05 第五章 导数及其运用
数学分析课本(华师大三版)-习题及答案05

第五章 导数和微分习题§5.1导数的概念1、已知直线运动方程为2510t t s +=,分别令01.0,1.0,1=∆t ,求从t=4至t t ∆+=4这一段时间内运动的平均速度及时的瞬时速度。
2、等速旋转的角速度等于旋转角与对应时间的比,试由此给出变速旋转的角速度的定义。
3、设4)(,0)(00='=x f x f ,试求极限 xx x f x ∆+∆→∆)(lim00。
4、设⎩⎨⎧<+≥=,3,,3,)(2x b ax x x x f 试确定的a,b 值,使f 在x=3处可导。
5、试确定曲线y x ln =上哪些点的切线平行于下列直线: (1);1-=x y (2)32-=x y6、求下列曲线在指定点P 的切线方程与法线方程: (1)).1,0(,cos )2();1,2(,42p x y p xy ==7、求下列函数的导函数:⎩⎨⎧<≥+==,0,1,0,1)()2(;)()1(3x x x x f x x f8、设函数⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x xx x f m(m 为正整数), 试问:(1)m 等于何值时,f 在x=0连续;(2)m 等于何值时,f 在x=0可导;(3)m 等于何值时,f '在x=0连续。
9、求下列函数的稳定点:(1)f(x)=sinx-cosx ;(2)x x x f ln )(-=。
10、设函数f 在点0x 存在左右导数,试证明f 在点0x 连续。
11、设0)0()0(='=g g ,⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )()(x x xx g x f求)0(f '。
12、设f 是定义在R 上的函数,而且对任何R x x ∈21,,都有)()()(2121x f x f x x f =+。
若1)0(='f ,证明对任何R x ∈,都有)()(x f x f ='。
13、证明:若)(0x f '存在,则 )(2)()(lim0000x f xx x f x x f x '=∆∆--∆+→∆14、证明:若函数f 在[a,b]上连续,而且f(a)=f(b)=K ,0)()(>''-+b f a f ,则在(a,b)内至少有一点ξ,使K f =)(ξ。
新教材2023高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与

函数的最大(小)值
[新知探究]
情境:函数 y=f(x)在区间[a,b]上的图象如图所示.
【思考】
(1)观察函数的图象,图象的最高点、最低点的纵坐标分别是多少?
提示:最高点的纵坐标是 f(a),最低点的纵坐标是 f(x3).
(2)函数的最值都是在极值点处取得吗?
提示:不一定.最值有可能在区间端点处取得.
上单调递减,在区间 − , +∞ 上单调
递增,
所以在区间[0,+∞)上,f(x)min=f −
= a3.
综上所述,当 a>0 时,函数 f(x)在区间[0,+∞)上的最小值为-a3;
当 a<0 时,函数 f(x)在区间[0,+∞)上的最小值为 a3.
方法规律
1.含参数的函数最值问题的两种类型
=- .
又 f(0)=2,f(2π)=2,所以函数 f(x)在区间[0,2π]上的最小值为- ,最大值
为 +2.故选 D.
答案:D
2.求函数
f(x)= x+sin
解:f'(x)= +cos
x 在区间[0,2π]上的最大值与最小值.
x,x∈[0,2π].
令 f'(x)=0,
解得 x= 或 x= .
