【高考数学】7种”函数构造“方法,巧解高考”导数“难题!

合集下载

如何解决高考数学中的函数求导问题

如何解决高考数学中的函数求导问题

如何解决高考数学中的函数求导问题高考数学中的函数求导问题是一道常见而重要的考题。

解决这类问题,需要掌握一些基本方法和技巧。

本文将针对这个问题进行探讨,并提供一些解题思路和实践建议。

一、概念理解与基本原理要解决高考数学中的函数求导问题,首先需要对函数求导的概念进行理解。

函数求导即求函数的导数,表示函数在某一点的变化率。

导数的计算方法通常有以下几种:利用导数的定义、使用基本导数公式、链式法则和常用函数的导数法则等。

在解题过程中,我们需要掌握导数的基本性质和规则。

例如,常数函数的导数为0;多项式函数的导数可以通过对各项分别求导再相加的方式得到;指数函数、对数函数和三角函数等特殊函数的导数公式需要熟练掌握。

对于复合函数,可以运用链式法则求导。

掌握这些基本原理对于解决高考数学中的函数求导问题非常重要。

二、常见类型的函数求导问题在高考数学中,函数求导的问题多种多样。

下面列举并详细讨论几种常见的类型,以便更好地理解和解决这些问题。

1. 多项式函数的求导多项式函数是函数求导中最基本的类型之一。

多项式函数的导数可以通过对各项分别求导再相加的方式得到。

例如,对于函数f(x) = 3x^2+ 2x - 1,可以分别对3x^2、2x和-1求导,再将它们相加得到f'(x)的表达式。

在求导过程中,需要注意常数项的导数为0。

2. 指数函数和对数函数的求导指数函数和对数函数在高考数学中经常出现。

对于指数函数f(x) =a^x,其中a为常数,它的导数为f'(x) = a^x * ln(a),其中ln为自然对数。

对于对数函数f(x) = log_a(x),其中a为常数且a>0,a≠1,它的导数为f'(x) = 1 / (x * ln(a))。

3. 三角函数的求导三角函数在函数求导中也是常见的类型之一。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

这些函数的导数公式需要熟练掌握。

例如,正弦函数f(x) = sin(x)的导数为f'(x) = cos(x);余弦函数f(x)= cos(x)的导数为f'(x) = -sin(x);正切函数f(x) = tan(x)的导数为f'(x) = sec^2(x)。

