北师大版七年级下册 第五章生活中的轴对称经典练习
北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。
北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。
北师大版七年级下册数学第五章生活中地轴对称(附答案)

word 整理版七年级(下)第五章生活中的轴对称练习题一、选一选,牛刀初试露锋芒!(每小题 3 分,共30 分)1.下列图形中,轴对称图形的个数是()A.4 个 B .3 个C.2 个 D .1 个2.下列分子结构模型平面图中,有一条对称轴的是()ABE 22.5C 3.如图1,将长方形ABCD纸片沿对角线BD 折叠,使点C 落在C 处,C D BC 交AD于E,若DBC 22.5°,则在不添加任何辅助线的情况下,图1 则图中45 的角(虚线也视为角的边)的个数是()A.5 个 B .4 个 C .3 个 D . 2个4.下列说法中错误的是()A.两个关于某直线对称的图形一定能够完全重合C.成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D.平面上两个能够完全重合的图形不一定关于某直线对称学习参考资料5.如图2,△AOD关于直线l 进行轴对称变换后得到△BOC,下列说法中不正确的是().A.∠DAO=∠CBO,∠ADO∠=BCO B .直线l 垂直平分AB、CDC.△AO D和△BOC均是等腰三角形 D .AD=BC,OD=OC6.将一个正方形纸片依次按图 a ,图b的方式对折,然后沿图 c 中的虚线裁剪,图2 最后将图d 的纸再展开铺平,所看到的图案是().a b c dA B C D7.如图3,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长图3 为()A.10 cm B .12cm C .15cm D .20cm8.图4 是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B .10:51 C .10:21 D .15:10图4 9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 5 所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.A.1 个 B .2 个 C .3 个 D .4个10.如图6,AB AC ,BAC 120 ,AB的垂直平分线交BC于点D,那么DAC 的度数为().A.90 B .80 C .70 D .60图6图5图7二、填一填,狭路相逢勇者胜!(每小题 3 分,共30 分)11.在一些缩写符号:①SOS,②CCTV,③BBC,④WWW,⑤TNT 中,成轴对称图形的是(填写序号)12.已知等腰三角形的顶角是底角的 4 倍,则顶角的度数为.13.如图7,公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是. (填写序号)14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字.(笔画的粗细和书写的字体可忽略不记).学习参考资料word 整理版15.如图8(下页),AD是三角形ABC的对称轴,点E、F 是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.16.从汽车的后视镜中看见某车车牌的后 5 位号码是,则该车的后 5 位号码实际是.17.下午2 时,一轮船从A处出发,以每小时40 海里的速度向正南方向行驶,下午4 时,到达 B 处,在 A 处测得灯塔 C 在东南方向,在 B 处测得灯塔 C 在正东方向,则B、C之间的距离是.18.如图9,在ABC 中,ABC ACB,AB=25cm,AB的垂直平分线交AB于点D,交AC于点E,若B C E的周长为43cm,则底边BC的长为.19.如图10,把宽为2cm的纸条ABCD沿EF,GH 同时折叠,B、C 两点恰好落在AD 边的P 点处,若△PFH 的周长为10cm,则长方A形ABCD 的面积DE PGAD 为.CBF H图10图8 图920.在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD 是等腰三角形;⑤AD=BD=BC. 上述结论中,正确的三、想一想,百尺竿头再进步!(共60 分)学习参考资料图1121.(7 分)如图11,在△ABC中,∠C 90 ,AD 平分∠BAC ,DE ⊥AB,如果DE 5cm,∠CAD 32 ,求CD 的长度及∠B的度数.22.(7 分)如图12,已知AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm. 求AE的长.图1223.(8 分)如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.图1324.(8 分)如图14,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.25.(10 分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合).图1526.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°. 求∠ACB和∠BAC的度数.27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F 分别是边AB、AC上的中点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.图17答案一、选一选,牛刀初试露锋芒!1.B.点拨:可利用轴对称图形的定义判断.2.A.点拨:选项A有1 条对称轴,选项B、C各有2 条对称轴,选项D有6 条对称轴. 3.A.点拨:图中45 的角分别是:CBC , ABE, AEB, C ED, C DE .4.B.点拨:对称图形的对称点也可能在对称轴上.5.C.点拨:△AO D和△BOC的形状不确定.6.D.点拨:可动手操作,或空间想象.7.C.点拨:由题意得,AD=BD. 故△ACD的周长=AC+CD+AD=AC+BC=15cm8.B.点拨:镜子中看到的时刻的读数与实际时刻的读数关于镜子成轴对称.9.C.点拨:等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ、△BPR、△PAD. 10.A.点拨:可求得 B BAD 30 .二、填一填,狭路相逢勇者胜!11.③,④.12.120°. 点拨:设底角的度数为x,则顶角的度数为 4 x,则有x +x +4 x =180. 13.②、③. 点拨:利用线段的垂直平分线的性质.14.本,幸,苦. 点拨:答案不惟一,只要是轴对称图形即可.15.3.点拨:利用转化思想,阴影部分的面积即为直角三角形ABD的面积. 16.BA629. 点拨:这 5 位号码在镜子中所成的像关于镜面成轴对称.17.80 海里. 点拨:画出示意图可知,△ABC是等腰直角三角形.18.18cm.点拨:由BE+CE=AC=AB=2,5可得BC=43-25=18(cm).19. 220cm .点拨:根据轴对称的性质得,BC的长即为△PFH的周长.20.①②④⑤. 点拨:∠ABC =∠C=∠BDC =72°;∠CBD=∠ABD=∠A=36°.