初三中考数学 实数及其运算
中考数学专题-实数的有关概念与计算-(解析版)

实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。
初三实数运算练习题及答案

初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。
1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。
中考数学总复习之实数及其运算、二次根式

中考数学总复习之实数及其运算、二次根式一、选择题(共27小题)1.(2022•丛台区校级三模)与﹣|﹣5|的结果相等的是()A.5的倒数B.﹣5的相反数C.5的相反数D.52.(2022•新华区校级四模)嘉琪同学在计算423−212+12+313时,运算过程正确且比较简便的是()A.(423+313)﹣(212+12)B.(423−212)+(12+313)C.(423+313)﹣(212−12)D.(423−313)﹣(12−212)3.(2022•丰南区一模)据报道,2021年河北省普通高考报考人数约为63.4万人,用科学记数法表示为a×10n人,则n=()A.4B.5C.6D.7 4.(2022•清苑区二模)神舟十三号飞船于2021年10月16日圆满发射成功,飞船搭载的一种高控制芯片探针面积为0.0000162cm2,0.0000162用科学记数法表示为()A.1.62×10﹣6B.1.62×10﹣5C.1.62×10﹣4D.0.162×10﹣6 5.(2022•路南区二模)用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.(2021•河北模拟)近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位7.(2022•青县一模)下列各数中绝对值最大的是()A.﹣5B.0C.﹣(﹣2)D.14 8.(2022•丛台区校级三模)如图,若点A在数轴上表示的数为x﹣2,则x的值可能是()A.1−√5B.1−√2C.√3−1D.√3 9.(2022•路南区三模)运算后结果正确的是()A.2√3÷12=√3B.√43=2C.√8−2√2=0D.√2×√6=3√210.(2022•保定一模)定义:形如a+bi的数称为复数(其中a和b为实数,i为应数单位.规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣5 11.(2022•丰南区二模)对于数字﹣2+√5,下列说法中正确的是()A.它不能用数轴上的点表示出来B.它比0小C.它是一个无理数D.它的相反数为2+√512.(2022•大名县三模)已知a,b是两个实数,满足a+b=0,下列是关于a,b 的五个结论:①a2+b2=0;②a2﹣b2=0;③a3+b3=0;④a3﹣b3=0;⑤|a|=|b|五个结论中,所有正确结论的序号是()A.②④⑤B.①④⑤C.②③⑤D.①③⑤13.(2022•石家庄三模)下面四个数中最小的数是()A.﹣2B.√2C.0×2022D.1÷2 14.(2022•馆陶县一模)已知a、b都是正整数,若√18=a√2,√8=2√b,则()A.a=b B.a<b C.a+b=4D.a﹣b=1 15.(2022•桥西区校级模拟)实数b>a>1.则下列各式中比ab的值大的是()A.2a2b B.a2b2C.a−1b−1D.a+1b+116.(2022•桥西区校级模拟)如图,数轴上的点B表示实数b,若实数a满足不等式b <a <﹣b ,则a 可能为( )A .﹣1B .﹣2C .2D .317.(2022•安次区一模)a 、b 为两个连续整数,若a <√10<b ,则√ab 的值为( )A .2√3B .±2√3C .√72D .±6√218.(2022•石家庄模拟)已知√7−1的整数部分是m ,小数部分是n ,则√7m ﹣n 的值是( )A .﹣2B .﹣1C .2D .119.(2022•丛台区校级模拟)如图,数轴上表示√20−5的点应在( )A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段DE 上20.(2022•广阳区一模)若a =√10,则实数a 在数轴上对应的点的大致位置是( )A .B .C .D .21.(2022•青县一模)已知√x −5√x +14√x =58.35,则x 的平方根为( )A .5.835B .0.5835C .±5.835D .±0.5835 22.(2022•桥西区校级模拟)数轴上表示√83+√−83的点一定在( )A .第①段B .第②段C .第③段D .第④段23.