因为 f(0)=0,f
= + ,f
= - ,f(2π)=π,
导数及其应用讲利用导数求函数的极值与最大小值课件

导数及其应用讲利用导数求函数的极值与最大小值课件xx年xx月xx日CATALOGUE 目录•导数的概念与运算•利用导数求函数的极值•利用导数求函数的最值•利用导数研究函数的单调性与凸凹性•利用导数求函数的极值与最值的步骤与示例•导数在实际问题中的应用01导数的概念与运算函数在某一点的导数函数在这一点变化率的极限值,记为f'(x)或df/dx(x)。
导数的几何意义函数在某一点处的导数,是该点处曲线切线的斜率。
函数u=g(t)在t=t0处的导数,等于函数y=f(u)在u=g(t0)处的导数乘以g'(t0)。
复合函数的导数复合函数y=f(u),u=g(x)在x=x0处的导数,等于y=f(u)在u=g(x0)处的导数乘以g'(x0)。
函数y=f(x)在x=x0处的导数,等于曲线y=f(x)在点(x0,f(x0))处切线的斜率。
曲线切线的斜率导数的正负表示曲线在相应点的上升或下降趋势,导数值的大小表示曲线在相应点的变化剧烈程度。
导数与曲线形状导数的几何意义02利用导数求函数的极值极值的定义及计算方法极值点函数在某点处取得极值,则该点称为极值点极值在极值点处取得的函数值称为极值计算方法先求导数,然后求出导数为0的点,再判断这些点是否为极值点常见函数的极值点与极值一次函数:无极值点三角函数:如正弦函数和余弦函数有多个极值点,但不是所有的点都是极值点二次函数:有两个极值点,且在极值点处取得极值幂函数:当指数大于0时,有一个极小值点;当指数小于0时,有一个极大值点最大值和最小值的实际应用利用极值点进行函数的优化利用极值进行函数的插值和拟合极值的应用03利用导数求函数的最值函数在某区间上的最大值和最小值是该区间上函数值的最大和最小值,也是该区间上局部极值。
求导数,找到函数的极值点和区间端点,比较极值点和区间端点的函数值,得到最大和最小值。
最值定义最值计算方法最值的定义及计算方法1函数最值的应用23函数最值的应用广泛,例如在物理、工程、经济等领域中都可以应用。
05基本初等函数的导数公式及导数的运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用教学过程:一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x (7) y =xx x x x x sin cos cos sin +- 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =- (1) 因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2) 因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表(2)导数的运算法则六.布置作业。
高中数学第五章一元函数的导数及其应用5-3导数在研究函数中的应用5-3-2函数的极值与最大小值第2课

新知初探·课前预习
题型探究·课堂解透
【课标解读】 1.理解函数最值的概念. 2.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超 过三次).
新知初探·课前预习
【教 材 要 点】 要点一 最值的概念❶ 一般地,如果在区间[a,b]上函数y=f(x)的图象是一条_连__续_不__断__的曲 线,那么它必有最大值和最小值.
2.函数y=-x3+6x2(x≥0)的最大值为( )
A.32
B.27
C.16
D.40
答案:A
解析:因为y′=-3x(x-4),所以当0≤x≤4时,y′≥0; 当x>4时,y′<0. 所以函数在[0,4]上单调递43+6×42=32. 故选A.
题型探究·课堂解透
题型1 求函数的最值
例1 (1)求函数f(x)=x2(x-2)在区间[-1,3]上的最大值和最小值; (2)求函数f(x)=ln x-x−x2在区间[1,e]上的最值.
【方法总结】
利用导数求函数最值的方法
巩固训练1 求函数f(x)=(x-1)ex在区间[-1,2]上的最大值和最小 值.
巩固训练2 若f(x)=ax3-6ax2+b(a>0),x∈[-1,2]的最大值为3, 最小值为-29,求a、b的值.
题型3 利用导数证明不等式 例3 已知函数f(x)=ln x-x. (1)求f(x)的最大值; (2)证明:ln x<x<ex(x>0).
解析:(1)设f(x)=ln x-x,∴f′(x)=1x-1=1−xx, 令f′(x)=0,解得x=1, 当0<x<1,函数f(x)单调递增, 当x>1时,函数f(x)单调递减,∴当x=1时,函数有最大值,最大值为f(1)=-1. (2)证明:由(1)可得f(x)<f(1)=-1<0,∴ln x<x. 再设g(x)=ex-x,∴g′(x)=ex-1, ∵g′(x)=ex-1>0,在(0,+∞)上恒成立,∴g(x)在(0,+∞)上单调递增, ∴g(x)>g(0)=1>0,∴ex>x, 综上可得ln x<x<ex.