三、想一想,百尺竿头再进步!21.因为AD 平分∠BAC ,DE⊥AB,DC ⊥AC ,所以CD DE 5cm.又因为AD 平分∠BAC ,所以∠CAB 2∠CAD 2 32 64 ,所以∠B 90 64 26 .22.因为△ABD、△BCE都是等腰三角形,所以AB=BD,BC=BE.又因为BD=CD-BC,所以AB= CD-BC=CD-BE=8cm-3cm=5cm,所以AE=AB-BE=2cm.学习参考资料23.如答图 1 所示. 到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D 的.距离相等的点则在线段C D的垂直平分线上,故交点P 即为所求24.(1)如答图 2 所示. 点拨:利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形△ A B C .(2)S ABC 9. 点拨:利用和差法.答图 1答图 225.(1)都是轴对称图形;它们的面积相等(都是4).(2)答案不惟一,如答图 3 所示.答图 326.因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE=35 °,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°.27.(1)因为EF∥BC,所以∠AEF=∠B,∠AFE=∠C .又因为AB=AC,所以∠B=∠C,所以∠AEF=∠AFE,所以AE=AF,即△AEF是等腰三角形.(2)DE=DF.理由如下:方法一:因为AD是等腰三角形ABC的底边上的高,所以AD也是∠BAC的平分线.又因为△AEF是等腰三角形,所以A G是底边EF上的高和中线,所以AD⊥EF,G E=G F,所以AD是线段E F的垂直平分线,所以DE=DF.方法二:因为AD是高,所以BD=CD(三线和一);又因为点E、F 分别是边AB、AC上的中点,所以BE=CF,又因为∠B=∠C,所以△BDE≌△CDF(SAS),所以DE=DF.学习参考资料学习参考资料。
北师大版七年级数学下册 第5章生活中的轴对称 单元测试试题(有答案)

北师大版七年级数学下册第5章生活中的轴对称单元测试题一.选择题(共10小题)1.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2.如图,△ABC是等边三角形,DE∥BC,若AB=5,BD=3,则△ADE的周长为()A.2B.6C.9D.153.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°4.下列语句:①全等三角形的周长相等;②面积相等的三角形是全等三角形;③成轴对称的两个图形全等;④角是轴对称图形,角平分线是角的对称轴.其中正确的有()A.1个B.2个C.3个D.4个5.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB 最短.下面四种选址方案符合要求的是()A.B.C.D.6.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为()A.2a B.2.5a C.3a D.4a7.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=5,则DF的长度是()A.6B.5C.4D.38.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°9.如图,在△ABC中,BD平分∠ABC,ED∥BC,若AB=4,AD=2,则△AED的周长是()A.6B.7C.8D.1010.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2二.填空题(共8小题)11.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=cm.12.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是.13.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是.14.如图所示,AOB是一钢架,设∠AOB=α,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,若最多能添加这样的钢管4根,则α的取值范围是.15.如图,已知P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,垂足分别是M、N,如果PM =4,那么PN=.16.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC 于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为17.在△ABC中,∠ABC=∠ACB,把这个三角形折叠,使得点B与点A重合,折痕分别交直线AB,AC于点M,N,若∠ANM=50°,则∠B的度数为.18.常见的汉字中,列举三个是轴对称图形的字:.三.解答题(共9小题)19.如图,在△ABC中,∠ABC、∠ACB的平分线交于点E,过点E作EF∥BC,交AB于点M,交AC于点N.求证:MN=MB+NC.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.21.在△ABC中,AB=AC.D为△ABC外一点,且∠ABD=∠ACD=60°.求证:CD=AB﹣BD.22.如图,在长方形纸片ABCD中,AD=4,AB=8,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,AC=AB,DC=DB,AD与BC相交于O.求证:AD垂直平分BC.24.下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.25.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.26.如图,已知△ABC中,∠A的平分线与△ABC的外角∠EBC的平分线交于点P.(1)在AB的延长线上截取BE=BC,连结CE、BF相交于点H,求证:BP⊥CE;(2)作PG∥AD,交BC于F,交AE于点G,则线段GF、FC和GA三条线段之间有什么等量关系?并证明你的结论.参考答案与试题解析一.选择题(共10小题)1.解:观察选项可得:只有C是轴对称图形.故选:C.2.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=5,BD=3,∴AD=AB﹣BD=2,∴△ADE的周长为6,故选:B.3.解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.4.解:①全等三角形的周长相等,故正确;②面积相等的三角形不一定是全等三角形,故错误;③成轴对称的两个图形全等,故正确;④角平分线是角的对称轴所在的直线,故错误,故选:B.5.解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.6.解:∵折叠∴∠B=∠EDB=30°,∠FDC=∠C=90°,∴∠FED=60°,∠EFD=60°,∴△DEF是等边三角形,∴DE=EF=DF=a,∴△DEF的周长为3a,故选:C.7.