理高分子材料的生物降解机理主要包括微生物降解、酶降解和环境因素影响等。

1. 微生物降解微生物降解是指高分子材料通过微生物代谢途径被分解为小分子的过程。

微生物主要通过分泌酶来降解高分子材料,将其分解为低分子量的物质,再通过代谢途径进行进一步的降解。

不同类型的高分子材料对微生物的降解能力存在差异,一些高分子材料具有较好的微生物降解性能,而另一些则需要经过一定时间才能被微生物降解。

2. 酶降解酶降解是指高分子材料通过酶的作用被分解为小分子的过程。

酶是一种催化剂,能够加速高分子材料的降解速度。

酶降解主要通过酶的剪切作用或水解作用将高分子链断裂,使高分子材料分解为低分子量的产物。

不同类型的酶对高分子材料的降解能力也存在差异,因此选择适合的酶对高分子材料的降解具有重要意义。

3. 环境因素影响环境因素对高分子材料的生物降解性能也具有重要影响。

温度、湿度、氧气浓度等环境因素都会影响微生物和酶的活性,从而影响高分子材料的降解速度。

一般来说,较高的温度和湿度以及充足的氧气能够促进高分子材料的降解,而干燥和低温环境则会降低降解速度。

三、提高高分子材料的生物降解性能的方法为了提高高分子材料的生物降解性能,研究者们采取了多种方法。

1. 添加生物降解助剂生物降解助剂是一种能够加速高分子材料降解的添加剂。

通过添加生物降解助剂,可以改变高分子材料的结构和性质,使其更易于被微生物或酶降解。

典型有机物的生物降解

典型有机物的生物降解
脂肪酸和甘油可以被各种微生物分解。微生物通过β-氧化途径将脂肪酸分解为 乙酰CoA和其它代谢产物。甘油则被氧化为丙酮酸,进一步代谢为能量或合成 其他物质。
蜡质的生物降解
蜡质是一种长链脂肪酸,可被某些微生物分解。这些微生物产生蜡质酶,将蜡 质分解为长链脂肪酸和醇。
蛋白质及其生物降解
氨基酸的生物降解
氨基酸是蛋白质的基本组成单位,可被各种微生物分解。微生物将氨基酸分解为氨、相应的酮酸和能 量。氨可以进一步代谢为尿素或其他含氮化合物。
要点三
3. 微生物修复技术
微生物修复技术主要包括原位修复和 异位修复两种方法。原位修复是将修 复剂直接施加到污染土壤中,而异位 修复则是将污染土壤转移至修复场地 进行处理。两种方法均可有效修复石 油污染土壤。
案例三:石油污染土壤的微生物修复
4. 影响因素
影响微生物修复效果的因素包括温度、湿度、pH值、氧 气供应、营养物质等。在修复过程中,需要控制这些因 素以获得最佳的修复效果。
蛋白质的生物降解
蛋白质可以被各种微生物分解。微生物通过蛋白酶将蛋白质分解为肽和氨基酸,进一步代谢为能量或 合成其他物质。
其他有机物及其生物降解
核酸的生物降解
核酸(DNA和RNA)可以被核酸酶分解为核苷酸和磷酸。核苷酸则被分解为碱 基、五碳糖和磷酸。这些基本组成单位进一步代谢为其他物质。
木质素的生物降解
案例三:石油污染土壤的微生物修复
要点一
1. 石油污染的来源和 危害
石油污染主要来源于石油泄漏、石油 开采、炼油厂排放等。石油污染会导 致土壤结构破坏、土壤肥力下降、植 物生长受阻等问题,对生态环境和人 类健康造成严重影响。
要点二
2. 微生物修复原理
微生物修复是一种有效的石油污染土 壤修复技术。通过添加营养物质和调 节环境条件,促进能够分解石油的微 生物的生长和繁殖,从而加速石油的 分解和转化。