专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
导数及其应用利用导数研究函数的极值最值课件

导数及其应用 利用导数研究函数的极值最值 课件 理 ppt xx年xx月xx日contents •导数及其应用•利用导数研究函数的极值最值•课件制作技巧•案例分析•导数的进一步学习与拓展目录01导数及其应用1导数的定义23导数是函数在某一点的变化率,它描述了函数在某一点的斜率。
导数的定义导数的几何意义是函数在某一点的切线斜率。
导数的几何意义导数的物理意义是速度的变化率,即物体运动的速度在某一时刻的变化率。
导数的物理意义导数的计算根据导数的定义,通过求极限来计算导数。
定义法公式法表格法图像法利用导数的运算法则和公式来计算导数。
利用导数表来计算导数。
利用函数图像来估计导数。
最优问题导数可以帮助我们找到最优解,例如在经济学、工程学等领域中,利用导数可以找到最优的成本、价格、利润等。
导数在实际问题中的应用运动问题导数可以描述物体的运动状态,例如速度、加速度等,利用导数可以解决运动问题,例如计算轨迹、碰撞时间等。
物理问题导数可以描述物理现象的变化规律,例如温度、压力、电流等,利用导数可以解决物理问题,例如计算热传导、弹性力学等。
02利用导数研究函数的极值最值极值的定义:设函数$f(x)$在点$x_{0}$的附近有定义。
若在$x_{0}$的左侧$f(x)$单调递增。
在$x_{0}$的右侧$f(x)$单调递减定义法:判断导数由正变负的点,这些点为可能极值点,再检验这些点两侧的导数值,确定是否为极值点。
表格法:通过列表计算函数在各点的导数值,并判断其正负,从而得到极值点。
极值的判定方法极值的概念及判定方法最值的定义及求法最值的定义:函数在某区间内取得最大(小)值的点称为最值点。
对于连续函数,还可以利用介值定理求解最值。
最值的求法利用定义法或表格法求极值点,然后比较极值与端点函数值的大小关系,从而得到最值。
1导数在极值最值问题中的综合应用23导数在极值最值问题中的应用非常广泛,例如在经济、物理、工程等领域都有应用。
导数及其应用导数的计算ppt

最大增长率与种群密度
总结词
种群密度是影响生物生长和繁殖的关键因 素之一,导数可以用来描述种群密度的变 化率,即种群增长速度。
VS
详细描述
在生物学中,导数的计算可以帮助我们了 解种群密度的变化趋势和最大增长速率。 例如,在环境资源有限的情况下,种群数 量增长会受到限制,增长速度逐渐减慢。 通过计算导数,我们可以预测种群密度的 变化情况,从而采取相应的保护和管理措 施。
利用导数的概念和方法可以推导出电磁感应定 律的一般形式,从而更好地理解磁场中电流的 变化对导体产生的影响。
06
导数在数学中的应用
导数与切线方程
总结词
导数可以用来描述曲线的切线斜率,是研 究曲线在某一点处的变化趋势的重要工具 。
详细描述
在数学中,导数可以被用来计算曲线在某 一点的切线斜率。对于曲线 y = f(x) 而言 ,其在 x=x0 处的切线斜率为 f'(x0),即该 点处函数值的变化率。通过导数的概念, 我们可以得到曲线在某一点处的变化趋势 ,从而更好地理解曲线的性质。
生物质能最优化问题
总结词
生物质能是绿色能源的重要组成部分,导数的计算可以帮助我们找到生物质 能的最优利用方案。
详细描述
生物质能转化成可利用能源的过程中,转化效率与生物质能本身的结构和组 成密切相关。通过导数的计算,我们可以分析不同组成成分的贡献和影响, 优化生物质能的利用方案,提高转化效率。
生态环境优化问题
03
导数在经济学中的应用
边际分析
边际效用
边际效用递减规律,总效用和 边际效用的关系
边际收益
边际收益递减规律,总收益和 边际收益的关系
边际成本
边际成本递增规律,总成本和 边际成本的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章导数及其运用知识网络第1讲 导数的概念及运算★ 知 识 梳理 ★1.用定义求函数的导数的步骤.(1)求函数的改变量Δy ;(2)求平均变化率xy ∆∆.(3)取极限,得导数f '(x 0)=0lim →∆x x y∆∆.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线的 物理意义:若物体运动方程是s =s (t ),在点P (i 0,s (t 0))处导数的意义是t =t 0处 的解析:斜率.;瞬时速度. 3. 几种常见函数的导数'c =0(c 为常数);()n x '=1n nx-(R n ∈);()____'=x ;_____1'=⎪⎭⎫⎝⎛x'(sin )x = ;'(cos )x = ;(ln )x '=1x ; (log )a x '=1log a e x; '()x e =x e ;'()x a =ln x a a .解析:cos ;sin ;x x - 4.运算法则①求导数的四则运算法则:'()u v ±=''u v ±;'()uv = ;'u v ⎛⎫= ⎪⎝⎭(0)v ≠.解析:''u v uv +; ''2u v uv v -②复合函数的求导法则:'(())x f x ϕ=''()()f u x ϕ或x u x u y y '''⋅=★ 重 难 点 突 破 ★1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法2.难点:切线方程的求法及复合函数求导3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题. (1)平均变化率的实际含义是改变量与自变量的改变量的比。