解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=5,故选:B.8.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.9.解:∵ED∥BC,∴∠EDB=∠CBD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠EDB=∠ABD,∴DE=BE,∴AE+ED+AD=AE+BE+AD=AB+AD=4+2=6,即△AED的周长为6,故选:A.10.解:如图所示,n的最小值为3,故选:C.二.填空题(共8小题)11.解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故答案为8.12.解:∵在△ABC中,∠A=60°,∴要使是等边三角形,则需要添加一条件是:AB=AC或AB=BC或AC=BC.故答案为:此题答案不唯一,如AB=AC或AB=BC或AC=BC.13.解:∵DE∥AB,BD平分∠ABC,∴∠EBD=∠ABD=∠EDB,∴DE=BE=5cm,∵AB=AC,DE∥AB,∴∠C=∠ABE=∠DEC,∴DC=DE=5cm,且CE=3cm,∴DE+EC+CD=5cm+3cm+5cm=13cm,即△CDE的周长为13cm,故答案为:13cm.14.解:∵OE=EF,∴∠EOF=∠EFO=α,∴∠GEF=∠EOF+∠EFO=2α,同理可得∠GFH=3α,∠HGB=4α,∵最多能添加这样的钢管4根,∴4α<90°,5α≥90°,∴18°≤α<22.5°,故答案为18°≤α<22.5°.15.解:∵P是∠ACB平分线CD上一点,PM⊥CA,PN⊥CB,∴PN=PM=4,故答案为4.16.解:∵∠B+∠BMN+∠BNM=180°,∴∠BMN+∠BNM=180°﹣50°=130°,∵M在PA的中垂线上,∴MA=MP,∴∠MAP=∠MPA,同理,∠NCP=∠NPC,∵∠BMN=∠MAP+∠MPA,∠BNM=∠NPC+∠NCP,∴∠MPA+∠NPC=×130°=65°,∴∠APC=180°﹣65°=115°,故答案为:115°.17.解:①如图1所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠A=180°﹣90°﹣50°=40°,∴∠B=(180°﹣40°)÷2=70°;②如图2所示:由折叠可得MN⊥AB,则∠AMN=90°,∵∠ANM=50°,∴∠NAM=40°,∵∠B=∠C,∵∠B+∠C=∠NAM=40°,∴∠B=20°,故答案为:70°或20°.18.解:列举三个是轴对称图形的字:日、中、工等.故答案为:日、中、工等.三.解答题(共9小题)19.证明:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∵MN=ME+EN,∴MN=BM+CN.20.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.证明:延长BD到E,使BE=BA,连接AE,CE.∵∠ABD=60°,∴△ABE为等边三角形.∴AE=AB=AC=BE,∠ACE=∠AEC;∠AEB=60°;又∵∠ACD=60°,则∠AEB=∠ACD;∴∠DEC=∠DCE,DC=DE.∴BD+DC=BD+DE=BE=AB,∴DC=AB﹣BD.22.解:根据折叠可知:DE=BE,长方形纸片ABCD中,AD=4,AB=8,所以AE=8﹣DE,在Rt△ADE中,根据勾股定理,得DE2=AE2+AD2,DE2=(8﹣DE)2+42,解得:DE=5.答:DE的长为5.23.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵DC=DB,∴点D在BC的垂直平分线上,∴AD垂直平分BC.24.解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=3.5.25.解:(1)∵AD是边BC上的高,∴∠ADC=90°,∵AB=AC,∴AD是∠BAC的角平分线,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°;(2)∠BAD=2∠EDC,理由:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,∴∠B+∠BAD=∠ADC=∠ADE+∠EDC=∠AED+∠∠EDC=∠C+2∠EDC,∴∠BAD=2∠EDC.26.证明:(1)∵BE=BC,PB是∠EBC的平分线,∴BP⊥CE;(2)GA=GF+FC;理由:连接PC,作PM⊥AE于M,PN⊥BC于N,PK⊥AD于K,∵PA是∠A的平分线,PB是∠EBC的平分线,∴PM=PN=PK,∴PC是∠DCE的平分线,∴∠DCP=∠PCB,∵PG∥AD,∴∠CAP=∠APG,∠DCP=∠CPG,∵∠PAC=∠PAG,∴∠PAG=∠APG,∠CPG=∠PCB,∴AG=GP,CF=FP,∴GA=GF+FP=GF+FC;。
北师大版七年级数学下册第五章生活中的轴对称 测试题含答案

北师大版七年级数学下册第五章测试卷一、单选题1.下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学2.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B.10:51 C.10:21 D.15:103.下列轴对称图形中,对称轴条数最少的图形是()A.B.C.D.4.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB .试在直线a上找一点M,在直线b上找一点N,满足MN⊥a 且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.125.如图,AB∥CD,AP,CP分别平分∠BAC和∠ACD,PE⊥AC于点E,且PE=3cm,则AB与CD之间的距离为( )A.3 cm B.6 cm C.9 cm D.无法确定6.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l47.下列说法不正确的是()A.等腰三角形是轴对称图形B.三角相等的三角形是等边三角形C.如果两个三角形成轴对称,那么这两个三角形一定全等D.若A,B两点关于直线MN对称,则AB垂直平分MN8.下列四个图形中轴对称图形的个数是( )A.1 B.2 C.3 D.49.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放 的()的最适当的位置是在ABCA.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是()A.B.C.D.二、填空题11.一辆汽车的牌照在路面旁水面的倒影为,则实际号码是_____.12.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到____条折痕。
最新北师大版七年级数学下册 第五章生活中的轴对称章节 经典习题

