防喘振
压缩机喘振

四、处理措施
由于此次喘振情况的发生是由于工艺系统波 动造成,而防喘振控制系统工作正常,波动 1分钟后系统即自动恢复正常,经厂领导同 意,将防喘振线复位,将防喘振各工作区恢 复原状。 另外,此次喘振发生时,机组未出现异常温 度、振动及位移波动情况,而且能够迅速恢 复正常,也可以验证K-2202防喘振控制系 统工作原理正确,可以承受一定范围的波动。
三、防喘振画面
在画面坐标系里有机组工作点位置,工作点状态和三条折线的显示。 坐标系的横坐标为 Hx(%),坐标系的纵坐标为Pd/Ps。h为入口差压, Ps为入口压力,Pd为出口压力。 三条折线,分别是红线(喘振线),蓝线(初始控制线),黄线(实 际控制线) 。各条线具体说明如下: 红线:喘振线 工作点进入喘振线(红线)左边,机组已进入喘振区。系统已提前迅 速将防喘振阀全打开,系统正常投用不会出现这种情况。 蓝线:初始控制线 初始控制线(蓝线)是由厂家提供的出厂防喘振线。 黄线:实际控制线 当机组在实际运行过程中,如果工作点进入喘振线左边,并在自动位 置时,为了今后机组控制更安全,防喘振线自动向右平移,最多校正 十次,画面记数显示校正次数。这种现象没发生时,实际控制线与初 始控制线重叠,由于这两条线重叠在画面上蓝线显示不出来。
防喘振调节有手动,半自动,全自动三种方式。 1 手动方式: 工作点进入喘振线左边,此时机组在危险区,人为输入阀位无 效。工作点进入喘振线右边,可人为输入阀位。 2 半自动方式: 防喘振阀实际输出取手动和自动输出的高值。即人为输入阀位 只能大于自动输出,否则人为输入阀不起作用。 3自动方式: 工作点进入实际防喘振线左边,在自动位置时,PID自动调节 开阀。工作点进入实际防喘振线右边,在自动位置时,PID自 动调节关阀。
压缩机防喘振曲线详解(一)

压缩机防喘振曲线详解(一)压缩机防喘振曲线什么是喘振喘振是指在机械系统中由于某种激励作用下,产生周期性振荡的一种现象,通常为系统共振的结果。
压缩机的喘振在压缩机运行时,由于叶轮的旋转速度和叶轮之间的间隙,会产生一定的压力波,进而产生压缩机的喘振现象。
喘振会严重影响压缩机的工作效率,甚至可能会导致压缩机的损坏。
防止喘振的措施为了避免或减少压缩机的喘振现象,工程师们通过各种方式研究和探索,在压缩机的设计和制造过程中,加入了一些预防喘振的措施。
其中,一种比较有效的措施是通过曲线图的方式来控制压缩机的工作状态,进而达到防止喘振的目的。
压缩机防喘振曲线压缩机防喘振曲线是一种通过图像方式来控制压缩机的工作状态的方法,它能够有效地避免压缩机的喘振现象。
具体而言,该曲线是由一系列曲线组成的,每条曲线表示了压缩机在不同压力下的工作状态。
曲线的作用通过压缩机防喘振曲线,可以清晰地看到压缩机在不同压力下的工作状态,进而根据实际情况来调整压缩机的工作状态,避免或减少喘振的发生。
因此,压缩机防喘振曲线是一种有效的防止喘振的措施。
结论通过引入压缩机防喘振曲线这一有效的技术手段,压缩机的工作效率和稳定性得以提高,喘振现象得到有效遏制。
作为机械系统中非常重要的一环,压缩机的稳定运行是保证生产效率的关键因素,因此,对压缩机防喘振曲线的研究和应用具有重要的意义。
总结压缩机防喘振曲线是一种非常实用的技术手段,它通过图像的方式清晰地表现了压缩机在不同压力下的工作状态,为压缩机的稳定运行提供了有力的保障。
在实际应用中,对于压缩机的设计和制造人员来说,深入研究和掌握压缩机防喘振曲线的相关原理和技术,将对提高产品的品质和市场竞争力有着重要的促进作用。
喘振的原因及解决方法有哪些