高考数学导数构造秒杀技巧

高考数学导数构造秒杀技巧

导数构造一、 基础知识常见导数结构1. 对于不等式)0(,)(≠>'k k x f ,构造函数b kx x f x g +−=)()(2. 对于不等式,0)()(>+'x f x f x ,构造函数)()(x xf x g =3. 对于不等式,0)()(>−'x f x f x ,构造函数xx f x g )()(=4. 对于不等式,0)()(>+'x nf x f x ,构造函数)()(x f x x g n= 5. 对于不等式,0)()(>−'x nf x f x ,构造函数n)()(x x f x g =6. 对于不等式,0)()(>+'x f x f ,构造函数)()(x f e x g x= 7. 对于不等式,0)()(>−'x f x f ,构造函数xe xf xg )()(=8. 对于不等式,0)()(>+'x kf x f ,构造函数)()(x f e x g kx= 9. 对于不等式,0)(2)(>+'x xf x f ,构造函数)()(2x f ex g x =10. 对于不等式,0)(ln )(>⋅+'x f a x f ,构造函数)()(x f a x g x= 11. 对于不等式,0tan )()(>⋅'+x x f x f ,构造函数)(sin )(x f x x g ⋅= 12. 对于不等式,0)(tan )(>⋅−'x f x x f ,构造函数)(cos )(x f x x g ⋅=13. 对于不等式,0)()(>'x f x f ,构造函数)(ln )(x f x g = 14. 对于不等式,0)(ln )(>+'xx f x x f ,构造函数)(ln )(x f x x g ⋅=二、课堂练习 1. 加减构造法 例1.已知函数21()2f x x alnx =+,若对任意两个不相等的正数1x ,2x ,都有1212()()4f x f x x x −>−恒成立,则a 的取值范围为( ) A .[4,)+∞B .(4,)+∞C .(−∞,4]D .(,4)−∞变式1.已知函数()2x f x e ax =+−,其中a R ∈,若对于任意的1x ,2[1x ∈,)+∞,且12x x <,都有211212()()()x f x x f x a x x −<−成立,则a 的取值范围是( ) A .[1,)+∞ B .[2,)+∞C .(−∞,1]D .(−∞,2]2.指数乘除法构造例1. 已知()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x >',则以下判断正确的是() A .2019(2019)(0)f e f > B .2019(2019)(0)f e f < C .2019(2019)(0)f e f =D .(2019)f 与2019(0)e f 大小无法确定变式1.函数()y f x =的导函数为()f x ',满足x R ∀∈,()()f x f x '>且f (1)e =,则不等式()f lnx x >的解集为( )A .(,)e +∞B .(1,)+∞C .(0,)eD .(0,1)变式2.定义在[0,)+∞上的可导函数,且()()x f x f x '+<,则对任意正实数a ,下列式子恒成立的是( )A .f (a )(0)a e f <B .f (a )(0)a e f >C .a e f (a )(0)f <D .a e f (a )(0)f > 3.指数升级构造法例1.对定义在R 上的可导函数()f x 恒有(4)()()0x f x xf x −+'>,则()(f x ) A .恒大于等于0 B .恒小于0C .恒大于0D .和0的大小关系不能确定变式1.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2f e e =为自然对数的底数),则不等式2()f lnx x <的解集为( )A .(0,)2eB .C .1(e ,)2eD .(2e4.幂函数乘除法构造例题1.已知函数()y f x =对任意的(0,)x ∈+∞满足()()f x xf x >'(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .1()22f f >(1)B .1()22f f <(1)C .12()(12f f <D .12()2f f >(1)变式1.已知定义在R 上的偶函数()y f x =的导函数为()f x ',函数()f x 满足:当0x >时,()()1x f x f x '+>,且f (1)2018=.则不等式2017()1||f x x <+的解集是( ) A .(1,1)−B .(,1)−∞C .(1−,0)(0⋃,1)D .(−∞,1)(1−⋃,)+∞5.对数乘除法构造例1.已知定义在[e ,)+∞上的函数()f x 满足()()0f x xf x lnx '+<且f (4)0=,其中()f x '是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( ) A .[e ,4)B .(4,)+∞C .(,4)eD .[e ,1)e +变式1.已知定义在[e ,)+∞上的函数()f x 满足()()0f x xf x lnx '+<且f (4)0=,其中()f x '是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .[e ,4)B .(4,)+∞C .(,4)eD .[e ,1)e +6.对数升级构造法例1.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x '+=,且f (e )1e=,则不等式(1)(1)f x f e x e +−+>−的解集是( ) A .