生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO=∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A .30° B.40° C.45° D.60°10.如图,在△ABC 中,AB =AC ,CD 平分∠ACB 交AB 于D 点,AE ∥DC 交BC 的延长线于点E ,已知∠E =36°,则∠B = 72 度.11.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =BE ,求∠A 的度数.解:因为AB =AC , 所以∠ABC =∠C .因为BC =BD ,所以∠BDC =∠C .所以∠ABC =∠BDC =∠C .又因为AD =DE =BE ,所以∠A =∠DEA ,∠EBD =∠EDB .设∠EBD =∠EDB =x ,则∠A =∠DEA =2x ,∠ABC =∠BDC =∠C =3x .在△ABC 中,∠A +∠ABC +∠C =180°,即2x +3x +3x =180°,解得x =22.5°. 所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG . 所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,DF⊥BD,且BD=CD,那么BE与CF相等吗?说明理由.解:相等.理由如下:因为AD是∠BAC的平分线,DE⊥AB,DF⊥AC,所以DE=DF,∠DEB=∠DFC=90°.因为DF⊥BD,所以∠BDE+∠FDC=90°.又因为∠BDE+∠DBE=90°,所以∠FDC=∠DBE.又因为BD=CD,所以△BED≌△DFC,所以BE=CF.19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.。
北师大版七年级数学下册 第五章 生活中的轴对称练习(含答案)

第五章生活中的轴对称一、单选题1.下列图形中,属于轴对称图形的是( )A.B.C.D.2.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm3.以下图形中对称轴的数量小于3的是( )A.B.C.D.4.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A .6点20分B .5点20分C .6点40分D .5点40分 5.如图,在44⨯正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是( )A .△B .△C .△D .△6.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .MAP MBP ∠=∠C .ANM BNM ∠=∠D .AP BN = 7.下列说法中,正确的是( )A .线段是轴对称图形,对称轴是线段的垂直平分线B .等腰三角形至少有1条对称轴,至多有3条对称轴C .全等的两个三角形一定关于某直线对称D .两图形关于某直线对称,对称点一定在直线的两旁8.如图,在△ABC 中,△BAC =90°,AB =3,AC =4,BC =5,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP +BP 的最小值是( )A .5B .4C .3D .79.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论正确的有是( )(1)32C EF '∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.A .1个B .2个C .3个D .4个10.如图,在△ABC 中,AB =AC ,BC =10,S △ABC =60,AD△BC 于点D ,EF 垂直平分AB ,交AB 于点E ,AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为( )A .10B .11C .12D .13二、填空题11.看镜子里有一个数“”,这个数实际是_____.12.如图,30A ∠=︒,62B '∠=︒,ABC V 与A B C '''V 关于直线l 对称,则C ∠=__________.13.如图所示的五角星是轴对称图形,它的对称轴共有_____条.14.如图,在四边形ABCD 中,120BAD ∠=︒,90B D ∠=∠=︒,在BC ,CD 上分别找一点M ,N ,使AMN ∆的周长最小,则AMN ANM ∠+∠的度数为______.三、解答题15.如图,是3×3的正方形网格,将其中两个方格涂黑,使得涂黑后的整个图案是轴对称图形.请在以下备用网格中画出四个不同的图案(如果绕正方形的中心旋转,能重合的图案视为同一种,例如,下列四个图形就属于同一种).16.在图1中,已知AB=AC,EB=FC,在图2中,五边形ABCDE是正五边形,请你只用无刻的直尺分别画出两个图中的一条对称轴.17.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M,如图,在l上画出一点M,使得AM+BM最小.18.如图,将书页的一角斜折过去,使角的顶点A落在'A处,BC为折痕,BD平分'A BE.(1)求CBD ∠的度数.(2)若'120A BE ︒∠=,求CBA ∠的度数.19.如图,在四边形ABCD 中,AD △BC ,E 为CD 的中点,连接AE 、BE ,BE △AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .答案1.C 2.C 3.D 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.810512.88°13.5.14.120︒15.如图所示.16.由分析作图如下:17.解:如图,点M 即为所求.作A 点关于直线l 的对称点A′,连接A′B 交l 于点M ,连接AM ,此时AM+BM 的值最小.18.(1)由折叠的性质可知△ABC=A BC '∠ △12A BC A BA ''∠=∠又△BD 平分A BE ∠' △12A BD A BE ''∠=∠ △180A BA A BE ∠+∠=''︒ △1()2CBD A BC A BD A BA A BE ∠=∠+∠=+∠''∠''=1180029⨯︒=︒ (2)△'120A BE ∠=︒''180********A BA A BE ∴∠=︒-∠=︒-︒=︒ △△ABC=A BC '∠ △1302CBA A BA '∠=∠=︒ 19.(1)△AD △BC (已知),△△ADC =△ECF (两直线平行,内错角相等), △E 是CD 的中点(已知),△DE =EC (中点的定义).△在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ADE △△FCE (ASA ),△FC =AD (全等三角形的性质).(2)△△ADE △△FCE ,△AE =EF ,AD =CF (全等三角形的对应边相等), △BE 是线段AF 的垂直平分线,△AB=BF=BC+CF,△AD=CF(已证),△AB=BC+AD(等量代换)。
(北师大版)北京市七年级数学下册第五单元《生活中的轴对称》测试(答案解析)