污水处理中的生物降解过程

污水处理中的生物降解过程
溶解氧
溶解氧是影响好氧生物处理过程的关键因素。充足的溶解氧有利于好氧微生物的生长和有机物的降解。 在缺氧或厌氧条件下,微生物通过不同的代谢途径完成有机物的降解。
05 生物降解的应用
城市污水处理
城市污水主要来源于居民生活、商业活动和公共设施等产生的废水。生物降解技 术通过微生物的作用,将有机物转化为稳定的无机物,实现污水的净化。
有机物浓度与组成
有机物浓度
有机物浓度的高低直接影响微生物的生长和代谢速率。在一 定范围内,有机物浓度越高,微生物的降解速率越快。但过 高的有机物浓度可能导致微生物活性降低甚至中毒。
有机物组成
不同有机物的降解难易程度不同。复杂的有机物往往需要更 长时间和更多微生物的参与才能完成降解。了解有机物的组 成,有助于选择合适的生物处理工艺和优化降解条件。
有机物的溶解与转化
总结词
可溶性小分子有机物在溶解状态下被微生物摄取,经过一系列的代谢过程转化为能量、细胞物质和其 他中间产物。
详细描述
微生物通过细胞膜摄取溶解状态的小分子有机物,进入细胞内进行代谢。在代谢过程中,这些有机物 被氧化或还原,转化为能量、细胞物质和其他中间产物。这个过程是由微生物的酶促反应完成的,是 生物降解过程的核心环节。
厌氧微生物对废水中有机物的降解主要通过细胞内的酶催化完成,降解产物主要为 甲烷和二氧化碳。
厌氧微生物通常用于处理有机物含量较低、含氮磷较高的废水,如畜禽养殖废水和 生活污水等。
兼性微生物
兼性微生物既能在有氧环境中生长,也能在无氧 环境中生长,如大肠杆菌、酵母菌等。
兼性微生物对废水中有机物的降解既可以通过好 氧呼吸作用,也可以通过厌氧呼吸作用。
城市污水处理厂是生物降解技术的重要应用场所,通过生物反应池、沉淀池等设 施,去除污水中的悬浮物、有机物、氮、磷等污染物,使出水达到排放标准或回 用标准。

微生物降解农药

微生物降解农药

摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。

文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。

关键词:微生物生物降解农药降解农药20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。

因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。

仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。

化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。

农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。

同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。

农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。

因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。

这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。

实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。

但自然环境复杂多变,影响着农药生物降解的可否和效率。

近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。

有机磷农药的微生物降解

有机磷农药的微生物降解

有机磷农药的微生物降解摘要:现今农业发展过程中应用最普遍,种类最多的农药是有机磷农药,虽然原有的降解有机磷农药的化学、物理方法亦收到良好效果,但随着生物技术的卓越发展,微生物对降解农药尤其是有机磷农药发挥着日益重大的作用。

针对有机磷农药的微生物降解问题提出看法,希望促进农业的现代化发展。

关键词:有机磷农药微生物微生物源酶降解中图分类号:x592 文献标识码:a 文章编号:1007-3973(2013)004-089-02自1960年以来,众多国家开始限制、禁止使用有机氯农药,其逐步被有机磷农药所替代,有机磷农药具有广谱、高效等众多优点,但是随着农业的卓越发展,其被过多使用,产生的负面效应也日益突显,其不仅污染了水资源,而且致使残留在众多农产品中的农药严重超标,食品污染现象十分严重,最终威胁了人类的生存、发展,继而不利于社会的全面、协调与可持续发展。

至此,保护环境的时代背景下,有机磷农药的微生物降解问题备受世人关注,探究如何充分发挥微生物对降解有机磷农药的作用已成为环境保护的重大课题。

1 降解有机磷农药的微生物品种概述当前,我们主要是从被污染的环境介质(例如:被污染的泥土、土壤)中来获取高效降解菌。

现在人们已经分离出的对有机磷农药降解有良好效果的微生物菌群主要有真菌、细菌、放线菌及一些藻类。

真菌基于其较高的降解能力,人们十分关注,主要有:木霉属、曲霉属、酵母菌及青霉属等。

颜世雷等有关人员经过长时间的摇床驯化培养从被污染的土壤里筛选得到2株曲霉菌株,其能够在高浓度氧化乐果环境下生长。

当温度高达28℃时,其降解氧化乐果的比率高达70.38%及61.28%。

因为细菌具有容易引发突变菌株和生化多适应性的优点,故在微生物降解过程中它具有极高的地位。

目前已经分离出的细菌有:芽孢杆菌属、假单胞菌属、黄杆菌属、节杆菌属、不动杆菌属、沙雷氏菌属等。

例如:以解秀平为代表的有关人员从污水曝气池里分离出一株可以以甲基对硫磷以及其在降解过程中产生的对硝基苯酚是仅有的碳源的节杆菌属,其在5h内降解50mg/l的甲基对硫磷以及对硝基苯酚的比率达到85%与98%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响微生物生物降解的因素
生物工程072班韩轩 070302205 首先,我们应该明白生物降解是什么。

生物降解(Biodegradation)是微生物(也包括其它生物)对物质(特别是环境污染物)的分解作用。

它和传统的分解在本质上是一样的,但又有分解作用所没有的新的特征(如代谢,降解等),因此可视为分解作用的扩展和延伸。

从生物降解的定义我们可以明白,微生物的生长对生物降解有着至关重要的作用。

所以,我将从影响微生物生长的因素来讨论影响生物降解的因素。

影响微生物生长的因素最重要的是营养条件、温度、PH值、需氧量以及有毒物质。

1.营养条件
营养物对微生物的作用是:(1)提供合成细胞物质时所需要的物质;(2)作为产能反应的反应物,为细胞增长的生物合成反应提供能源;(3)充当产能反应所释放电子的受氢体。