问题1.比较函数()2xf x =与()3xg x =,当[1,2]x ∈时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是(1)计算自变量的改变量21x x x ∆=-(2)计算对应函数值的改变量22()()y f x f x ∆=- (3)计算平均增长率:2121()()f x f x y x x x -∆=∆- 对于()2xf x =,2111223,21y x ∆-==∆-又对于()3xg x =,212233821y x ∆-==∆-故当[1,2]x ∈时, ()g x 的平均增长率大于()f x 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则, 问题2. 已知2)2cos 1(x y +=,则='y .点拨:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:)2cos 1(2sin 2x x y +-='.设2u y =,x u 2cos 1+=,则)2()2sin (2)2cos 1(2'⋅-⋅='+=''='x x u x u u y y x u x)2cos 1(2sin 42)2sin (2x x x u +-=⋅-⋅=∴)2cos 1(2sin 4x x y +-='.(3)求切线方程时已知点是否切点至关重要。
问题3. 求322+=x y 在点)5,1(P 和)9,2(Q 处的切线方程。
点拨:点P 在函数的曲线上,因此过点P 的切线的斜率就是y '在1=x 处的函数值; 点Q 不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.切忌直接将P ,Q 看作曲线上的点用导数求解。
4.4,3212='∴='∴+==x y x y x y即过点P 的切线的斜率为4,故切线为:14+=x y .设过点Q 的切线的切点为),(00y x T ,则切线的斜率为04x ,又2900--=x y k PQ ,故00204262x x x =--,3,1.06820020=∴=+-∴x x x 。
即切线QT 的斜率为4或12,从而过点Q 的切线为:1512,14-=-=x y x y★ 热 点 考 点 题 型 探 析★考点1: 导数概念题型1.求函数在某一点的导函数值 [例1] 设函数()f x 在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .0'()f x -C .0()f xD .0()f x - 【解题思路】由定义直接计算 [解析]0000000()()[()]()limlim ()()x x f x x f x f x x f x f x x x ∆→∆→-∆-+-∆-'=-=-∆-∆.故选B【名师指引】求解本题的关键是变换出定义式00()()lim()x f x x f x f x x∆→+∆-'=∆考点2.求曲线的切线方程[例2](高明一中2009届高三上学期第四次月考)如图,函数)(x f y =的图象在点P 处的切线方程是 8+-=x y ,则)5()5(f f '+= .【解题思路】区分过曲线P 处的切线与过P 点的切线的不同,后者的P 点不一定在曲线上. 解析:观察图形,设(5,(5))P f ,过P 点的切线方程为(5)'(5)(5)y f f x -=-即'(5)(5)5'(5)y f x f f =+-它与8+-=x y 重合,比较系数知:'(5)1,(5)3f f =-= 故)5()5(f f '+=2【名师指引】求切线方程时要注意所给的点是否是切点.若是,可以直接采用求导数的方法求;不是则需设出切点坐标.题型3.求计算连续函数()y f x =在点0x x =处的瞬时变化率[例3]一球沿一斜面从停止开始自由滚下,10 s 内其运动方程是v =v(t )=t 2(位移单位:m ,时间单位:s ),求小球在t =5时的加速度.【解题思路】计算连续函数()y f x =在点0x x =处的瞬时变化率实际上就是()y f x =在点0x x =处的导数.解析:加速度v =t t t s t s t t ∆-∆+=∆-∆+→∆→∆22005)5(lim )5()5(limlim →∆=t (10+Δt )=10 m /s.∴加速度v =2t =2³5=10 m /s.【名师指引】计算连续函数()y f x =在点0x x =处的瞬时变化率的基本步骤是1. 计算00()()f x x f x y x x+∆-∆=∆∆ 2. 计算0lim x yx∆→∆∆【新题导练】.1. 曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 . 解析:曲线xy 1=和2x y =在它们的交点坐标是(1,1),两条切线方程分别是y=-x+2和y=2x-1,它们与x 轴所围成的三角形的面积是43.点拨::与切线有关的问题,应有运用导数的意识,求两曲线的交点坐标只要联立解方程组即可. 2. 某质点的运动方程是2)12(--=t t S ,则在t=1s 时的瞬时速度为 ( )A .-1B .-3C .7D .13解:B 点拨:计算0limx ∆→(1)(1)s s t s t t∆+∆-=∆∆即可 3. 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程.解:设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 12=2x 1(x -x 1),即y =2x 1x -x 12①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0 ∴直线l 方程为y =0或y =4x -4点拨:利用解方程组求交点,利用直线间的位置和待定系数法求斜率. 