一、选择题1.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC 是一个格点三角形,在这个33⨯的正方形格纸中,与ABC 成轴对称的格点三角形最多有( )A .3个B .4个C .5个D .6个 2.如图,ABC 与111A B C △关于直线MN 对称,点P 为MN 上任一点,下列结论中错误的是( )A .1AA P 是等腰三角形B .MN 垂直平分1AAC .ABC 与111A B C △面积相等D .直线AB ,11A B 的交点不一定在MN 上 3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是( )A .1 号袋B .2 号袋C .3 号袋D .4 号袋 4.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条 5.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒6.如图,矩形纸片ABCD 沿着BE 折叠,使C 、D 两点分别落在C 1、D 1处,若∠ABC 1=45°,则∠ABE 的度数为( )A .22.5°B .21.5°C .22°D .21° 7.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112° 8.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若6AB =cm ,4AC =cm ,则ABD ∆与ACD ∆的周长之差( )A .等于1 cmB .等于2 cmC .等于3 cmD .无法确定 9.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .10.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .1011.如图,ABC ∆中,BAC 90︒∠=,6AB =,10BC =,8AC =,BD 是ABC ∠的平分线.若P 、Q 分别是BD 和AB 上的动点,则PA PQ +的最小值是( )A .125 B.4 C .245 D .512.如图所示,在锐角三角形ABC 中,AB =8,AC =5,BC =6,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,下列结论:①∠CBD =∠EBD ,②DE ⊥AB ,③三角形ADE 的周长是7,④34BCD ABD S S =△△,⑤34CD AD =.其中正确的个数有( )A .2B .3C .4D .5二、填空题13.如图,在ABC 中,AB AC =,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若12BC =,84ABC S =△,则线段PB PD +的最小值为______.14.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE 的度数是_______.15.如图将长方形ABCD 折叠,折痕为EF ,BC 的对应边B C ''与CD 交于点M ,若40C FM '∠=︒,则BEF ∠的度数为_______.16.如图,将∠ACB 沿EF 折叠,点C 落在C ′处.若∠BFE =65°.则∠BFC ′的度数为_____.17.如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.18.如图,在Rt ABC ∆中,沿ED 折叠,点C 落在点B 处,已知ABE ∆的周长是15,6BD =,则ABC ∆的周长为__________.19.把一张长方形纸条按如图所示折叠后,若∠A OB′=70°,则∠B′OG=_____.⨯方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴20.如图,33对称图形,这样的轴对称图形共有_________ 个.三、解答题21.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;+最小.(2)在DE上画出点Q,使QA QC(3)四边形BCC1B1的面积为.22.如图,以AB为对称轴,画出下面图形的对称图形,观察这个图形和它的轴对称图形构成什么三角形,根据你所学习的轴对称图形的基本特征,结合你所画的图形写出两个正确结论.∆的顶点均落23.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC在格点上,点A 的坐标是()3,1--.(1)分别写出与ABC ∆关于x 轴对称的111A B C ∆的顶点坐标;(2)分别写出与ABC ∆关于y 轴对称222A B C ∆的的顶点坐标;(3)分别画出111A B C ∆和222A B C ∆.24.如图,在正方形网格中,每个小方格的边长都为1,△ABC 各顶点都在格点上.若点A 的坐标为(0,3),请按要求解答下列问题:(1)在图中建立符合条件的平面直角坐标系;(2)根据所建立的坐标系,写出点B 和点C 的坐标;(3)画出△ABC 关于x 轴的对称图形△A B C '''.25.如图,点P 关于OA 、OB 轴对称的对称点分别为C 、D ,连结CD ,交OA 于M ,交OB 于N .(1)若CD 的长为18厘米,求△PMN 的周长;(2)若∠CPD =131°,∠C =21°,∠D =28°,求∠MPN .26.如图,已知ABC ∆.(1)画出ABC ∆关于y 轴对称的A B C '''∆;(2)写出ABC ∆关于x 轴对称的111A B C ∆各顶点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解.【详解】解:与ABC成轴对称的格点三角形最多有6个.故答案为:D.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.2.D【分析】据对称轴的定义,△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,可以判断出图中各点或线段之间的关系.【详解】解:∵△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,∴△A 1A P 是等腰三角形,MN 垂直平分A 1A ,C 1C ,这两个三角形的面积相等,故A 、B 、C 选项正确,直线AB ,11A B 关于直线MN 对称,因此交点一定在MN 上,故D 错误,故选:D .【点睛】本题考查了轴对称的性质与运用,掌握对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键. 3.B解析:B【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点睛】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.4.B解析:B【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【详解】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.【点睛】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.5.B解析:B【分析】由轴对称的性质可求出∠EFC 的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B .【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.6.A解析:A【分析】根据折叠前后对应角相等即可得出∠CBE 的度数,再根据∠ABC 为直角即可得到答案.