几种高等数学中的构造函数法1汇总

合集下载

构造函数的八种方法

构造函数的八种方法

构造函数的八种方法
1、响应式构造函数:响应式构造函数是指针对某种特定的对象实例而定义的构造函数,它能够根据参数的不同,生成不同的对象实例。

2、工厂模式构造函数:工厂模式构造函数是一种构造函数的实现方式,它使用一种工厂函数来简化创建对象的操作,使代码更加简洁,更容易维护。

3、函数构造函数:函数构造函数是指使用函数来构造对象实例的方式,它能够通过传入参数,创建出特定类型的对象实例。

4、构建对象构造函数:构建对象构造函数是指使用一个对象来构造另一个对象的方式,它可以动态地构造一个指定类型的实例,也可以复用已有的对象实例。

5、构造函数派生:构造函数派生是指从一个基础类型派生出另一个更加具体的子类型的方式,它可以使用基类的构造函数在子类中定义对象实例。

6、运行时参数构造函数:运行时参数构造函数是指在运行时传入参数,动态构造出一个指定类型的实例。

7、仿函数构造函数:仿函数构造函数是指使用仿函数的方式来构造对象实例,它可以更加简洁地实现一些比较复杂的对象构造操作。

8、多态构造函数:多态构造函数是指通过指定一个类型参数,在运行时执行特定的构造函数,从而实现多种类型的对象的。

高中数学6种构造函数法

高中数学6种构造函数法

高中数学6种构造函数法1、几何体构造法:几何体构造法是高中数学中常见的构造函数,即根据给定的条件,从原点出发,通过叠加若干条定义运算,利用实际工具画出题目要求构造的图形或者要求构造的几何体。

例如:根据给定的定义三角形ABC,在其外接圆上构造一个直角,使得构造出的四边形的一条边和三角形的一条边等长。

2、用线段构造法:用线段构造法是高中数学中常见的构造函数,是根据给定的条件,几何体和直线的位置,及题目要求的其他条件,按照一定的步骤和规律来画出要构造的几何体或其他东西。

例如:依据给定的线段AB,在其上端点A处构造一个半径等于原线段AB一半长度的圆,使得线段AB的端点A和圆的交点坐标相同;并在构造出的圆上构造一个到线段AB 端点B距离等于原线段AB一半长度的直线段。

3、从原点构造法:从原点构造法是高中数学中常见的构造函数,是指从某一原点出发,根据给定的情况,经过若干步的构造,建立若干定义关系,确定一个几何体的形状和大小,并与给定的几何体完全相同或满足给定条件的几何体。

例如:在原点构造一个半径等于原点O到给定点A的距离的圆,从这个圆上构造与 OA 相等的直线段,在这个直线段依次画上给定的点B、C。

4、标准图形构造法:标准图形构造法是在高中数学中学习的构造函数,即根据给定的它定义的图形和要求画出的图形之间的规律,采用实际的工具画出要求的图形。

例如:构造出与正方形相等的长方形(15cm×20cm),方法为:在一根边长15cm的尺子上划分出4等分点,然后再在另一根尺子上划分出5等分点,将它们相互链接,即可构造出长方形。

5、参数方程构造法:参数方程构造法是高中数学中学习的构造函数,即根据给定的参数条件所决定的几何体的特征,可利用参数方程的技巧,根据参数条件用参数方程来求出构造出几何体的函数,并且利用函数求出相应的构造过程,或者利用参数方程既定的几何图形,求出给定点的位置。