喘振的原因及解决方法有哪些喘振是一种常见的故障,那么喘振是什么原因造成的呢?下面是店铺精心为你整理的喘振的原因及解决方法,一起来看看。
喘振的原因烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。
(我们有碰到过但不多);两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差);风机长期在低出力下运转。
喘振的解决方法风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。
故风机产生喘振应具备下述条件:a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。
旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。
旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。
旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。
旋转对风机的正常运转影响不如喘振这样严重。
风机在运行时发生喘振,情况就不相同。
喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。
喘振时的振动有时是很剧烈的,损坏风机与管道系统。
所以喘振发生时,风机无法运行。
防止喘振的措施1)使泵或风机的流量恒大于QK。
如果系统中所需要的流量小于QK时,可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK. ;2)如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得到稳定的运行工况。
通过风机各种转速下性能曲线中最高压力点的抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并无效果,因此时各转速下的工作点均是相似工况点。
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机防喘振的3种控制方法

压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。
因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。
但是,这种方法的缺点是成本较高,需要购买变频设备。
2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。
具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。
3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。
综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。
根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。
离心式压缩机的防喘振控制

离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。
但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。
因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。
喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。
具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。
离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。
稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。
非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。
喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。
针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。
动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。
减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。
因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。
控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。
为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。
同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。
控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。
为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。
防喘振控制方案

引言防喘振是在机械工程领域中一个重要的挑战,它涉及到防止机械系统发生喘振现象的控制方法和方案。
喘振是一种机械系统失稳的情况,会导致机械元件屈服、损坏甚至系统瘫痪。
因此,开发一种有效的防喘振控制方案对于提高机械系统的可靠性和工作效率至关重要。
本文将介绍一种针对喘振问题的控制方案。
首先,我们将了解喘振的原因和影响。
然后,我们将介绍一种常用的防喘振方法,并讨论其优缺点。
最后,我们将提出一种新的防喘振控制方案,并介绍其原理和应用。
喘振的原因和影响喘振是由于机械系统在特定条件下出现的不稳定振动。
它通常发生在高速旋转机械中,例如发动机、离心泵等。
喘振的主要原因是机械系统的刚度和阻尼与激励力之间的相互作用。
当激励力的频率接近机械系统的固有频率时,机械系统的能量会被不断地输入,导致系统发生不稳定的振动。
喘振的影响非常严重。
首先,喘振会导致机械系统的一些零部件失效,例如轴承的磨损或破坏。
其次,喘振会降低机械系统的工作效率,并且会产生噪音和震动。
最重要的是,喘振会导致机械系统的整体性能下降,甚至可能引发事故。
常用的防喘振方法目前,有多种常用的防喘振方法,例如增加机械系统的刚度、增加阻尼、改变工作条件等。
以下是其中三种常见的方法:1.增加机械系统的刚度:增加机械系统的刚度可以提高其固有频率,从而使其远离激励力的频率范围。
这可以通过增加构件的截面积、采用更高强度的材料等方式实现。
2.增加阻尼:增加阻尼可以减小机械系统的振动幅值,并提高系统的稳定性。
这可以通过在机械系统中引入阻尼元件、调整阻尼器的参数等方式实现。
3.改变工作条件:改变工作条件可以改变机械系统的固有频率。
例如,改变旋转速度、负载或工作温度等参数,可以使系统的固有频率远离激励力的频率区域。
然而,这些方法各自存在一些限制和问题。
增加刚度和阻尼会增加机械系统的成本和重量,并且可能引入其他不稳定性。
同时,改变工作条件可能会影响机械系统的工作性能和使用寿命。
新的防喘振控制方案为了克服上述常用方法的限制,我们提出了一种新的防喘振控制方案,该方案结合了主动振动控制和参数优化的方法。
防喘振的方案