【详解】设∠ABE=x ,根据折叠前后角相等可知,∠C 1BE=∠CBE=45x ︒+,∵∠ABC=90°,∴∠CBE+∠ABE=90°,即4590x x ︒++=︒,解得22.5x =︒.故选:A .【点睛】本题考查了图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.7.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF ;∠AEC ;∠BGE ;∠BFD 即可判断.【详解】解:A 、∵∠EFB =34°,AC′∥BD′,∴∠EFB =∠FEC′=∠FEG =34°,故正确,不符合题意;B 、由折叠可得∠C′EG =68°,则∠AEC =180°﹣∠C′EG =112°,故错误,符合题意;C 、∵∠BGE =∠C′EG =68°,故正确,不符合题意;D 、∵EC ∥DF ,∴∠BFD =∠BGC =∠AEC =112°,故正确,不符合题意.故选:B .【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.8.B解析:B【分析】根据折叠的性质可得BD=CD ,由此可得ABD ∆与ACD ∆的周长之差等于AB 与AC 的差.【详解】由折叠得,BD=CD ,∵6AB =cm ,4AC =cm ,∴△ABD 的周长-△ACD 的周长=(AB+AD+BD )-(AD+AC+CD)=AB-AC=6-4=2cm .故选:B .【点睛】本题主要考查了三角形的折叠问题,由折叠得到BD=CD 是解题的关键.9.C解析:C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键. 10.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.11.C解析:C【分析】在BC 上截取BQ BQ '=,连接PQ ',易证PQ PQ '=,显然当A 、P 、Q '三点共线且AQ BC '⊥时,PA PQ +的值最小,问题转化为求△ABC 中BC 边上的高,再利用面积法求解即可.【详解】解:在BC 上截取BQ BQ '=,连接PQ ',如图,∵BD 是ABC ∠的平分线,∴∠ABD =∠CBD ,在△PBQ 和PBQ '∆中,QB Q B ABD CBD BP BP =⎧⎪∠=∠⎨='⎪⎩∴△△PBQ ≌PBQ '∆(SAS ),∴PQ PQ '=,∴PA PQ PA PQ '+=+,∴当A 、P 、Q '三点共线且AQ BC '⊥时,PA PQ +的值最小,过点A 作AF ⊥BC 于点F ,则PA PQ +的最小值即为AF 的长, ∵1122ABC S AB AC BC AF ∆=⋅⋅=⋅⋅, ∴6824105AB AC AF BC ⋅⨯===, 即PA PQ +的最小值为245. 故选C.【点睛】本题考查了全等三角形的判定和性质、角平分线的定义、垂线段最短和面积法求高等知识,属于常考题型,在BC 上截取BQ BQ '=,连接PQ ',构造全等三角形、把所求问题转化为求PA PQ '+的最小值是解题的关键.12.C解析:C【分析】根据翻折变换的性质得到DC=DE ,BE=BC ,BCD BED ∠=∠,根据已知求出AE 的长,根据三角形周长公式计算即可,根据高相等判断34BCD ABD S S =△△ ,根据△BCD ≅△BDE 判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE ,BE=BC=6,BCD BED ∠=∠,故DE ⊥AB 错误,即②错误∴△BCD ≅△BDE ,∴∠CBD =∠EBD,故①正确;∵AB=8,∴AE=AB-BE=2,△AED 的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD 的高为h ,则三角形BAD 的高也为h ∴116322114822BCD ABD h BC h S S h AB h ⨯⨯⨯⨯==⨯⨯⨯⨯△△=,故④正确; 当三角形BCD 的高为H ,底边为CD ,则三角形BAD 的高也为H ,底边为AD ∴34BCD ABD S C S D AD ==△△,故⑤正确. 故选C.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.14【分析】根据三角形的面积公式得到AD=14由EF垂直平分AB得到点AB关于直线EF对称于是得到AD的长度=PB+PD的最小值即可得到结论【详解】解:∵AB=ACD是BC中点∴AD⊥BC又∵BC=解析:14【分析】根据三角形的面积公式得到AD=14,由EF垂直平分AB,得到点A,B关于直线EF对称,于是得到AD的长度=PB+PD的最小值,即可得到结论.【详解】解:∵AB=AC,D是BC中点,∴AD⊥BC,又∵BC=12,S△ABC=84,∴1×12×AD=84,2∴AD=14,∵EF垂直平分AB,∴PA=PB,∴PB+PD=PA+PD,∴当A,P,D在同一直线上时,PB+PD=PA+PD=AD,即AD的长度=PB+PD的最小值,∴PB+PD的最小值为14,故答案为:14.【点睛】本题考查了轴对称-最短路线问题,线段的垂直平分线的性质,等腰三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.14.50°【分析】依据平行线的性质即可得到∠EFC的度数再求出∠CFQ即可求出∠PFE的度数【详解】∵AB∥CD∠PEF=60°∴∠PEF+∠EFC=180°∴∠EFC=180°﹣60°=120°∵将△解析:50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=212∠EFC=212×120°=20°,∴∠PFE=12∠EFQ=12(∠EFC﹣∠CFQ)=12(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.15.70°【分析】依据矩形的性质以及折叠的性质即可得到∠DFE=∠BEF设∠BEF=α则∠DFE=∠BEF=α根据BE∥CF即可得出∠BEF+∠CFE=180°进而得到∠BEF的度数【详解】解:∵四边形解析:70°【分析】依据矩形的性质以及折叠的性质,即可得到∠DFE=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,根据B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,进而得到∠BEF的度数.【详解】解:∵四边形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折叠可得,∠BEF=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.50°【分析】设∠BFC′的度数为α则∠EFC=∠EFC′=65°+α依据∠EFB+∠EFC=180°即可得到α的大小【详解】解:设∠BFC′的度数为α则∠EFC′=65°+α由折叠可得∠EFC=∠解析:50°.【分析】设∠BFC′的度数为α,则∠EFC=∠EFC′=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.