高中数学必修一《幂函数》精选习题(含详细解析)

合集下载

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析

高三数学幂函数试题答案及解析1.若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.【考点】幂函数的性质.2.已知函数f(x)=,则不等式f(a2-4)>f(3a)的解集为________.【答案】(-1,4)【解析】作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4.所以不等式的解集为(-1,4).3.已知幂函数f(x)的图像经过点(9,3),则f(2)-f(1)=()A.3B.1-C.-1D.1【答案】C【解析】设幂函数为f(x)=xα,由f(9)=9α=3,即32α=3,可得2α=1,α=.所以f(x)==,故f(2)-f(1)=-1.4.幂函数的图像经过点,则的值为 .【答案】2【解析】本题要求出幂函数的表达式,才能求出函数值,形如的函数叫幂函数,故,,因此.【考点】幂函数的定义.5.函数是幂函数,且在x ∈(0,+∞)上为增函数,则实数m的值是()A.-1B.2C.3D.-1或2【答案】B【解析】由幂函数定义可知:,解得或,又函数在x ∈(0,+∞)上为增函数,故.选B.【考点】幂函数6.函数由确定,则方程的实数解有( )A.0个B.1个C.2个D.3个【答案】D【解析】因为,所以.方程为:,化简得,其根有3个,且1不是方程的根.【考点】幂的运算,分式方程的求解.7.已知幂函数的部分对应值如图表:则不等式的解集是【答案】【解析】将()代入得,,所以,,其定义域为,为增函数,所以可化为,解得,故答案为。

【考点】本题主要考查幂函数的解析式,抽象不等式解法。

点评:简单题,抽象不等式解法,一般地是认清函数的奇偶性、单调性,转化成具体不等式求解。

8.当x∈(0,+∞)时,幂函数y=(m2-m-1)为减函数, 则实数m的值为( )A.m=2B.m=-1C.m=-1或m=2D.m≠【答案】A【解析】因为此函数为幂函数,所以,当m=2时,它在(0,+∞)是减函数,当m=-1时,它在(0,+∞)是增函数.9.如图,下图为幂函数y=x n在第一象限的图像,则、、、的大小关系为.【答案】<<<【解析】观察图形可知,>0,>0,且>1,而0<<1,<0,<0,且<.10.幂函数的图像经过点,则的值为。

幂函数练习题及答案解析

幂函数练习题及答案解析

1.下列幂函数为偶函数的是( ) A .y =x 12B .y =3xC .y =x 2D .y =x -1 解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.2.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.4.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 答案:-1或21.函数y =(x +4)2的递减区间是() A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4)解析:选A.y =(x +4)2开口向上,关于x =-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.3.给出四个说法:①当n =0时,y =x n 的图象是一个点; ②幂函数的图象都经过点(0,0),(1,1); ③幂函数的图象不可能出现在第四象限;④幂函数y =x n 在第一象限为减函数,则n <0. 其中正确的说法个数是( ) A .1 B .2 C .3 D .4解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:选A.∵f (x )=x α为奇函数,∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数, ∴α=-1.5.使(3-2x -x 2)-34有意义的x 的取值范围是( ) A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3,∴要使上式有意义,需3-2x -x 2>0, 解得-3<x <1.6.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2B .3C .4D .5 解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1, ∴函数y =(x -1)α恒过点(2,1). 答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数. 答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1, ∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13. 答案:(25)12<(35)12<(76)0<(23)-1310.求函数y =(x -1)-23的单调区间.解:y =(x -1)-23=1(x -1)23=13(x -1)2,定义域为x ≠1.令t =x -1,则y =t -23,t ≠0为偶函数.因为α=-23<0,所以y =t -23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x-1单调递增,故y =(x -1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-12,求m 的取值范围. 解:∵y =x -12的定义域为(0,+∞),且为减函数. ∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m ,解得-13<m <32.