防喘振的方案1. 引言防喘振是一种重要的防护措施,用于避免机械系统的不稳定振动。
喘振是机械系统受到扰动或负载变化时出现的低频振动现象,可能导致机械设备破坏或故障。
本文将介绍几种常用的防喘振方案,并进行评估和比较。
2. 调整系统刚度调整系统刚度是一种常见的防喘振方案。
由于喘振通常发生在系统的固有频率附近,通过增加或减小系统的刚度,可以改变系统的固有频率,从而防止喘振的发生。
可以通过以下方法调整系统的刚度:•更换或增加机械零件的数量或材料,改变系统的刚度。
•调整系统的支承形式,改变系统的刚度。
•调整系统的几何形状,改变系统的刚度。
调整系统刚度的方法有效性较高,但需要对系统进行全面的分析和评估,并可能需要进行大量的工程设计和改造。
3. 添加阻尼装置阻尼装置可以通过吸收或消散机械系统的振动能量来减少振动幅度,从而防止喘振的发生。
添加阻尼装置是一种简单且有效的防喘振方案。
可以使用以下类型的阻尼装置:•液体阻尼器:通过通过流体的黏滞阻力来减缓系统的振动。
•摩擦阻尼器:通过摩擦阻尼力来减弱系统的振动。
•磁流变阻尼器:通过调节磁流变材料的磁场来改变阻尼特性。
添加阻尼装置通常可以在现有系统上进行简单的改装,并且对系统产生的影响较小。
4. 使用主动控制技术主动控制技术是一种高级的防喘振方案,可以根据系统的实时状态和反馈信息,动态地调整系统的参数,以抵消或抑制振动。
常用的主动控制技术包括:•主动质量调谐(AMT):通过调节振动质量的参数,实时调整系统的固有频率,以消除振动。
•主动回路控制(ACL):通过改变系统的控制回路参数,动态地抑制喘振的出现。
•主动阻尼控制(ADC):通过改变系统的阻尼控制器参数,实时调整阻尼特性,以减少振动。
使用主动控制技术需要使用传感器和控制算法来实现对系统的实时监测和调整。
这种方案的设计和实施较为复杂,并且对系统的响应时间有严格的要求。
5. 对比和评估在选择防喘振方案时,需要综合考虑以下因素进行对比和评估:•效果:不同方案对喘振现象的抑制程度和稳定性有所不同,需要根据具体情况选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 压缩机的防喘振控制方案
以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。
但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。
TS3000 系统的成功应用,
就较好地解决了此问题。
2. 喘振线作图的基本方法
压缩机防喘振控制系统的基本原理,如图2 所示。
图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332);
SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。
其关系式如下:
h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa
3. 工艺控制方案
(1)压缩机防喘振调节画面组成
(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。
(b)动态数据,将实际工作点数据在ESD 画面相应处显示。
(c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。
(2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下,
可设定手动调节或强制调节。
(3)报警
利用声光报警及画面报警提示。
(4)控制要点
(a)开压缩机前,应先将防喘振阀强制打开至100%。
(b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机
转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。