(2020•定州市二模)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为()A.1B.3C.5D.7 24.(2022•路南区二模)若2×2×2×⋯×2︸m个2=43,则m=()A.3B.4C.6D.8 25.(2022•桥西区校级模拟)√75−√12=a√b,那么a b的值是()A.6B.9C.12D.27 26.(2022•河北二模)关于√3×√12的变形,不正确的是()A.√3×√12=√3×12B.√3×√12=√3×√2×√6C.√3×√12=√3+12D.√3×√12=√3×2√327.(2022•桥西区校级模拟)若式子√x2−4x+m不论x取任何数总有意义,则m的取值范围是()A.m>2B.m≥2C.m≤4且m≠0D.m>4二、填空题(共17小题)28.(2022•宽城县一模)若a、b互为相反数,则a+(b﹣2)的值为;若a、b互为倒数,则﹣2022ab=.29.(2022•馆陶县一模)算式:﹣8☐2中,“☐”表示“+、﹣、×、÷”中的一个.(1)若“□”表示“﹣”,其结果为;(2)若结果为﹣4,则“☐”表示.30.(2022•石家庄模拟)若23+23+23+23=2n,则n=.31.(2022•景县校级模拟)定义新运算:f(a,b)={a2−b2(a>b)(a−b)2(a≤b),如f(3,5)=(3﹣5)2=4,f(5,3)=52﹣32=16.(1)f(﹣2,﹣4)=;(2)若f(2x,x﹣1)=x2+2x+1,则x的取值范围是.32.(2022•迁安市一模)记者从科技局获悉,某市今年将继续加大科技投入力度,科研经费投入总量达到1.3950亿元,比去年增加20%,则去年某市的科技经费投入总量为亿元,今年科研经费投入总量达到1.395亿元,用科学记数法表示为元(结果保留二位小数).33.(2022•石家庄二模)如图,在数轴原点O的右侧,一质点P从距原点10个单位的点A处向原点方向跳动,第一次跳动到OA的中点A1处,则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此跳动下去,则第四次跳动后,该质点到原点O的距离为.34.(2022•石家庄二模)若a、b互为相反数,则a+(b﹣2)的值为;若a、b互为倒数,则|﹣2022ab|=.35.(2021•滦州市一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.则前4个台阶上数的和是;第5个台阶上的数x=;从下到上前35个台阶上数的和=.36.(2021•河北模拟)发现:任意正整数的平方均可以写成若干个从1开始的连续正奇数的和.验证:42=1+3+5+;应用:若把20212写成若干个从1开始的连续正奇数的和,则处于最中间的奇数是.37.(2022•广阳区一模)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是;(2)若输出的y是√3,请写出两个满足要求的x值:.38.(2022•新华区模拟)若|12m ﹣3|+√m +n −5=0,则m = ,n = .39.(2022•石家庄模拟)比较大小:12√2 sin45°(选填“>”、“=”或“<”). 40.(2022•易县二模)一个数的平方根是a +4和2a +5,则a = ,这个正数是 .41.(2021•衡水模拟)如果√a +2+|b −3|=0,那么a b = .42.(2022•雄县一模)已知x =2+√3,y =2+√3.则 (1)x 2+y 2= .(2)(x ﹣y )2﹣xy = .43.(2022•滦州市一模)式子√x−4在实数范围内有意义,则实数x 的取值范围是 .44.(2021•开平区一模)已知x =√8,y =√12,则y x = .三、解答题(共15小题)45.(2022•滦州市一模)计算:|−2|+(π+3)0+2cos30°−(13)−1+√12.46.(2012•唐山二模)计算:(13)﹣2﹣2sin45°+(π﹣3.14)0+12√8.47.(2012•裕华区一模)计算:√(−1)2+(π﹣3)0﹣(sin60°﹣1)•(√3−2)﹣1.48.(2022•桥西区校级模拟)已知*表示+,﹣,x ,÷四种运算符号中的一种,且对于任意两个不相等的实数a ,b 满足以下关系式:a *b =b *a ,(﹣a )*b ≠﹣(a *b ).(1)﹣5*3= .(2)a 的倒数和绝对值都是a 本身,求[a *(﹣6)]*(﹣1)的值.49.(2021•石家庄一模)如图,已知在一张纸条上画有一条数轴.(1)沿过原点O 且垂直于数轴的直线折叠纸条,则表示﹣3的点与表示 的点重合;(2)M为数轴上一点,沿过点M且垂直于数轴的直线折叠纸条,当表示﹣3的点与表示1的点重合时,①点M所表示的数为;②若数轴上的A,B两点也同时重合,且AB=9,求点A所表示的数.50.