∴m 的取值范围是(-13,32).12.已知幂函数y =x m 2+2m -3(m ∈Z )在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又∵m ∈Z ,∴m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). ∵-3<0,∴y =x -3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x )-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=1(-x )4=1x4=x -4=f (x ), ∴函数y =x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x -4是偶函数,∴y =x -4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( ) A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.以下关于函数y =x α当α=0时的图象的说法正确的是( ) A .一条直线 B .一条射线C .除点(0,1)以外的一条直线D .以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.2.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x-34=14x 3,x >0.3.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.5.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个 解析:选B.y =x 2与y =x 0是幂函数.6.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 7.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 128.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________. 解析:结合幂函数的图象性质可知p <1. 答案:p <19.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得 ⎩⎨⎧a 14=12(14)α=12⇒⎩⎨⎧a =116,α=12.所以a a =(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa .答案:a α<αα<a a <αa10.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1, 解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.11.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数, 则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.12.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。

3.3 幂函数(精练)(解析版)--人教版高中数学精讲精练必修一

3.3 幂函数(精练)(解析版)--人教版高中数学精讲精练必修一

3.3幂函数(精练)1.(2023·全国·高一专题练习)已知幂函数()f x 的图象经过点()8,4,则()f x 的大致图象是()A .B .C .D .【答案】C【解析】设()f x x α=,因为()f x 的图象经过点()8,4,所以84α=,即3222α=,解得23α=,则()23f x x ==,因为()()f x f x -===,所以()f x 为偶函数,排除B 、D ,因为()f x 的定义域为R ,排除A .因为()23f x x =在[)0,∞+内单调递增,结合偶函数可得()f x 在(],0-∞内单调递减,故C 满足,故选:C.2.(2023·山东聊城)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .c<a<bC .a b c>>D .b<c<a【答案】B【解析】由已知,421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为幂函数23y x =在()0,+∞上单调递增,而15<14<13,所以222333111543<<⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.3.(2022秋·辽宁葫芦岛·高一校联考期中)设 1.2111y =, 1.428y =,0.63130y =,则()A .231y y y >>B .312y y y >>C .132y y y >>D .321y y y >>【答案】D【解析】由题意可知,()0.61.220.611111121y ===,()()1.40.61.43 4.270.628222128y =====,因为0.6y x =在()0,∞+上是增函数,130128121>>,所以321y y y >>.故选:D.4.