例如:求出构造出半径为 2 的半圆的函数,可以用参数方程 x = 2cos t,其中x 为构造出的半圆的横坐标,t 为角度参数。

简析导数问题中构造辅助函数的常用方法

简析导数问题中构造辅助函数的常用方法

2013-09教学实践导数在函数中的应用是现今高考的一大热点问题,年年必考,在这道压轴的大题中,解答时常涉及构造函数,我简单谈一下常用的构造方法.一、作差法(直接构造法)这是最常用的一种方法,通常题目中以不等式形式给出,我们可以作差构造新的函数,通过研究新函数的性质从而得出结论.当然,适合用这个方法解的题目中,构造的函数要易于求导,易于判断导数的正负.例1.设x ∈R ,求证e x ≥1+x构造函数f (x )=e x -1-x ,对函数求导可得f ′(x )≥e x -1,当x ≥0时,f ′(x )≥0,f (x )在[0,+∞)上是增函数,f (x )≥f (0)=0,当x <0时,f ′(x )<0,f (x )在(-∞,0)上为减函数,f (x )>f (0)=0,因此,当x ∈R ,f (x )≥f (0)=0,即e x≥1+x例2.x >-1,求证1-1x +1≤ln (x +1)≤x以证明右侧为例,设f (x )=x -ln (x +1),f ′(x )=1-1x +1(x >-1)令f ′(x )=0,x =0,当x ∈(-1,0)时,f ′(x )<0,函数递减,当x ∈(0,+∞)时,f ′(x )>0,函数递增,所以x =0时,函数取最小值f (0)=0,∴f (x )≥0.二、先去分母再作差有的问题直接作差构造函数后,求导非常麻烦,不具有可操作性,可先去分母再作差.例3.x >1,求证ln x x -1<1x√分析:设f (x )=x -1x √-ln x ,f (x )=x √-1x√-ln x ,f ′(x )=12x-12+12x-32-1x ,f ′(x )=(x √-1)22x x√≥0,f (x )≥f (1),f (1)=0,∴f (x )>0三、先分离参数再构造例4.(哈三中2012期末试题21)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(1)求f (x )在[t ,t +2](t >0)上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(3)证明对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.分析:(1)略(2)2x ln x ≥-x 2+ax -3恒成立,∵x >0,原不等式等价于a ≤2ln x +x +3x.令g (x )=2ln x +x +3x ,则g ′(x )=(x +3)(x -1)x 2,所以g (x )的最小值为g (1)=4,即a ≤4(3)利用前面提到的第二种方法,先去分母再构造,目的就是使得构造的函数易于求导,易于分析.原不等式等价于x ln x >x e x -2e ,令F (x )=x ln x ,G (x )=x e x -2e则可求F (x )的最小值为F (1e )=-1e;G (x )的最大值为G (1)=-1e,所以原不等式成立.四、从条件特征入手构造函数证明例5.若函数y =f (x )在R 上可导且满足不等式xf ′(x )>-f (x )恒成立,且常数a ,b 满足a>b ,求证:af (a )>bf (b )分析:由条件移项后xf ′(x )+f (x ),可以构造函数F (x )=xf (x ),求导即可完成证明.若题目中的条件改为xf ′(x )>f (x ),则移项后xf ′(x )-f (x ),要想到是一个商的导数的分子,构造函数F (x )=f (x )x ,求导去完成证明.五、由高等数学中的结论构造利用泰勒公式,可以把任意一个函数用幂函数近似表示.f (x )=f (x 0)+f ′(x 0)(x-x 0)+f ″(x 0)2!(x-x 0)2+…+f n(x 0)n !(x-x 0)n+…当f (x )=ln x ,取x =1,则ln x =x -1-(x -1)22!+…ln x ≈x -1例6.数列{a n },a 1=1,a n +1=ln a n +a n +2,求证a n ≤2n -1分析:设f (x )=ln x -(x -1),f ′(x )=1x -1=1-x x,当x ∈(0,1),f ′(x )>0当x ∈(1,+∞),f ′(x )<0,f (x )≤f (1)=0∴ln x ≤x -1ln a n ≤a n -1,a n +1=ln a n +a n +2≤2a n +1,∴a n +1+1≤2(a n +1)迭代,1+a n ≤2(1+a n -1)≤…≤2n -1(1+a 1)=2n∴a n ≤2n -1例7.(2008年山东理21)已知函数f (x )=1(1-x )n +a ln (x -1)其中n ∈N*,a 为常数.(1)当n =2时,求函数f (x )的极值;(2)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1分析(2):当a =1时,f (x )=1(1-x )n +ln(x -1).当x ≥2时,对任意的正整数n ,恒有1(1-x )n ≤1,故只需证明1+ln (x -1)≤x -1.令h (x )=x -1-[1+ln (x -1)]=x -2-ln (x -1),x ∈[2,+∞),则h ′(x )=1-1x -1=x -2x -1,当x ≥2时,h ′(x )≥0,故,h (x )在[2,+∞)上单调递增,因此x ≥2时,当h (x )≥h (2)=0,即1+ln (x -1)≤x -1成立.故当x ≥2时,有1(1-x )n +ln (x -1)≤x -1.即f (x )≤x -1.另外,高等数学中有一个极限结论:lim x →0sin x x =1由以上极限不难得出,当x >0时,sin x <x ,构造函数f (x )=x -sin x ,则f ′(x )=1-cos x ≥0,所以函数f (x )在(0,+∞)上单调递增,f (x )>f (0)=0.所以x -sin x >0,即sin x <x .导数问题中构造辅助函数还有其他的方法,例如变更主元法,二次求导再构造,难度偏大,这里先不做详解.(作者单位杨光:黑龙江省哈尔滨师范大学数学系关键:黑龙江省大庆市第四中学)•编辑谢尾合简析导数问题中构造辅助函数的常用方法文/杨光关键104--. All Rights Reserved.。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法一、移项法构造函数1例:1、已知函数 f (x) ln( x 1) x ,求证:当x 1时,但有x x1 ln( 1)1 x2、已知函数f1x 2(x) ae x2(1)若 f (x) 在R 上为增函数,求 a 的取值范围。