考点2 导数的运算 题型1:求导运算[例1] 求下列函数的导数:(1) cos x y e x = (2)2tan y x x =+ (3)ln(1)y x =+ 【解题思路】按运算法则进行[解析] (1)()'''cos ,cos (cos )cos sin xx xxx y e x y ex e x ex e x =∴=+=-(2)()2'2'2'2sin cos sin (sin )tan ,()2cos cos x x x x y x x y xx x x--=+∴=+=+ 212cos x x=+(3)''11(1)11y x x x =⋅+=++ 【名师指引】 注意复合函数的求导方法(分解→求导→回代);注意问题的变通:如x xe y -=的导数容易求错,但x exy =的导数不易求错. 题型2:求导运算后求切线方程例2. (广州市2008届二月月考)已知函数).(3232)(23R ∈+-=x x ax x x f (1)若1=a ,点P 为曲线)(x f y =上的一个动点,求以点P 为切点的切线斜率取最小值时的切线方程;(2)若函数),0()(+∞=在x f y 上为单调增函数,试求满足条件的最大整数a . 【解题思路】先按运算法则求导,再按几何意义求切线方程.解析:(1)设切线的斜率为k ,则1)1(2342)(22+-++-='=x x x x f k又35)1(=f ,所以所求切线的方程为:135-=-x y 即.0233=+-y x【名师指引】求三次函数图象的切线在高考中经常出现.与曲线21y x e=相切于P (,)e e 处的切线方程是( D ) A . 2y ex =- B . 2y ex =+ C . 2y x e =+ D . 2y x e =-题型3:求导运算后的小应用题例 3. 某市在一次降雨过程中,降雨量()y mm 与时间(min)t 的函数关系可近似地表示为()y f t =则在时刻40min t =的降雨强度为( )A.20mmB. 400mmC.1/min 2mm D. 1/min 4mm 【解题思路】先对t 的求导,再代t 的数值.解析:1'()10'(40)4f t f =∴==选D 【名师指引】求某一时刻的降雨量相当于求瞬时变化率,即那一时刻的导数值. 【新题导练】.4. 设函数()()(2)(3)f x x x k x k x k =++-,且(0)6f '=,则k =A .0B .-1C .3D .-6 思路分析: 按导数乘积运算法则先求导,然后由已知条件构造关于k 的方程求解. 解 :'()()(2)(3)f x x k x k x k =++-+(2)(3)x x k x k +-+()(3)x x k x k +-+()(2)x x k x k ++故3'(0)6f k =- 又(0)6f '=,故1k =-5. 设函数()()()()f x x a x b x c =---,(a 、b 、c 是两两不等的常数),则='+'+')()()(c f cb f b a f a . 解析:'()()()()()()()f x x a x b x b xc x c x a =--+--+--代入即得0..6. 质量为10kg 的物体按2()34s t t t =++的规律作直线运动,动能212E mv =,则物体在运动4s 后的动能是解析:先求瞬时速度后,再代入公式求解提3125J★ 抢 分 频 道 ★基础巩固训练1. (广东省六校2009届高三第二次联考试卷)()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .解析: 2'()2f x x =+故(1)f '-=32. (广东省2008届六校第二次联考)cos y x x =在3x π=处的导数值是___________.解析:'cos sin y x x x =-故填126- 3. 已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,P 是抛物线的弧上求一点P ,当△PAB 面积最大时,P 点坐标为 .解析:|AB |为定值,△PAB 面积最大,只要P 到AB 的距离最大,只要点P 是抛物线的平行于AB 的切线的切点,设P (x ,y ).由图可知,点P 在x 轴下方的图象上∴y =-2x ,∴y ′=-x 1,∵k AB =-21,∴-211-=x∴x =4,代入y 2=4x (y <0)得y =-4. ∴P (4,-4)4.(广东省深圳市2008年高三年级第一次调研考试)已知()ln f x x =,217()22g x x mx =++(0m <),直线l 与函数()f x 、()g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1.求直线l 的方程及m 的值;解:依题意知:直线l 是函数()ln f x x =在点(1,0)处的切线,故其斜率1(1)11k f '===,所以直线l 的方程为1y x =-.又因为直线l 与()g x 的图像相切,所以由22119(1)0172222y x x m x y x mx =-⎧⎪⇒+-+=⎨=++⎪⎩, 得2(1)902m m ∆=--=⇒=-(4m =不合题意,舍去); 5.(湛江市实验中学2009届高三第四次月考)已知函数)(),(),(21)(,ln )(2x g x f l a a x x g x x f 与函数直线为常数+==的图象都相切,且l 与函数)(x f 图象的切点的横坐标为1,求直线l 的方程及a 的值; 解由1|)(1='=x x f ,故直线l 的斜率为1,切点为))1(,1(f即(1,0) ∴1:-=x y l ① 又∵)21,1(,1)(a x x g +=='切点为∴1)21(:-=+-x a y l 即a x y +-=21② 比较①和②的系数得21,121-=∴-=+-a a综合拔高训练6. 对于三次函数32()(0)f x ax bx cx d a =+++≠,定义:设()f x ''是函数()y f x =的导函数()y f x '=的导数,若()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”。