【详解】解:设∠BFC′的度数为α,则∠EFC′=65°+α,由折叠可得,∠EFC=∠EFC′=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故答案为:50°【点睛】本题考查了平角的定义以及折叠的性质,解题时注意:折叠前后的两个图形对应角相等,对应线段相等.17.3【分析】如图作P关于OAOB的对称点CD连接OCOD则当MN是CD与OAOB的交点时△PMN的周长最短最短的值是CD的长根据对称的性质可以证得:△COD是等边三角形据此即可求解【详解】如图作P关于解析:3【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°, ∴△COD 是等边三角形,∴CD=OC=OD=3.∴△PMN 的周长的最小值=PM+M N+PN=CM+MN+DN≥CD=3.【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN 周长最小的条件是解题的关键.18.【分析】由折叠可得依据的周长是可得进而得到的周长【详解】由折叠可得的周长是的周长故答案为:27【点睛】本题主要考查了折叠问题折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和 解析:27【分析】由折叠可得,BE CE =,6BD CD ==,依据ABE △的周长是15,可得+15AB AE BE AB AE CE +=++=,进而得到ABC △的周长AB AE CE BD CD =++++.【详解】由折叠可得,BE CE =,6BD CD ==,ABE △的周长是15,∴+15AB AE BE AB AE CE +=++=,∴ABC △的周长151227AB AE CE BD CD =++++=+=.故答案为:27..【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.55°【分析】由翻折性质得∠BOG =∠B′OG 根据邻补角定义可得【详解】解:由翻折性质得∠BOG =∠B′OG ∵∠AOB′+∠BOG+∠B′OG =180°∴∠B′OG =(180°﹣∠AOB′)=(18解析:55°【分析】由翻折性质得,∠BOG =∠B′OG ,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG =∠B′OG ,∵∠AOB′+∠BOG+∠B′OG =180°,∴∠B′OG =12(180°﹣∠AOB′)=12(180°﹣70°)=55°. 故答案为55°.【点睛】考核知识点:补角,折叠.20.【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数【详解】解:将其中一个小方格的中心画上半径相等的圆使整个图形为轴对称图形这样的轴对称图形为:故答案为:3【点睛】考查了轴对称图形的解析:3【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数.【详解】解:将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形为:故答案为:3.【点睛】考查了轴对称图形的知识,解题的关键是了解轴对称图形的定义,难度不大.三、解答题21.(1)见解析;(2)见解析;(3)12【分析】(1)由网格结构找出点A、B、C关于直线DE对称点A1、B1、C1的位置,然后顺次连接即可;(2)利用轴对称确定最短路线问题连接A1C与DE的交点即为所求点Q.(3)利用梯形面积公式求解.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点Q即为所求;(3)四边形BCC1B1的面积为:1(48)22+⨯=12.【点睛】考查了画轴对称图形和利用轴对称求最短路线,解题关键是正确得出对应点位置.22.'ACC ∆是等腰三角形 结论:不唯一,【分析】根据轴对称性质和等腰三角形定义可得,画出来的图形构成等腰三角形.【详解】'ACC ∆是等腰三角形结论:不唯一,【点睛】考核知识点:画轴对称图形.理解轴对称图形的性质.23.(1)111(3,1),(2,4),(1,2)A B C ---;(2)222(3,1),(2,4),(1,2)A B C ---;(3)见解析【分析】(1)根据点关于x 轴对称的特点写出坐标即可;(2)根据点关于y 轴对称的特点写出坐标即可;(3)根据(1)(2)中的坐标进一步画图即可.【详解】(1)由题可得ABC ∆的三个顶点坐标为:(3,1),(2,4),(1,2)A B C ------,∴与ABC ∆关于x 轴对称的111A B C ∆的顶点坐标分别为111(3,1),(2,4),(1,2)A B C ---; (2)∵ABC ∆的三个顶点坐标为:(3,1),(2,4),(1,2)A B C ------,∴与ABC ∆关于y 轴对称的222A B C ∆的顶点坐标分别为222(3,1),(2,4),(1,2)A B C ---; (3)如图所示:【点睛】本题主要考查了轴对称的性质,熟练掌握相关概念是解题关键.24.(1)见解析;(2)点B 的坐标为(-3,-1),点C 的坐标为(1,1);(3)见解析.【分析】(1)根据点A 的坐标(0,3)可建立坐标系;(2)根据所建立的平面直角坐标系可得两个点的坐标;(3)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得.【详解】(1)如图所示:(2)如图所示,点B 的坐标为(-3,-1),点C 的坐标为(1,1);(3)如图所示,△A′B′C′即为所求.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.25.(1)18cm ;(2)82 .【分析】(1)因为点P 关于OA ,OB 的轴对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,所以PM=CM ,ND=NP ,PMN C △=PN+PM+MN= CM+MN+ND=CD ,故PMN 的周长可求;(2)因为点P 关于OA 、OB 轴对称的对称点分别为C 、D ,所以∠C=∠CPM=21°,∠D=∠DPN =28°,而∠MPN=∠CPD-∠CPM-∠DPN ,故∠MPN 的度数可求.【详解】解:(1)∵点P 关于OA ,OB 的轴对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,∴PM=CM ,ND=NP ,∵PMN C △=PN+PM+MN ,而CD=CM+MN+ND=18cm ,∴PMN C △=PN+PM+MN= CM+MN+ND=18cm ;(2)∵点P 关于OA 、OB 轴对称的对称点分别为C 、D ,∴∠C=∠CPM=21°,∠D=∠DPN =28°,∴∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.【点睛】本题主要考察了轴对称点之间的图象关系,解题的关键在于找出PM=CM ,ND=NP ,∠C=∠CPM ,∠D=∠DPN 的关系.26.(1)图见解析;(2)111(1,2),(3,1),(1,2)A B C ----.【分析】(1)分别作各点关于y 轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可.【详解】(1)如图;(2)111(1,2),(3,1),(1,2)A B C ----【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的轴对称经典练习
一、选择题(每小题3分,共30分)1.