(2)若a=1,求证:x 0时,f (x) 1 x二、作差法构造函数证明12例:1、已知函数 f x x ln x( )223g( x) x 的图象下方。

3,求证:在区间(1,) 上,函数 f (x) 的图象在函数思想:抓住常规基本函数,利用函数草图分析问题- 1 -2、已 知 函 数 f (x) n ln x 的 图 象 在 点 P( m , f ( x)) 处 的 切 线 方 程 为 y=x , 设ng( x) mx2ln x ,(1)求证:当 x 1时, g(x) 0恒成立;(2)试讨论关于 x的方x n32 2程g xxex txmx( )根的个数。

x3、换元法构造函数证明例:1、证明:对任意的正整数n ,不等式ln( 1 n1) 1 2n1 3n,都成立。

2、证明:对任意的正整 n ,不等式 ln( 1 n1)1 2n1 3n都成立。

3 23、已知函数 f (x) ln( ax 1) x x ax ,(1)若2 3为 yf ( x) 的极值点,求实数a的值;(2)若 y f (x) 在[1, ) 上增函数,求实数 a 的取值范围。

(3)若 a=-1 时,方程fb3(1 x) (1 x)有实根,求实数 b 的取值范围。

x- 2 -4、从条件特征入手构造函数证明例 1 若函数y f (x) 在R 上可导且满足不等式xf '(x) f ( x) 恒成立,且常数a,b 满足a b,求证:af (a) bf (b)5、主元法构造函数例 1.已知函数 f (x) ln(1 x) x ,g(x) xln x ,(1)求函数 f (x) 的最大值;(2)设a b0 a b,证明:0 g(a) g( b) 2g( ) (b a) ln 226、构造二阶导数函数证明导数的单调性例1:已知函数 f1x 2( x) ae x2,(1)若 f ( x) 在R 上为增函数,求 a 的取值范围;(2)若a=1,求证:x 0时,f (x) 1 x7、对数法构造函数(选用于幂指数函数不等式)1 x1 1例1:证明当x 0 时,x e 2(1 x)- 3 -8、构造形似函数例1:证明当b a e,证明 b b aa2、已知m、n 都是正整数,且 1 m n ,证明:(1 n n mm) (1 ) 思维挑战21、设a 0 ,f ( x) x 1 ln x 2a ln x ,求证:当x 1时,恒有x ln 2 ln1 2 x a x2 x a x122、已知定义在正实数数集上的函数 f ( x) x 2ax2 2 ,其中a 0,,g (x) 3a ln x b5 2 2且b a 3a ln a2,求证: f (x) g(x)3、已知函数 fx(x) ln(1 x) ,求证:对任意的正数a、b恒有1 xln a ln b 1ba4、f (x) 是定义在(0, ) 上的非负可导数,且满足xf ( ) ( ) 0,对任意正数a、b ,' x f x若a b,则必有()A. af (x) bf (a)B. bf (a) af (b)C. af (a) f (b)D. bf (b) f (a)- 4 -。