(2023·福建南平)下列比较大小中正确的是()A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .3377(2.1)(2.2)--<-D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】对于A 选项,因为0.5y x =在[0,)+∞上单调递增,所以0.50.523()()32<,故A 错误,对于B 选项,因为1y x -=在(,0)-∞上单调递减,所以1123()()35--->-,故B 错误,对于C 选项,37y x =为奇函数,且在[0,)+∞上单调递增,所以37y x =在(,0)-∞上单调递增,因为333777115(2.2)511--⎭==⎛⎫⎛⎫--- ⎪ ⎪⎝⎝⎭,又()337752.111⎛⎫-<- ⎪⎝⎭,所以3377(2.1)(2.2)--<-,故C 正确,对于D 选项,43y x =在[0,)+∞上是递增函数,又443311()()22-=,所以443311()()23>,所以443311()()23->,故D 错误.故选:C.5.(2022秋·河南·高一统考期中)()3a π=-,27b =-,()05c =-,则()A .a b c <<B .b a c <<C .<<c a bD .c b a<<【答案】A【解析】 3()f x x =,在R 上单调递增,而()(3)a f b f π=-=-,,根据单调递增的性质,得0a b <<,又1c =,所以a b c <<.故选:A6(2022秋·福建泉州·高一校联考期中)下列比较大小正确的是()A 12433332-->>B .12433332-->>C .12433332--->>D .21433323--->>【答案】C2242333π---⎡⎤==⎢⎥⎣⎦,21333--=又23y x -=在()0,∞+上单调递减,2π>,所以2223332π---<<,所以12433332-->>.故选:C7.(2023·江苏常州)下列幂函数中,既在区间()0,∞+上递减,又是奇函数的是().A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【解析】对选项A ,12y x =在()0,∞+为增函数,故A 错误.对选项B ,13y x =在()0,∞+为增函数,故B 错误.对选项C ,23y x -=在()0,∞+为减函数,设()123321f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()()11332211f x f x x x ⎡⎤⎛⎫-===⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,∞+为减函数,设()11331f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()113311f x f x x x ⎛⎫⎛⎫-==-=- ⎪ ⎪-⎝⎭⎝⎭,所以()f x 为奇函数,故D 正确.故选:D8.(2023春·江苏南京)幂函数2223()(1)m m f x m m x --=--在()0,∞+上是减函数,则实数m 值为()A .2B .1-C .2或1-D .1【答案】A【解析】 幂函数2223()(1)mm f x m m x --=--,211m m ∴--=,解得2m =,或1m =-;又,()0x ∈+∞时()f x 为减函数,∴当2m =时,2233m m --=-,幂函数为3y x -=,满足题意;当1m =-时,2230m m --=,幂函数为0y x =,不满足题意;综上,2m =,故选:A .9.(2022·高一单元测试)幂函数()()22231mm f x m m x+-=--在区间(0,+∞)上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】幂函数()()22231m m f x m m x+-=--在区间(0,+∞)上单调递增,∴2211230m m m m ⎧--=⎨+-⎩>,解得m =2,∴5()f x x =,∴()f x 在R 上为奇函数,由0a b +>,得a b >-,∵()f x 在R 上为单调增函数,∴()()()f a f b f b >-=-,∴()()0f a f b +>恒成立.故选:A .10.(2023·浙江台州)(多选)关于幂函数(,y x R ααα=∈是常数),结论正确的是()A .幂函数的图象都经过原点()0,0B .幂函数图象都经过点()1,1C .幂函数图象有可能关于y 轴对称D .幂函数图象不可能经过第四象限【答案】BCD【解析】对于A :幂函数1y x -=不经过原点()0,0,A 错误对于B :对于幂函数(,y x R ααα=∈是常数),当1x =时,1y =,经过点()1,1,B 正确;对于C :幂函数2y x =的图像关于y 轴对称,C 正确;对于D :幂函数图象不可能经过第四象限,D 正确.故选:BCD.11.(2023·全国·高一专题练习)(多选)已知幂函数()f x 的图象经过点(,则()A .()f x 的定义域为[)0,∞+B .()f x 的值域为[)0,∞+C .()f x 是偶函数D .()f x 的单调增区间为[)0,∞+【答案】ABD【解析】设()()a f x x a =∈R ,则()22af ==12a =,则()12f x x ==,对于A 选项,对于函数()f x =0x ≥,则函数()f x 的定义域为[)0,∞+,A 对;对于B 选项,()0f x =≥,则函数()f x 的值域为[)0,∞+,B 对;对于C 选项,函数()f x =[)0,∞+,定义域不关于原点对称,所以,函数()f x 为非奇非偶函数,C 错;对于D 选项,()f x 的单调增区间为[)0,∞+,D 对.故选:ABD.12.(2023·宁夏银川)(多选)幂函数()()211m f x m m x --=+-,*N m ∈,则下列结论正确的是()A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,∞+【答案】ABD【解析】因为()()211m f x m m x --=+-是幂函数,所以211m m +-=,解得2m =-或1m =,又因为*N m ∈,故1m =,A 正确;则()2f x x -=,定义域为{|0}x x ≠,满足()2()()f x x f x --=-=,故()f x 是偶函数,B 正确;()2f x x -=为偶函数,在(0,)+∞上单调递减,故()()2(2)3f f f -=>,C 错误;函数()221f x x x -==的值域为()0,∞+,D 正确,故选:ABD13.