(0,)e B .(0,1)e + C .(1,)e − D .(1,1)e −+变式1.设()f x 是R 上的连续可导函数,当0x ≠时,()()0f x f x x '+>,则函数1()()g x f x x=+的零点个数为( ) A .0B .1C .2D .37.三角函数乘除构造法例1.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan 0f x f x x +'<成立,则下列结论一定正确的是( )A(1)()4f f π>B.()()63f ππ>C()()46f ππ>D()()34ππ>变式1.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<−成立,则( )A()()36f ππ>B()()36f ππ<Cf (1)cos1()4f π> D()()64ππ<例2定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x <'成立,则( )A()()43ππ>B .f (1)2()sin16f π>C ()()64f ππ>D ()()63f ππ>变式1.定义在(0,)2π上的函数()f x ,已知()f x '是它的导函数,且恒有cos ()sin ()0x f x x f x '+<成立,则有( )A .()()64f ππ>B ()()63f ππ>C .()()63f ππ>D .()()64f ππ>二、 课后练习1.已知()f x '为函数()f x 的导函数,当0x >时,有()()0f x xf x '−>恒成立,则下列不等式成立的是( ) A .1()2(1)2f f >B .1()2(1)2f f <C .12()(1)2f f <D .12()(1)2f f >2.已知()f x '是函数()(f x x R ∈且0)x ≠的导函数,当0x >时,()()0xf x f x '−<,记0.2220.222(log 5)(2)(0.2),,20.2log 5f f f a b c ===,则( ) A .a b c << B .b a c << C .c a b << D .c b a <<3.已知函数()y f x =是定义在实数集R 上的奇函数,且当0x >时,()()0f x x f x +'>(其中()f x '是()f x 的导函数)恒成立.若2211()()a ln f ln e e =,2(2)b f =,5(5)c lg f lg =,则a ,b ,c 的大小关系是( ) A .a b c >>B .c a b >>C .c b a >>D .a c b >>4.已知函数()f x 的定义域为R ,()f x '为函数()f x 的导函数,当[0x ∈,)+∞时,2sin cos ()0x x f x −'>且x R ∀∈,()()cos21f x f x x −++=.则下列说法一定正确的是( ) A .1532()()4643f f ππ−−>−− B .1534()()4643f f ππ−−>−− C .313()()4324f f ππ−>− D .133()()2443f f ππ−−>− 5.已知偶函数()f x 是定义在{|0}x R x ∈≠上的可导函数,其导函数为()f x '.当0x <时,()()f x f x x '<恒成立.设1m >,记4(1)1mf m a m +=+,b =,4(1)()1mc m f m =++,则a ,b ,c 的大小关系为( ) A .a b c <<B .a b c >>C .b a c <<D .b a c >>6.已知定义在R 上的奇函数()f x 的导函数为()f x ',当0x <时,()f x 满足2()()f x xf x x +'<,则()f x 在R 上的零点个数为( ) A .1B .3C .5D .1或37.设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,1()()lnx f x f x x'<−,则使得2(1)()0x f x −>成立的x 的取值范围是( )A .(1−,0)(0⋃,1)B .(−∞,1)(1−⋃,)+∞C .(1−,0)(1⋃,)+∞D .(−∞,1)(0−⋃,1)8.已知偶函数()f x 是定义在{|0}x R x ∈≠上的可导函数,其导函数为()f x ',当0x <时,()()f x f x x '>恒成立,设1m >,记4(1)1m f m a m +=+,2(2)b m f m =,4(1)()1mc m f m =++,则a ,b ,c 的大小关系为( ) A .a b c <<B .a b c >>C .b a c <<D .b a c >> 9.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,则关于的函数2()()g x f x x=+的零点个数为( ) A .0 B .1 C .2 D .0或 210.设函数()f x '是奇函数()()f x x R ∈的导函数,当0x >时,()()0f x xlnx f x '+<,则使得2(1)()0x f x −<成立的x 的取值范围是( )A .(−∞,1)(1−⋃,)+∞B .(−∞,1)(0−⋃,1)C .(1−,0)(0⋃,1)D .(1−,0)(1⋃,)+∞11.已知()f x 的导函数为()f x ',当0x >时,2()()f x xf x >',且f (1)1=,若存在x R +∈,使2()f x x =,则x 的值为 .12.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x '=−,则6()()f x f x '>的解集为( ) A .