(2020•广阳区模拟)已知:4是x﹣4的平方根,x+y的立方根是2.(1)求x,y的值;(2)求出2x+y的平方根.51.(2020•河北一模)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n 的值是多少?52.(2020•石家庄模拟)在学习了实数的混合运算后,老师在黑板上出了如下两道题目:①3□14=3×14△2;②7□58=7×58△2.在上述两个等式中,“□”和“△”分别是“+﹣×÷”中的某一个运算符号.(1)判断“□”和“△”分别是什么运算符号?(2)若a□7>a×7△2,求a的取值范围.53.(2022•景县校级模拟)如图,在一条不完整的数轴上,点A,B,C对应的数分别为a,b,c,其中点A在点B的左侧,且a+b=0.(1)若AB=4,c=5,求a+c的值;(2)若点C在点A的左侧,化简|a﹣c|+|a﹣b|;(3)若b=6,AB=3BC,求c的值.54.(2022•唐山一模)淇淇同学在电脑中设置了一个有理数的运算程序:输入数“a”加“★”键再输入“b”,就可以得到运算a★b=|2﹣a2|−1b+1.(1)按此程序(﹣3)★2=;(2)若淇淇输入数“﹣1”加“★”键再输入“x”后,电脑输出的数为1,求x的值;(3)嘉嘉同学运用淇淇设置的在这个程序时,屏幕显示:“该操作无法进行,”你能说出嘉嘉在什么地方出错了吗?55.(2022•丰南区二模)阅读下面材料:点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示x和﹣2的两点之间的距离是;(2)数轴上表示a和1的两点之间的距离为6,则a表示的数为;(3)若x表示一个有理数,则|x+2|+|x﹣4|有最小值吗?若有,请求出最小值;若没有,请说明理由.56.(2022•威县校级模拟)在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,B,C是AD的三等分点,如图所示.(1)BC=;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为﹣10,求出点A,B,D所对应数的和.57.(2022•莲池区校级一模)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为﹣3,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a,●表示的数为b,当计算结果为0时,请求出a与b之间的数量关系.58.(2022•承德二模)对于任意四个实数a,b,c,d,都可以组成两个实数对(a,b)与(c,d).我们规定:(a,b)⋆(c,d)=bc﹣ad.例如:(1,2)⋆(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)(2,−3)⋆(3,−12)=;(2)计算(2,−2)⋆(√5,3−√5);(3)当x+y=2,xy=﹣3时,求(x+y,2x+y)⋆(2x﹣y,4x﹣y+5)的值.59.(2021•安次区一模)利用平方差公式可以进行简便计算:例1:99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999;例2:39×410=39×41×10=(40﹣1)(40+1)×10=(402﹣12)×10=(1600﹣1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)192×212;(2)(2021√3+2021√2)(√3−√2).。
中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
中考数学复习第1课时《实数及其运算》说课稿

中考数学复习第1课时《实数及其运算》说课稿一. 教材分析《实数及其运算》是中考数学复习的第1课时,主要内容包括实数的定义、分类、性质以及实数的运算规则。
这部分内容是初中数学的基础,对于学生后续的学习具有重要意义。
在教材中,实数分为有理数和无理数两大类,有理数包括整数和分数,无理数主要包括π和开方开不尽的数。
实数的运算包括加减乘除和乘方等,运算规则遵循数学的基本规律。
二. 学情分析学生在学习《实数及其运算》时,已经掌握了有理数的运算规则,对无理数的概念和性质有一定的了解。
但部分学生对无理数的理解不够深入,容易与有理数混淆。
此外,学生在实数的运算方面容易出错,如不熟悉运算顺序、忽视运算律等。
因此,在教学过程中,需要帮助学生巩固实数的定义和性质,提高运算能力,培养学生严谨的数学思维。