(2022秋·广东惠州)(多选)已知函数()()21m mf x m x -=-为幂函数,则()A .函数()f x 为奇函数B .函数()f x 在区间()0,∞+上单调递增C .函数()f x 为偶函数D .函数()f x 在区间()0,∞+上单调递减【答案】BC【解析】因为()()21mmf x m x -=-为幕函数,所以11m -=,即2m =,所以()2f x x =.函数()2f x x =的定义域为R ,()()()22f x x x f x -=-==,所以函数()f x 为偶函数,又函数()2f x x =在()0,∞+为增函数.故选:BC.14.(2023春·河北保定)(多选)若幂函数()()1f x m x α=-的图像经过点()8,2,则()A .3α=B .2m =C .函数()f x 的定义域为{}0x x ≠D .函数()f x 的值域为R【答案】BD【解析】因为()()1f x m x α=-是幂函数,所以11m -=,解得2m =,故B 正确;所以()f x x α=,又因的图像经过点()8,2,所以3282αα==,所以31α=,解得13α=,故A 错误;因为()13f x x =,则其定义域,值域均为R ,故C 错误,D 正确.故选:BD.15.(2023春·山西忻州·高一统考开学考试)(多选)已知幂函数()()23mx m x f =-的图象过点12,4⎛⎫ ⎪⎝⎭,则()A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0∞-上为减函数D .()f x 在()0,∞+上为减函数【答案】AD【解析】根据幂函数定义可得231m -=,解得2m =±;又因为图象过点12,4⎛⎫ ⎪⎝⎭,所以可得2m =-,即()221f x x x -==;易知函数()f x 的定义域为()()0,,0+∞⋃-∞,且满足()()()2211f x f x xx -===-,所以()f x 是偶函数,故A 正确,B 错误;由幂函数性质可得,当()0,x ∈+∞时,()2f x x -=为单调递减,再根据偶函数性质可得()f x 在(),0∞-上为增函数;故C 错误,D 正确.故选:AD16.(2022秋·安徽滁州·高一校考期中)(多选)对幂函数()32f x x -=,下列结论正确的是()A .()f x 的定义域是{}0,R x x x ≠∈B .()f x 的值域是()0,∞+C .()f x 的图象只在第一象限D .()f x 在()0,∞+上递减【答案】BCD【解析】对幂函数()32f x x -=,()f x 的定义域是{}0,R x x x >∈,因此A 不正确;()f x 的值域是()0,∞+,B 正确;()f x 的图象只在第一象限,C 正确;()f x 在()0,∞+上递减,D 正确;故选:BCD .17.(2023·四川成都)(多选)已知幂函数()f x 的图像经过点(9,3),则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当120x x >>时,1212()()f x f x x x -<-【答案】AC【解析】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.18.(2023·湖北)(多选)下列关于幂函数说法不正确的是()A .一定是单调函数B .可能是非奇非偶函数C .图像必过点(1,1)D .图像不会位于第三象限【答案】AD【解析】幂函数的解析式为()ay x a =∈R .当2a =时,2y x =,此函数先单调递减再单调递增,则都是单调函数不成立,A 选项错误;当2a =时,2y x =,定义域为R ,此函数为偶函数,当12a =时,y =,定义域为{}0x x ≥,此函数为非奇非偶函数,所以可能是非奇非偶函数,B 选项正确;当1x =时,无论a 取何值,都有1y =,图像必过点()1,1,C 选项正确;当1a =时,y x =图像经过一三象限,D 选项错误.故选:AD.19.(2023·高一课时练习)有关幂函数的下列叙述中,错误的序号是______.①幂函数的图像关于原点对称或者关于y 轴对称;②两个幂函数的图像至多有两个交点;③图像不经过点()1,1-的幂函数,一定不关于y 轴对称;④如果两个幂函数有三个公共点,那么这两个函数一定相同.【答案】①②④【解析】①,12y x ==y 轴对称,所以①错误.②④,由3y x y x =⎧⎨=⎩解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩或00x y =⎧⎨=⎩,即幂函数y x =与3y x =有3个交点,所以②④错误.③,由于幂函数过点()1,1,所以图像不经过点()1,1-的幂函数,一定不关于y 轴对称,③正确.故答案为:①②④20.(2023·湖南娄底·高一统考期末)已知幂函数()()2133m f x m m x +=-+为偶函数.(1)求幂函数()f x 的解析式;(2)若函数()()1f xg x x+=,根据定义证明()g x 在区间()1,+∞上单调递增.【答案】(1)()2f x x =;(2)见解析.【解析】(1)因为()()2133m f x m m x +=-+是幂函数,所以2331m m -+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+.设211x x >>,则()()()12212121212112121111x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因为211x x >>,所以210x x ->,121x x >,所以12110x x ->,所以()()210f x f x ->,即()()21f x f x >,故()g x 在区间()1,+∞上单调递增.21.