(0,)+∞B .(1,)+∞C .(,)e +∞D .(,)3e+∞13.知函数()f x 的定义域为R ,(2)2021f −=,对任意(,)x ∈−∞+∞,都有()2f x x '>成立,则不等式2()2017f x x >+的解集为( ) A .(2,)−+∞B .(2,2)−C .(,2)−∞−D .(,)−∞+∞14.已知定义在R 上的函数()y f x =可导函数,满足当0x ≠时,()()0f x f x x'+>,则关于x 的函数2()()g x f x x=−的零点个数为( ) A .0 B .1 C .2 D .不确定15.定义在R 上的函数()f x ,()f x '是其导函数,且满足()()2f x f x +'>,f (1)42e=+,则不等式()42x x e f x e >+的解集为( ) A .(,1)−∞B .(1,)+∞C .(,2)−∞D .(2,)+∞16.已知函数()f x 在(0,)2π上单调递减,()f x '为其导函数,若对任意(0,)2x π∈都有()()tan f x f x x <',则下列不等式一定成立的是( )A .()()36f ππ>B .()()46f f ππ>C .()()326f f ππ>D .()()46f ππ>16.已知函数()f x 是R 上的可导函数,且()f x 的图象是连续不断的,当0x ≠时,有()()0f x f x x '=>,则函数1()()F x xf x x=+的零点个数是( ) A .0 B .1 C .2 D .317.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x ='−,则4()()f x f x >'的解集为( )A .4(3ln ,)+∞ B .2(3ln ,)+∞ C .(2,)+∞ D .(3,)+∞ 18.设函数()f x '是函数()()f x x R ∈的导函数,(0)1f =,且3()()3f x f x ='−,则4()()f x f x >'的解集为( )A .4(3ln ,)+∞ B .2(3ln ,)+∞ C .,)+∞ D .,)+∞ 19.已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()(23)()x f x e x f x '=++,(0)1f =,则不等式()5x f x e <的解集为( )A .(4,1)−B .(1,4)−C .(−∞,4)(1−⋃,)+∞D .(−∞,1)(4−⋃,)+∞20.设函数()f x '是函数()()f x x R ∈的导函数,e 为自然对数的底数,若函数()f x 满足()()lnx xf x f x x '+=,且1()f e e =,则不等式1()x x f e e e e>−+的解集为( ) A .(,1)−∞ B .(0,1) C .(1,)+∞ D .(,0)−∞21.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x >',且(0)3f =,则不等式()3x f x e <的解集为( ) A .(,0)−∞B .(,2)−∞C .(0,)+∞D .(2,)+∞22.若对定义在R 上的可导函数()f x ,恒有(4)(2)2(2)0x f x xf x −+'>,(其中(2)f x '表示函数()f x 的导函数()f x '在2x 的值),则()(f x ) A .恒大于等于0 B .恒小于0C .恒大于0D .和0的大小关系不确定23.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得2(2)(13)(31)0xf x x f x +−−>成立的x 的取值范围是( ) A .(1,)+∞ B .1(1,)(1,)5−+∞C .1(,1)5D .(,1)−∞24.设函数()f x 满足()2()xe xf x f x x'+=,2(2)4e f =,则0x >时()(f x )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值25.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有cos ()sin ()0x f x x f x '+<成立,则有( )A ()2()64f ππ>B ()()63f ππ>C .()()63f ππ>D ()()64ππ>26.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2f e e =为自然对数的底数),则不等式2()f lnx x <的解集为 .27.已知()f x 是定义在R 上的函数,()f x '是()f x 的导函数.给出如下四个结论:①若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ②若()2()0xf x f x '+>,则14(2)(2)n n f f +<,*n N ∈;③若()()0f x f x '−>,则(2017)(2016)f ef >;④若()()0f x f x '+>,且(0)1f =,则不等式()x f x e −<的解集为(0,)+∞.所有正确结论的序号是 .28.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x'+=,且f (e )1e =,则不等式(1)(1)f x f e x e +−+>−的解集是 .29.已知函数()f x 的导函数为()f x ',e 为自然对数的底数,若函数()f x 满足()()lnxxf x f x x'+=,且f (e )1e =,则不等式1()f x x e e −>−的解集是 .。