高中数学:构造函数方法

高中数学:构造函数方法

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f 或;(2))(-)()()0(0)(-)(x g x f x F x g x f 或;(3)kx x f x F k x f )()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f 或;(2))0)(()(g )()()0(0)()(-)(g )(x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f 或;(4))0(x)()()0(0)(-)(x x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n或;(6))0(x)()()0(0)(n -)(x nxx f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x或;(8))0(e)()()0(0)(-)(xxx f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx或;(10))0(e)()()0(0)(k -)(kxxx f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f 或; (12))0(sin sinx )()()0(0tan )(-)(xx f x F xx f x f 或;(13))0(cos cos )()()0(0)(tanx )(xxx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f 或;(15)()+lna ()0(0)()()xf x f x F x a f x 或;(16)()()lna ()0(0)()xf x f x f x F x a或;考点一。

必须掌握的7种构造函数方法——巧解导数难题

必须掌握的7种构造函数方法——巧解导数难题

必须掌握的7种构造函数方法——巧解导数难题文:郑州市第四十四中学苏明亮近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种高等数学中的构造函数法1汇总在高等数学中,构造函数法是一种常用的证明方法,它通过构造一个特定的函数来满足一些条件,从而证明定理或问题。

构造函数法在解决一些特定问题时非常有效,并且可以应用于各个数学分支,例如微积分、线性代数等。

以下是几种常见的构造函数法的应用及其原理:
1.构造逼近函数法:
构造逼近函数法是利用一组函数来逼近所求函数的方法。

它在证明极限存在、连续性、可导性等问题时很常用。

例如,在证明函数的极限存在时,可以通过构造一个逼近函数序列来逼近所求函数的极限。

在证明函数的连续性时,可以构造逼近函数序列使其在一定条件下逐点收敛于所求函数。

在证明函数可导性时,可以通过构造一组逼近函数,利用它们的导数性质来推导出所求函数的导函数。

2.构造反函数法:
构造反函数法是通过构造函数的反函数来证明其中一种性质。

例如,在证明奇偶函数特性时,可以构造一个函数的反函数,并根据函数的特性来判断所求函数的奇偶性。

在证明函数的双射性时,可以通过构造函数的反函数来证明。

3.构造矩阵法:
构造矩阵法是在线性代数中常用的一种证明方法。

它通过构造一个特定的矩阵,利用矩阵的性质来证明一些结论。

例如,在证明矩阵的逆存在时,可以构造一个矩阵来满足逆矩阵的定义,并证明其逆矩阵存在。

4.构造序列法:
构造序列法是利用一组序列来证明一些定理或性质。

例如,在证明函
数的一致连续性时,可以构造一组满足一致收敛条件的序列来逼近所求函数,从而证明其一致连续性。

在证明函数的可积性时,可以构造一组逼近
函数序列,并利用其可积性质来推导出所求函数的可积性。

5.构造映射法:
构造映射法是在集合论和离散数学中常用的一种证明方法。

它通过构
造一个特定的映射关系来证明一些性质。

例如,在证明两个集合的等势时,可以构造一个双射映射来证明它们的元素个数相等。

在证明一些图的性质时,可以构造一个映射关系来对应图的元素和其相邻元素之间的关系。

以上是几种常见的构造函数法的应用及原理。

在数学证明中,构造函
数法是一种灵活、有效的方法,可以通过巧妙地构造一个函数来求解问题,从而得到一些重要的结论和性质。

相关文档
最新文档