(2023·天津宝坻·高一天津市宝坻区第一中学校考期末)已知幂函数()ag x x =的图象经过点(,函数()()241g x bf x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数b 的值;(2)判断函数()f x 在区间()1,1-上的单调性,并用的数单调性定义证明.【答案】(1)()g x =b =(2)()f x 在()1,1-上单调递增,证明见解析【解析】(1)由条件可知2a=12a =,即()12g x x ==,所以()42g =,因为()221x b f x x +=+是奇函数,所以()00f b ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以0b =成立;(2)函数()f x 在区间()1,1-上单调递增,证明如下,由(1)可知()221xf x x =+,在区间()1,1-上任意取值12,x x ,且12x x <,()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<,即()()12f x f x <,所以函数在区间()1,1-上单调递增.22.(2023·福建厦门·高一厦门一中校考期中)已知幂函数()af x x =的图象经过点12A ⎛ ⎝.(1)求实数a 的值,并用定义法证明()f x 在区间()0,∞+内是减函数.(2)函数()g x 是定义在R 上的偶函数,当0x ≥时,()()g x f x =,求满足()1g m -≤m 的取值范围.【答案】(1)12α=-,证明见解析;(2)46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【解析】(1)由幂函数()af x x =的图象经过点12A ⎛ ⎝12α⎛⎫∴= ⎪⎝⎭12α=-证明:任取12,(0,)x x ∈+∞,且12x x<11222121()()f x f x x x ---=-==210x x >> ,120x x ∴-<0>21()()0f x f x ∴-<,即21()()f x f x <所以()f x 在区间()0,∞+内是减函数.(2)当0x ≥时,()()g x f x =,()f x 在区间[)0,∞+内是减函数,所以()g x 在区间()0,∞+内是减函数,在区间(),0∞-内是增函数,又15g ⎛⎫= ⎪⎝⎭(1)g m -1(1)5g m g ⎛⎫-≤ ⎪⎝⎭函数()g x 是定义在R 上的偶函数,则115m -≥,解得:65m ≥或45m ≤所以实数m 的取值范围是46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 23.(2023福建)已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围.【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a ①当22a -<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤③当22a->,即4a <-时,()(2)70g a h a ==+≥所以7a ≥-.又4a <-所以74a -≤<-.综上可知,a 的取值范围为[7,2]-1.(2023广西)(多选)已知幂函数()nm f x x =(m ,*n ∈N ,m ,n 互质),下列关于()f x 的结论正确的是()A .m ,n 是奇数时,幂函数()f x 是奇函数B .m 是偶数,n 是奇数时,幂函数()f x 是偶函数C .m 是奇数,n 是偶数时,幂函数()f x 是偶函数D .01mn<<时,幂函数()f x 在()0,∞+上是减函数E .m ,n 是奇数时,幂函数()f x 的定义域为R 【答案】ACE【解析】()nm f x x ==当m ,n 是奇数时,幂函数()f x 是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数,幂函数/()f x 在0x <时无意义,故B 中的结论错误当m 是奇数,n 是偶数时,幂函数()f x 是偶函数,故C 中的结论正确;01mn<<时,幂函数()f x 在()0,∞+上是增函数,故D 中的结论错误;当m ,n 是奇数时,幂函数()f x =R 上恒有意义,故E 中的结论正确.故选:ACE.2.(2022秋·福建福州·高一校联考期中)(多选)已知幂函数()()22922mm f x m m x+-=--对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,若()()0f a f b +>,则()A .0a b +<B .0a b +>C .()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭D .()()22f a f b a b f ++⎛⎫≤ ⎪⎝⎭【答案】BD【解析】因为()()22922mm f x m m x+-=--为幂函数,所以2221m m --=,解得1m =-或3m =,因为对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,所以函数()f x 在(0,)+∞上递增,所以290m m +->当1m =-时,2(1)(1)990-+--=-<,不合题意,当3m =时,233930+-=>,所以3()f x x =因为33()()f x x x -=-=-,所以()f x 为奇函数,所以由()()0f a f b +>,得()()()f a f b f b >-=-,因为3()f x x =在R 上为增函数,所以a b >-,所以0a b +>,所以A 错误,B 正确,对于CD ,因为0a b +>,所以333()()2222f a f b a b a b a b f ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭33322344(33)8a b a a b ab b +-+++=33223()8a b a b ab +--=223[()()]8a ab b a b ---=23()()08a b a b -+=≥,所以()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭,所以C 错误,D 正确,故选:BD3.