导数中的构造函数(最全精编)

导数中的构造函数(最全精编)

导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。

在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。

下面我将分享导数小题中构造函数的技巧。

一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。

在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。

由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。

我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。

解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。

当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。

例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。

当 $x0$ 恒成立。

则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。

解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。

因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。

解导数题的几种构造妙招

解导数题的几种构造妙招

高二数学2021年4月解导数题的几种构造妙招■河南省商丘市应天高中在解导数有关问题时,常常需要构造一个辅助函数,然后利用导数解决问题,怎样构造函数就成了解决问题的关键,本文给出几种常用的构造方法,以抛砖引玉。

一.联想构造侧f函数于(工)在其定义域内满足鼻才(鼻)+于(鼻)=eS且/(I)=e,则函数于(刃()。

A.有极大值,无极小值张振继(特级教师)解:令(鼻)=e"—In鼻,则f(h)=e"——=——。

令fj)=o,则鼻云一1=0。

oc JC根据y=e"与y=丄的图像可得,两个图像交点的横坐标^O e(o,i),所以力(鼻)在(o, 1)上不单调,无法判断于(口)与于(%)的大小,A、B不正确。

同理,构造函数g(工)=兰,可证g(鼻)在(0,1)上单调递减,所以3C.B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值分析:联想导数的运算法则,(/(x)・/(rc),于是构造函数g(x)=^/(x)o其导数已知,所以±/(h)=X+C,确定常数C,求得fS=兰JC°解:设g(鼻)=xf(h),则g'(rc)=広f Gr)+_/'Q)=eJ可设ga)=e’+C,即•x/*a)=b+C(C为常数)。

令h=1,则1・/(l)=e+C o又/'(1) =e,故C=0,g(rc)=e",即讨(rc)=e"。

q"(qr-[)所以fS=—,f'S=―。

工rc/(乂)在(一*,0),(0,1)上单调递减,在(1,+*)上单调递增。

所以/(工)有极小值,无极大值,选B。

二、同构构造侧2【2014年湖南卷】若0Vm<Z j^2 VI,则()。

A.e2—e1>ln rc2—In鼻】B.e2—e1Vln孔—In rrjC.rr2e1>5e2D.jr2e1<C je!e2分析:将等式或不等式的两边化为相同结构形式,可以根据结构形式构造辅助函数解题。

高考数学如何解决复杂的导数和微分问题

高考数学如何解决复杂的导数和微分问题

高考数学如何解决复杂的导数和微分问题高考数学中,导数和微分问题是一个常见的考点,也是让许多考生头疼的难题。

在解决复杂的导数和微分问题时,我们可以运用以下几种方法和技巧。

一、基本函数的导数公式在解决复杂的导数问题时,我们首先要掌握基本函数的导数公式。

基本函数包括幂函数、指数函数、对数函数和三角函数等。

比如,幂函数y=x^n的导数公式为dy/dx=n*x^(n-1);指数函数y=a^x(a>0且a≠1)的导数公式为dy/dx=a^x*lna;对数函数y=log_a(x)的导数公式为dy/dx=1/(x*lna);三角函数sinx的导数公式为dy/dx=cosx,cosx的导数公式为dy/dx=-sinx。

掌握了基本函数的导数公式,我们可以通过将复杂函数拆解成基本函数的组合来求解导数。

二、运用导数的四则运算法则在解决复杂的导数问题时,我们可以运用导数的四则运算法则,即和、差、积、商的导数法则。

具体来说,如果函数f(x)和g(x)都是可导的,则它们的和(差)的导数为(f±g)'=f'(x)±g'(x),积的导数为(f·g)'=f'(x)·g(x)+f(x)·g'(x),商的导数为(f/g)'=(f'(x)·g(x)-f(x)·g'(x))/[g(x)]^2。

通过运用导数的四则运算法则,我们可以将复杂的函数化简为较简单的形式,更容易求解其导数。

三、隐函数求导和相关变化率在解决复杂的导数问题时,有些情况下函数并不能直接表示为y=f(x)的形式,而是通过一个方程来间接表示。

这时,我们需要运用隐函数求导的方法来求解导数。

隐函数求导的基本步骤是利用导数的定义,对方程两边求导,然后解出所求的导数。

通过隐函数求导,我们可以解决一些由方程确定的函数的导数问题。

此外,在解决复杂的导数问题时,还可以运用相关变化率的概念。

导数构造函数技巧

导数构造函数技巧

导数构造函数技巧在数学和工程学领域中,导数是一个非常重要的概念。

导数不仅在微积分的学习中扮演着重要的角色,而且在机器学习、优化和信号处理等领域也起着至关重要的作用。

为了更好地理解和应用导数,构造函数技巧是一个非常有用的工具。

本文将介绍导数构造函数的技巧,并且通过一些示例来展示它们的应用。

一、定义导数在介绍导数构造函数技巧之前,我们首先需要了解导数的定义。

导数是描述函数在某一点的变化率的概念。

对于一个函数 f(x),它的导数可以用下面的公式表示:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中 h 是一个无穷小的变化量。