三. 说教学目标1.知识与技能:使学生掌握实数的定义、分类和性质,了解实数的运算规则,提高实数运算能力。
2.过程与方法:通过自主学习、合作探讨和教师引导,培养学生独立解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气,使学生认识到数学在生活中的重要性。
四. 说教学重难点1.教学重点:实数的定义、分类、性质和运算规则。
2.教学难点:无理数的概念和性质,实数的运算顺序和运算律的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨和教师引导相结合的方法,充分发挥学生的主体作用,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、黑板和教学道具等,直观展示实数及其运算的过程,帮助学生形象地理解实数的概念和性质。
六. 说教学过程1.导入新课:通过复习有理数的运算规则,引出实数的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究实数的定义、分类和性质,培养学生独立解决问题的能力。
3.合作探讨:分组讨论实数的运算规则,让学生在合作中思考,提高学生的团队协作能力。
实数的相关概念中考考点梳理

实数的相关概念中考考点梳理全文共四篇示例,供读者参考第一篇示例:实数是数学中最基础的概念之一,它包括有理数和无理数两类。
在数学的学习中,实数的相关概念是非常重要的。
在中考中,实数相关的考点也是比较多的。
下面我们来看看实数相关概念中中考的考点梳理。
1. 实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
无理数是不能表示为有理数的数,如π和根号2等。
在中考中,同学们需要了解实数的分类,并能够判断一个数是有理数还是无理数。
2. 实数的运算实数的运算是中考数学的重要内容之一。
同学们需要掌握实数的加减乘除运算规则,包括有理数和无理数的运算。
在中考中,常见的考点有实数的加法、减法、乘法、除法运算,以及混合运算等。
3. 实数的大小比较在实数的概念中,同学们也需要学会对实数进行大小比较。
无论是有理数还是无理数,都可以通过大小比较符号进行比较,如大于等于、小于等于、大于、小于等等。
在中考中,通常会出现实数的大小比较题目,同学们需要根据实数的性质进行判断。
4. 实数的分数表示实数可以表示为分数的形式,分数是有理数的一种形式。
在中考中,同学们需要能够将实数表示为分数的形式,并且能够进行化简和计算。
分数的化简和运算是中考数学的常见考点之一,同学们需要多进行练习,掌握分数的性质和运算规则。
5. 实数的应用问题实数的概念在中考中不仅仅是为了考察同学们的概念掌握程度,还可以通过应用题目考察同学们对实数的应用能力。
实数在现实生活中有着广泛的应用,比如长度、重量、体积等问题都可以通过实数进行表示和计算。
在中考中,同学们可能会遇到一些实际问题,需要用实数进行求解,这就需要同学们将实数的概念运用到实际问题中去。
实数的相关概念在中考数学中占据着重要的地位,同学们需要充分理解实数的分类、运算、大小比较、分数表示以及应用问题等知识点。
通过不断的练习和巩固,可以帮助同学们提高实数相关概念的理解和运用能力,从而在中考中取得更好的成绩。
中考数学 第2讲 实数的运算及大小比较

第2讲实数的运算及大小比较考点1平方根、算术平方根、立方根名称定义性质平方根如果x2=a(a≥0),那么这个数x就叫做a的平方根.记作±a.正数的平方根有两个,它们互为①;③没有平方根;0的平方根是② .算术平方根如果x2=a(x>0),那么这个正数x就叫做a的算术平方根.记作a.0的算术平方根是④ .立方根若x3=a,则x叫做a的立方根,记作3a.正数有一个⑤立方根;0的立方根是0;负数有一个⑥立方根.考点2实数的大小比较代数比较规则正数⑦,负数⑧,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而⑨ .几何比较规则在数轴上表示的两个数,左边的数总是⑩右边的数.考点3实数的运算内容运算法则加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a0=⑪ (其中a≠0),a-p=⑫ (其中p为正整数,a≠0).运算律交换律、结合律、分配律.运算性质有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算⑬,最后算⑭,有括号的要先算⑮的,若没有括号,在同一级运算中,要从左到右进行运算.1.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.2.实数混合运算时,根据每个算式的结构特征,选择适当的方法,灵活运用运算律,就会收到事半功倍的效果.