(2023·江苏·校联考模拟预测)(多选)若函数13()f x x =,且12x x <,则()A .()()()()12120x x f x f x -->B .()()1122x f x x f x ->-C .()()1221f x x f x x -<-D .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭【答案】AC【解析】由幂函数的性质知,13()f x x =在R 上单调递增.因为12x x <,所以()()12f x f x <,即120x x -<,()()120f x f x -<,所以()()()()12120x x f x f x -->.故A 正确;令120,1x x ==,则0(0)1(1)0f f -=-=,故B 错误;令()13()g x f x x x x =+=+,则由函数单调性的性质知,13()f x x =在R 上单调递增,y x =在R 上单调递增,所以13()y f x x x x =+=+在R 上单调递增,因为12x x <,所以()12()g x g x <,即()()1122f x x f x x +<+,于是有()()1221f x x f x x -<-,故C 正确;令121,1x x =-=,则1202x x +=,所以因为(1)(1)(0)02f f f +-==,故D 错误.故选:AC.4.(2022秋·江西九江·高一统考期末)已知幂函数()()223mm f x x m --+=∈N 的图像关于直线0x =对称,且在()0,∞+上单调递减,则关于a 的不等式()()33132mma a --+<-的解集为______.【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】由()()223mm f x x m --+=∈N 在()0,∞+上单调递减得,2230m m --<,故13m -<<,又m +∈N ,故1m =或2,当1m =时,()4f x x =-,满足条件;当2m =时,()3f x x =-,图像不关于直线0x =对称,故1m =.因为函数13()g x x -=在()(),0,0,-∞+∞为减函数,故由不等式()()1133132a a --+<-得,10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a +>⎧⎪->⎨⎪+>-⎩或10320a a +<⎧⎨->⎩.解得2332a <<或1a <-,综上:23132a a <-<<或.故答案为:()23,1,32⎛⎫-∞- ⎪⎝⎭5.(2023·山西太原)已知函数()3f x x x =+.若对于任意[]2,4m ∈,不等式()()240f ma f m m-++恒成立,则实数a 的取值范围是___________.【答案】6a ≥【解析】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()3f x x x =+是R 上的奇函数,因为3,y x y x ==均是R 上的增函数,所以()3f x x x =+是R 上的增函数,因为()()240f ma f m m-++,所以()()24f m mf ma +--,即()()24f m mf ma +-所以24m m ma +-,由[]2,4m ∈知0m >,故41a m m++,令()41g m m m=++,[]2,4m ∈设1224m m <,()()1212121212444411g m g m m m m m m m m m ⎛⎫-=++-++=-+- ⎪⎝⎭()()()21121212121244m m m m m m m m m m m m ---=-+=由1224m m <,得120m m -<,124m m >,则()()120g m g m -<,即()()12g m g m <,所以()g m 在[]2,4上单调递增,当4m =时,()g m 取得最大值6,故6a .故答案为:6a .6.(2023春·四川广安·高一校考阶段练习)已知幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =++-在[]0,2上的最大值为3,求实数a 的值.【答案】(1)2m =,()3f x x =;(2)2a =±.【解析】(1)幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增,故25110m m m ⎧+-=⎨+>⎩,解得2m =,故()3f x x =;(2)由(1)知:()3f x x =,所以()22121g x ax a x ax a =+-=-++-,所以函数()g x 的图象为开口向下的抛物线,对称轴为直线x a =;由于()g x 在[]0,2上的最大值为3,①当2a ≥时,()g x 在[]0,2上单调递增,故()()max 2333g x g a ==-=,解得2a =;②当0a ≤时,()g x 在[]0,2上单调递减,故()()max 013g x g a ==-=,解得2a =-;③当02a <<时,()g x 在[]0,a 上单调递增,在[],2a 上单调递减,故()()2max 13g x g a a a ==+-=,解得1a =-(舍去)或2a =(舍去).