(c)当压缩机进入喘振区,ESD 声光报警时,应立即打开防喘振阀,并相应降低装置生产
负荷,消除喘振,使压缩机回到正常工作区运转,避免压缩机损坏或故障。
(5)机组喘振线及防喘振线示意图
见图3。
4. TS3000 控制系统喘振线的计算
由TS3000 推出的喘振线计算方
法,其基本思想与上述方法大体相同,
区别在于当气体分子量Mw 发生变化
时,压缩机的喘振特性曲线可近似为一
条折线,如图4 所示(计算方法略)。
三TS3000 系统在压缩机防喘振控制
中的组态及操作
在正常工艺操作情况下,根据此时
机组的压力比,通过喘振线计算出防喘
振控制线,求出此时喘振流量设定点,
与入口流量变量相比较进行PI 控制,
根据PI 运算结果控制防喘振阀的开度,
从而保持充足的气体流过压缩机。
当流量下降过快时,TS3000 的防
喘振控制逻辑会快速进行以下几种控
制:
1. 阶跃输出控制逻辑
当压缩机操作点迅速左移达到防喘振控制线时,控制防喘振阀输出值会阶跃减少6%,
即防喘振阀开度增加6%,若经过0.13s 时间压缩机操作点仍在备用控制线左侧,则再将防喘
振阀开度增加6%,直到使压缩机操作点回到备用防喘振控制线右侧,从而保证有足够气体
流过压缩机。
2. 给定值偏置控制逻辑
当发生喘振时,防喘振控制线会增加2%(也可设定为按比例增加:如l%、2%、4%、8
%),如果压缩机又发生喘振,则防喘振控制设定点又增加2~4%,累计喘振控制点增加值可
达10%。
当工艺状况恢复正常时,可将喘振控制设定点偏置进行复位,使其回到防喘振控制
线上。
3. 浮动比例控制逻辑
当流量快速降低时,防喘振控制逻辑还会产生一个特殊的“微分控制”,也就是浮动比例
的算法,它将防喘振控制系统微分增益Kd 与流量变化值苝v 的乘积(K 苝v)叠加在原有PI
控制输出上,使防喘振阀动作加速,以保持机组有充足流量。
4. 快开慢关
当流量波动大时,TRICONEX 控制器能快速打开防喘振阀,但当工作点到达防喘振控制
线的右侧,进入安全区域后,TRICONEX 控制器按照此前设定的一个速率将防喘振阀慢慢关
闭,以保证压缩机能迅速调整到一个新的工作点。
5. 断电输出
当TRICONEX 防喘振控制器判断喘振发生时,TRICONEX 控制器能迅速输出一个开关
量,直接作用于防喘振控制阀的电磁阀,从而迅速打开防喘振阀。
6. 高选输出
TRICONEX 防喘振控制器的输出是PI 控制输出、浮动比例控制输出、手动输出三者之间的最高值,从而能有效地保证压缩机的防喘振控制,确保机组的安全。
7. 自动、半自动、手动切换功能
TRICONEX 防喘振控制器提供了自动、半自动、手动输出功能,从而为机组的防喘振控制提供了较为丰富的控制手段和调试手段。
总之,压缩机防喘振控制是通过跟踪防喘振控制线来完成的,在压缩机正常运行时,利用TRICONEX 防喘振控制器来保证系统稳定。
当流量波动大时,通过阶跃逻辑、给定值迁移和浮动比例等的算法来快速打开防喘振阀,从而避免喘振的发生,TRICONEX 控制器的防喘振控制过程非常迅速,它的一个处理周期大约为100ms。
四开车过程中遇到的问题
开车阶段,由压机制造厂对压缩机喘振线进行实测。
操作员临时将喘振控制阀改为手操,并增加紧急停车按钮和部分应急打开喘振阀按钮。
实验中发现一旦发生喘振,部分应急打开阀就显得很不及时,后来改为当喘振发生时喘振阀全开,效果很好。
另外,开车期间曾发现
在转速超过3000r/min 后压缩机转速明显高于透平机转速,用示波器观察,发现正弦波上叠加有明显杂波。
经过在转速输入脉冲卡输入端并入1.9kΩ电阻消除交流干扰,信号中的杂波消失,转速显示随即正常。
装置开车一年多来,压缩机一直运行正常,在装置生产波动的情况下,操作人员都能运用防喘振系统及时准确地调整压缩机运行,没有发生因压缩机喘振而引起的联锁停运。
在装置开停车期间,为缩短系统置换时间,应尽可能长时间维持循环机的运行,因此当系统压力比较低时,打开防喘振控制阀,确保循环机不在喘振区运行,既缩短了开停工时间,又降低了消耗,为炼油厂带来了较大的经济效益。
__。