命题点1 平方根、算术平方根、立方根例1 (2014·东营) 81的平方根是( )A.±3B.3C.±9D.9方法归纳:解此类题需要先将原数化简,再根据平方根与算术平方根的概念、关系及符号的表示,并在此基础上正确运算.1.(2014·陕西)4的算术平方根是( )A.-2B.2C.-12D.122.(2013·资阳)16的平方根是( )A.4B.±4C.8D.±83.(2014·威海)若a3=-8,则a的绝对值是( )A.2B.-2C.12D.-124.(2013·宁波)实数-8的立方根是 .5.(2014·河南)计算:327-|-2|= . 命题点2 实数的大小比较例2 (2014·南昌模拟)51212.(填“>”“<”或“=”)方法归纳:比较实数的大小除了基本的“正数负数”原则和方法外,还可采用作差法,倒数法,估算法,也可借助数轴进行比较.1.(2014·菏泽)比-1大的数是( )A.-3B.-109C.0D.-12.(2014·益阳)四个实数-2,0,-2,1中,最大的实数是( )A.-2B.0C.-2D.13.(2015·苏州模拟)如图所示,是数a,b在数轴上的位置,下列判断正确的是( )A.a<0B.a>1C.b<-1D.b>-14.(2014·重庆A卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏命题点3 实数的运算例3 (2014·泸州)计算:12-4sin60°+(π+2)0+(12)-2.【思路点拨】先将代数式中的各部分化简,再进行有理数的加减. 【解答】方法归纳:解答本题的关键是掌握零指数幂a0=1(a≠0)、负整数指数幂a-n=1na(a≠0,n是正整数)、算术平方根和乘方的意义.正确运用整数指数幂的运算法则进行计算,不要出现(12)-2= - (12)2这样的错误.1.(2014·荆门)若( )×(-2)=1,则括号内填一个实数应该是( )A.12B.2C.-2D.-122.(2014·菏泽)下列计算中,正确的是( ) A.a 3·a 2=a6B.(π-3.14)0=1 C.(13)-1=-3 D.9=±3 3.(2014·十堰)计算4+(π-2)0-(12)-1= . 4.(2014·重庆A 卷)计算4+(-3)2-2 0140×|-4|+(16)-1.5.(2014·长沙)计算:(-1)2 014+38-(13)-1+2sin45°.1.(2014·江西)下列四个数中,最小的数是( ) A.-12B.0C.-2D.2 2.(2014·枣庄)2的算术平方根是( )A.±2B.2C.±4D.4 3.(2014·潍坊)()321-的立方根是( )A.-1B.0C.1D.±1 4.(2014·德州)下列计算正确的是( )A.(-3)2=-9B.327=3C.-(-2)0=1 D.|-3|= -35.(2014·绍兴)比较-3,1,-2的大小,正确的是( )A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-26.(2014·重庆B 卷)某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是(A ) A.-1℃ B.0℃ C.1℃ D.2℃7.(2014·宁波)杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A.19.7千克B.19.9千克C.20.1千克D.20.3千克 8.(2013·宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b =0B.b <aC.ab >0D.|b|<|a|9.(2014·徐州)点A 、B 、C 在同一条数轴上,其中A 、B 表示的数分别为-3、1.若BC=2,则AC 等于( )A.3B.2C.3或5D.2或610.(2014·梅州)4的平方根是 .11.(2014·陕西)计算(-13)-2= .12.(2014·滨州)计算:-3×2+(-2)2-5= .13.(2014·资阳)计算:38+(2-1)0= .14.(2013·西双版纳)若a=-78,b=-58,则a、b的大小关系是a b(填“>”“<”或“=”).15.(2013·杭州)把7的平方根和立方根按从小到大的顺序排列为 .16.(2014·梅州)计算:(π-1)0+|2-2|-(13)-1+8.17.(2014·南充)计算:(2014-1)0-(3-2)+3tan30°+(13)-1.18.(2014·内江)计算:2tan60°-|3-2|-27+(13)-1.19.(2015·南充模拟)如图一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2 014)0的值.20.