下列四个图案中,是轴对称图形的有( )
A .1个
B .2个
C .3个
D .4个
2.
如图,将正方形纸片ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN .则下列说法错误的是( )A .AE ⊥MN
B .∠OEF =90°
C .∠BNO =∠FNO
D .AM =EM
3.如图,在△ABC 中,AB =AC ,点D ,E 在BC 上,连接AD ,AE ,如果只添加一个条件使∠DAB =∠EAC ,则添加的条件不能为( )A .BD =CE
B .AD =AE
C .DA =DE
D .B
E =CD
4.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )
A .
B .
C .
D .
5.
已知△ABC 的周长为36 cm ,AB =AC ,AD ⊥BC 于D ,△ABD 的周长为30 cm ,那么线段AD 的长为( )A .20 cm
B
.12 cm
C
.8 cm
D .6 cm
6.在如图1的长方形ABCD
中,点E 在AD 边上,
AD ∥BC ,∠A =∠D =90°,∠BEA =60°.现分别以BE ,CE 为折线,将A ,D 向BC 的方向折过去,图2为对折后A ,
B ,
C ,
D ,
E 五点在同一平面上的位置图.若∠AED =15°,则∠BCE 的度数为( )A .30°B
.32.5°
C .35°
D .
37.5°
图1
图2
A
B
C
E D
A
M D O
E
C
F
N
B E D
A
第6题图 第8题图7.下列图形中对称轴最多的是( )
A .圆
B .正方形
C .角
D .线段
8.
如图方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么共有( )种涂法.A .6 B .5 C .4
D .3
9.
如
图,在Rt △ABC 中,∠B =90°,DE 垂直平分AC ,交AC 于D ,交BC 于E ,连
接AE ,若∠BAE :∠BAC =1:5,则∠C =( )A .30° B .35° C .40° D .50°
10.如图,把矩形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么下
列说法错误的是( )
A .△EBD 是等腰三角形,E
B =ED B .折叠后∠ABE 和∠C′BD 一定相等
C .折叠后得到的图形是轴对称图形
D .△EBA 和△EDC′一定是全等三角形
11.如图,在△ACB 的边BC 所在直线上找一点P ,使得△ACP
为等腰三角形,则满足条件的点P 共有__________个.三、解答题(本大题共5小题,满分55分)
12.(8分)作图题:如图,OM 是一片草地,ON 是一条河流
,牧马人家住在P 点.牧马人每天都要从家里出发,先到草地牧马,再到河边饮马,然后回家,请作图说明牧马人怎样走路线最短.若点O 与点P 的距离为1 000 m ,∠MON =30°,则牧马人走的最短路程是多少?
13.(10分)如图,分别过A ,B 两个加油站的公路l 1,l 2相交
于点
O ,现准备在∠AOB 内部建一个油库,要求油库的位置
点P 满足到A ,B 两个加油站的距离相等,且到两条公路l 1,l 2的距离也相等.请用尺规作图作出油库点P 的位置(保留作图痕迹).
C
B E
D
A
E
C'
C
B
D
A
B
A
A
O
B
M
N
P
14.(15分)如图,在△ABC 中,D 是BC 边的中点,过点D
的直线GF 交AC 于F ,交AC 的平行线BG 于G ,DE ⊥DF 交AB 于E ,连接EG ,EF .(1)求证:BG =CF ;
(2)请你判断BE +CF 与EF 的大小关系,并说明理由.
21、
“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系.请你
根据图中给出的信息,解决下列问题
(1)填空:折线OABC 表示赛跑过程中____的路程与时间的关系,线段OD 表示赛跑过程中____的路程与时间的关系;赛跑的全程是_____米.
(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?
(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉
用了多少分钟?
22、如图1,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,以AD 为直角边且在AD 的上方作等腰直角三角形ADF ,连接CF .
(1)若AB =AC ,∠BAC =90°.
①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系;
②当点D 在线段BC 的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并直接写出你的猜想.(2)如图3,若AB ≠AC ,∠BAC ≠90°,∠BCA =45°,点D 在线段BC 上运动,试探究CF 与BC 的位置关系.
B D
A
C
E
G
F
C A
C
D F
F
D
C
图3
图2
图1。