导数告诉我们函数 f 在某一点上的瞬时变化率。

二、构造函数的技巧构造函数技巧是一种通过使用已知函数的导数来构造新的函数导数的方法。

通过应用构造函数技巧,我们可以得到一些特定函数的导数,而不必进行繁琐的求导运算。

1. 常数的导数对于一个常数函数f(x) = c,其中c 是一个常数,它的导数恒为零。

这是因为常数函数在任何点上的变化率都为零。

f'(x) = 0例如,对于函数 f(x) = 5,它的导数 f'(x) = 0。

2. 幂函数的导数对于幂函数 f(x) = x^n,其中 n 是一个正整数,它的导数可以通过应用幂函数的导数规则来得到。

f'(x) = n * x^(n-1)例如,对于函数 f(x) = x^2,它的导数 f'(x) = 2x。

类似地,对于函数 f(x) = x^3,它的导数 f'(x) = 3x^2。

3. 指数函数的导数对于指数函数 f(x) = e^x,它的导数恒等于其本身。

f'(x) = e^x例如,对于函数 f(x) = e^2x,它的导数 f'(x) = e^2x。

4. 对数函数的导数对于对数函数 f(x) = ln(x),其导数可以通过应用对数函数的导数规则来得到。

f'(x) = 1 / x例如,对于函数 f(x) = ln(x^2),它的导数 f'(x) = 2/x。

高考数学七种函数类型解题技巧归纳

高考数学七种函数类型解题技巧归纳

2013年高考数学七种函数类型解题技巧归纳一:函数解析式的求法函数解析式的问题是高考的命题热点,其求解方法很多,最常用的有以下几种:①换元法和配凑法;②待定系数法:适用于已知函数模型(如指数函数、二次函数等)和模型满足的条件下解析式,一般先设出函数的解析式,然后再根据题设条件待定系数;③解方程组法;④函数的性质法,在求某些函数解析式时,只给出了部分条件(如函数的定义域、经过某些特殊点、部分关系式、部分图象特征等)这类问题具有抽象性、综合性、和技巧性等特点,需要利用函数的性质来解;⑤赋值法:所给函数有两个变量时,可对这两个变量赋予特殊数值代入,或给两个变量赋予一定的关系代入,再用已知条件,可求出未知函数,至于赋予什么特殊值,应根据题目特征而定。

二:巧解函数定义域问题1.根据函数的解析式求函数的定义域,主要从以下几个方面来考虑:分式中分母不为零;2.复合型函数定义域的问题包含两类:一类是已知原函数的定义域来求复合函数的定义域,只需满足,解出即可;一类是已知复合函数的定义域来求原函数的定义域,即的值域为的定义域;三:判断函数单调性的方法巧掌握1.定义法。

2.利用一些常见函数的单调性,如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的单调性加以判断。

3.图象法。

4.在共同的定义域上,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数。

5.奇函数在关于原点的对称区间上具有相同的单调性;偶函数在关于原点的对称区间上具有相反的单调性。

6.互为反函数的两个函数在各自的定义域区间上具有相同的单调性。

7.对于复合函数的单调性,遵循“同增异减”的原则,即只有内外层函数相同时则为增函数,一增一减则为减函数。

8.导数法,函数在某区间内可导,如果,则函数为增函数,如果,则函数为减函数。

四:函数奇偶性的判断方法及解题策略确定函数的奇偶性,一般先考查函数的定义域是否关于原点对称,然后判断与的关系,常用方法有:①利用奇偶性定义判断;②利用图象进行判断,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以避免对自变量的繁琐的分类讨论。

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考数学】7种”函数构造“方法,巧解高考”导数“难
题!
前言:
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法。

但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.
因此文章认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.
一、作差构造法
2.变形作差构造
以微课堂高中版
二、分离参数构造法
分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.
三、局部构造法
四、换元构造法
换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用
方法.
作差构造法.
五、主元构造法
主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.
六、特征构造法1.根据条件特征构造
2.根据结论特征构造
七、放缩构造法
以微课堂高中版
1.由基本不等式放缩构造
2.由已证不等式放缩构造
评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;
若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

相关文档
最新文档