如图所示,数轴上表示2,5的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )555521.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.722.(2013·常德)小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16……根据以上规律可知第100行左起第一个数是 .23.(2013·黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制0 1 2 3 4 5 6 …二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .参考答案考点解读①相反数②负数③0 ④0 ⑤正的⑥负的⑦大于⑧小于⑨小⑩小于⑪1 ⑫1pa⑬乘除⑭加减⑮括号内各个击破例1A题组训练 1.B 2.B 3.A 4.-2 5.1例2 >题组训练 1.C 2.D 3.C 4.D例3 原式=23-4×3+1+(2-1)-2=23-23+1+22=1+4=5.题组训练 1.D 2.B 3.14.原式=2+9-1×4+6=13.5.原式=1+2-3+2×22=1.整合集训1.C2.B3.C4.B5.A6.A7.C8.D9.D10.±211.912.-713.314.<15.7377 16.原式22217.原式3+2+3×3333+3=6.18.原式=+3=1.19.(1)∵蚂蚁从点A向右爬2个单位到达点B,∴点B所表示的数比点A所表示的数大2.∵点A表示B所表示的数为m,∴(2)原式020.C 21.C22.10 200提示:第n行第一个数为:(n+1)2-1.23.170提示:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×2=128+32+8+2=170.。
中考数学复习《实数的运算及大小比较》

1
1
.
4
2.化简: - 3.140 2 - 2 2 - 8 3 1 .
2
3.计算:
3
-1
2019-
0
- 6tan30
1
1
3
64.
2
4.计算:1
2
1 6
1 12
.
1
nn
1
.
方
法
总
结
1.对于涉及到乘方、零指数幂、负整数指数幂、 特殊角三角函数值、二次根式的运算,应先将每 部分正确化简,再按实数的运算法则求得结果;
2.对于规律性试题,应先找出规律后再计算.
类型2 实数大小的比较
例2 下列实数 :3,0 ,-3,4.25,- 2 2 ,其中 最小的实数是( B )
A. 0
B. -3
C. 3
D. - 2 2
解析:先比正负,因为是选最小的实数,因此再 比两个负数的平方.-3,- 2 2的平方分别是9和8, 所以-3最小.
计算:2 sin 60 3 3 20 1 1 .
2
解: 2 sin 60 3 3 20 1 1 .
2 2 3 3- 3 1-2
2
=2.
练 一练
1.计算:
-
4
-
20190
-
2
sin
30
因此,㏒1001000=
㏒1010³ ㏒1010²
方
法
总
结
读懂概念或法则,并将其正确应用到所求问题, 是解决新概念问题的关键.
巩固提升
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点跟踪训练1 实数及其运算
一、选择题
1.(2011·金华)下列各组数中,互为相反数的是( )
A .2和-2
B .-2和12
C .-2和-12 D.12
和2 答案 A
解析 只有符号不同的两个数,叫做互为相反数.
2.(2011·台州)在12
、0、1、-2这四个数中,最小的数是( ) A.12
B .0
C .1
D .-2 答案 D
解析 数的大小比较,正数大于0,负数小于0,-2最小.
3.(2011·温州)计算:(-1)+2的结果是( )
A .-1
B .1
C .-3
D .3 答案 B
解析 依照异号两数相加法则,得(-1)+2=+(2-1)=+1.
4.(2011·日照)观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )
A .第502个正方形的左下角
B .第502个正方形的右下角
C .第503个正方形的左上角
D .第503个正方形的右下角
答案 C
解析 正方形有四个角,而2011=502×4+3,应标在第503个正方形的左上角.
5.(2011·襄阳)下列说法正确的是( )
A .(π2)0是无理数 B.33
是有理数 C.4是无理数 D.3-8是有理数
答案 D
解析 因为3-8=-2,所以3-8是有理数这一说法正确.