所以微生物所需要的营养物质必须包括组成细胞的各种元素和产生能量的物质。

微生物种类繁多,各种微生物要求的营养物质亦不尽相同,根据对营养要求的不同,可将微生物分为特定的种类。

根据所需碳的化学形式,微生物可分为:(1)自养型;(2)异养型。

根据所需的能源,微生物可分为:(1)光营养型;(2)化能营养型。

2.温度对生物降解的影响
温度对微生物具有广泛的影响,不同的反应温度,就有不同的微生物和不同的生长规律。

从微生物总体来说,生长温度范围是0~80℃。

根据各类微生物所适应的温度范围,微生物可分为高温性(嗜热菌)、中温性、常温性和低温性(嗜冷菌)四类。

微生物的全部生长过程都取决于化学反应,而这些反应速率都受温度的影响。

在最低生长温度和最适温度范围内,若反应温度升高,则反应速率增快,微生物增长速率也随之增加,处理效果相应提高。

但当温度超过最高生长温度时,会使微生物的蛋白质变性及酸系统遭到破坏而失去活性,严重时蛋白质结构会受到破坏,导致发生凝固而使微生物死亡。

低温对微
生物往往不会致死,只有在频繁的反复结冰和解冻,才会使细胞受到破坏而死亡。

但是低温将使微生物的代谢活力降低,通常在5C以下,细菌的代谢作用就大大受阻,处于生长繁殖的停止状态。

3.PH值
微生物的生化反应是在酶的催化作用下进行的,酶的基本成分是蛋白质,是具有离解基团的两性电解质.PH值对微生物生张繁殖的影响体现在酶的离解过程中,电离形式不同,催化性质也就不同;此外,酶的催化作用还决定了基质的电离状况,PH值对基质电离状况的影响也进而影响到酶的催化作用。

一般认为PH值是影响酶的活性的最重要因素之一。

在生物降解过程中,一般细菌、真菌、藻类和原生动物的PH值适应范围在4~10之间。

细菌就大多数来讲在中性和弱碱性(pH=6.5~7.5)范围内生长最好,但也有的细菌如氧化硫化杆菌,喜欢在酸性环境中生存,其最适pH值为3,亦可在pH值1.5的环境中生存。

酵母菌和霉菌要求在酸性或偏酸性的环境中生存,最适pH值为3~6,适应范围为pH1.5~10之间。

由此可见,在生物降解中,保持微生物的最适pH范围是十分重要的。

否则,将对微生物的生长繁殖产生不良影响,甚至会造成微生物死亡,破坏生物降解的正常进行。

4.溶解氧
根据微生物对氧的要求,可分为好氧微生物、厌氧微生物及兼性微生物。

好氧微生物在降解有机物的代谢过程中以分子氧作为受氢体,如果分子氧不足,降解过程就会因为没有受氢体而不能进行,微生物的正常生长规律就会受到影响,甚至被破坏。

而厌氧微生物对氧气很敏感,当有氧存在时,它们就无法生长。

这是因为在有氧存在的环境中,厌氧微生物在代谢过程中由脱氢酶所活化的氢
将与氧结合形成H
2O
2
,而厌氧微生物缺乏分解H
2
O
2
的酸,从而形成H
2
O
2
积累,
对微生物细胞产生毒害作用。

所以使用厌氧微生物降解时要注意隔绝空气。

5.有毒物质
在被降解物质中有时存在着对微生物具有抑制和杀害作用的化学物质。

有毒物质对微生物的毒害作用,主要表现在使细菌细胞的正常结构遭到破坏以及使菌体内的酶变质,并失去活性。

有毒物质可分为:①重金属离子(铅、铜、铬、砷、铜、铁、锌等);②有机物类(酚、甲醛甲醇、苯、氯苯等);③无机物类(硫化物、氰化钾、氯化钠、硫酸根、硝酸根等)。

有毒物质对微生物产生毒害作用有一个量的概念,即达到一定浓度时显示出毒害作用,在允许浓度以内,微生物则可以承受。

由于某种有毒物质的毒性随pH值、温度以及其他毒物的存在等环境因素不同而有很大差异,或者毒性加剧,或者毒性减弱;另外,不同种类的微生物对同一种毒物的忍受能力也不同。

因此,对某一降解物进行生物降解时,要通过一定的实验来确定毒物的允许浓度。

综上所述,营养条件、温度、PH值、需氧量以及有毒物质影响微生物的生长,对生物降解有着很大的影响。

相关文档
最新文档