二、填空题
6.(2011·杭州)写出一个比-4大的负无理数________.
答案 答案不唯一,如:-3,-π等.
解析 -3>-4,-π>-4.
7.(2011·宁波)实数27的立方根是________.
答案 3
解析 327=3.
8.(2011·连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.
答案 9.63×10-5
解析 0.0000963=9.63×10-5.
9.(2011·乐山)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为_________.
答案 -5
解析 点A 、B 分别表示-1、3则AB =|-1-3|=4,又点B 、C 关于点A 对称,故AC =AB =4.所以OC =OA +AC =5,点C 表示的数为-5.
10.(2011·常德)先找规律,再填数:
11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156
,
……
则12011+12012-__________=12011×2012
. 答案 11006
解析 依题意,有规律1n +1n +1-2n +1=1n (n +1),所以当n +1=2012时,2n +1=22012
=11006
. 三、解答题
11.(2011·衢州)计算:|-2|-(3-π)0+2cos 45°
解 原式=2-1+2×22 =1+ 2.
12.(2011·东莞)计算:(2011-1)0+18sin45°-2-1
解 原式=1+3 2×22-12=312
. 13.(2011·邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.
规则一:合唱队的总人数不得少于50人,且不得超过55人.
规则二:合唱队的队员中,九年级学生占合唱团总人数的12
,八年级学生占合唱团总人数的14
,余下的为七年级学生. 请求出该合唱团中七年级学生的人数.
解 ∵九年级学生占合唱团总人数的12,八年级学生占合唱团总人数的14
,且人数只能是正整数,
∴总人数是4的倍数,
∵总人数不得少于50人,且不得超过55人, ∴人数的可能值是:50、51、52、53、54、55.这里52是4的倍数.
∴总人数是52人.
∵七年级学生占总人数的(1-12-14)=14
, ∴七年级学生人数=52×14=13.
14.(2011·广东)阅读下列材料:
1×2=13
×(1×2×3-0×1×2), 2×3=13
×(2×3×4-1×2×3), 3×4=13
×(3×4×5-2×3×4), 由以上三个等式相加,可得
1×2+2×3+3×4=13
×3×4×5=20. 读完以上材料,请你计算下列各题:
(1) 1×2+2×3+3×4+…+10×11(写出过程);
(2) 1×2+2×3+3×4+…+n ×(n +1)=_________;
(3) 1×2×3+2×3×4+3×4×5+…+7×8×9=_________________.
答案 (1)原式=13
×10×11×12=440. (2)13
×n ×(n +1)×(n +2).(3)1260. (3)1×2×3= 1/4(1×2×3×4-0×1×2×3);
2×3×4= 1/4(2×3×4×5-1×2×3×4);
3×4×5= 1/4(3×4×5×6-2×3×4×5);
…
7×8×9= 1/4(7×8×9×10-6×7×8×9);
∴1×2×3+2×3×4+3×4×5+…+7×8×9
= 1/4(1×2×3×4-0×1×2×3)+ 1/4(2×3×4×5-1×2×3×4)+ 1/4(3×4×5×6-2×3×4×5)+ 1/4(7×8×9×10-6×7×8×9);
= 1/4(7×8×9×10)=1260.
15.在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非
负数是多少?
解 因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.
现考虑在自然数n ,n +1,n +2,n +3之间添加符号“+”或“-”,显然n -(n +1)-(n +2)+(n +3)=0.
这启发我们:将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.
四、选做题
16.已知数14的小数部分是b ,求b 4+12b 3+37b 2+6b -20的值.
分析 因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这种涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.
解 因为9<14<16,即3<14<4,所以14的整数部分为3.设14=3+b ,两边平方得14=9+6b +b 2,所以b 2+6b =5.
b 4+12b 3+37b 2+6b -20
=(b 4+2·6b 3+36b 2)+(b 2+6b )-20
=(b 2+6b )2+(b 2+6b )-20
=52+5-20=10.。