综上所述,2a =±.7.(2023·黑龙江哈尔滨·高一哈尔滨市第六中学校校考期末)已知幂函数()()23122233p p f x p p x--=-+是其定义域上的增函数.(1)求函数()f x 的解析式;(2)若函数()()h x x af x =+,[]1,9x ∈,是否存在实数a 使得()h x 的最小值为0?若存在,求出a 的值;若不存在,说明理由;(3)若函数()()3g x b f x =-+,是否存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ?若存在,求出实数b 的取值范围;若不存在,说明理由.【答案】(1)()f x =(2)存在1a =-(3)9,24⎛⎤-- ⎥⎝⎦【解析】(1)因为()()23122233p p f x p p x--=-+是幂函数,所以2331p p -+=,解得1p =或2p =当1p =时,()1f x x=,在()0,∞+为减函数,当2p =时,()f x =在()0,∞+为增函数,所以()f x =(2)()()h x x af x x =+=+t =,因为[]1,9x ∈,所以[]1,3t ∈,则令()2k t t at =+,[]1,3t ∈,对称轴为2a t =-.①当12a-≤,即2a ≥-时,函数()k t 在[]1,3为增函数,()min ()110k t k a ==+=,解得1a =-.②当132a <-<,即62a -<<-时,2min ()024a a k t k ⎛⎫=-=-= ⎪⎝⎭,解得0a =,不符合题意,舍去.当32a-≥,即6a ≤-时,函数()k t 在[]1,3为减函数,()min ()3930k t k a ==+=,解得3a =-.不符合题意,舍去.综上所述:存在1a =-使得()h x 的最小值为0.(3)()()3g x b f x b =-+=()g x 在定义域范围内为减函数,若存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,则()()g m b n g n b m ⎧==⎪⎨==⎪⎩①②,②-①()()33m n m n =-=+-+,=+,1=③.将③代入②得:1b m m ==+令t m n <,0≤<,所以10,2t ⎡⎫∈⎪⎢⎣⎭.所以2219224b t t t ⎛⎫=--=-- ⎪⎝⎭,在区间10,2t ⎡⎫∈⎪⎢⎣⎭单调递减,所以924b -<≤-故存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,实数b 的取值范围且为9,24⎛⎤-- ⎥⎝⎦.8.(2023·福建龙岩)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)k g x f x k x=+∈.(1)若(2)5g =,求k ;(2)已知2k ≤,若关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,求k 的取值范围.【答案】(1)2k =(2)12k <≤【解析】(1)对于幂函数()21()2910m f x m m x -=-+,得229101m m -+=,解得32m =或3m =,又当32m =时,12()f x x =不为偶函数,3m ∴=,2()f x x ∴=,2()k g x x x∴=+,(2)452kg ∴=+=,解得2k =;(2)关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,即22102k x k x +->在[1,)+∞上恒成立,即22min 12k x k x ⎡⎤+>⎢⎥⎣⎦,先证明()2kh x x x=+在[1,)+∞上单调递增:任取121x x >>,则()()()()1212221212121212x x x x k k k h x h x x x x x x x x x +-⎛⎫⎛⎫-=+-+=- ⎪ ⎪⎝⎭⎝⎭,121x x >> ,120x x ∴->,()12122x x x x +>,又2k ≤,()12120x x x x k ∴+->,()()120h x h x ∴->,即()()12h x h x >,故()2kh x x x=+在[1,)+∞上单调递增,()()min 11h x h k ∴==+,2112k k ∴+>,又2k ≤,解得12k <≤.9.(2022秋·上海普陀·高一曹杨二中校考阶段练习)设R m ∈,已知幂函数()()2133m f x m m x +=+-⋅是偶函数.(1)求m 的值;(2)设R a ∈,若函数()[],0,2y f x ax a x =-+∈的最小值为1-,求a 的值.【答案】(1)1m =(2)1a =-或5a =.【解析】(1)因为幂函数()()2133m f x m m x +=+-⋅是偶函数,所以2331m m +-=且1m +为偶数,解得:1m =或4m =-(舍),则1m =,所以()2f x x =.(2)令()()2y g x f x ax a x ax a ==-+=-+的开口向上,对称轴2a x =,①当02a≤即0a ≤,()g x 在[]0,2上单调递增,所以()()min 01g x g a ===-,所以1a =-;②当022a <<即04a <<,()g x 在0,2a ⎡⎤⎢⎥⎣⎦上单调递减,在22a ⎡⎤⎢⎥⎣⎦,上单调递增,所以()22min1242a a a g x g a ⎛⎫==-+=- ⎪⎝⎭,解得:2a =+2a =-③当22a≥即4a ≥,()g x 在[]0,2上单调递减,所以()()min 241g x g a ==-=-,解得:5a =所以5a =.综上:1a =-或5a =.10.(2022秋·河南·高一校联考期中)已知幂函数223()(2)m x f x m -⋅=-在(0,)+∞上单调递增.(1)求实数m 的值;(2)若对[]2,2x ∀∈-,[2,2]a ∃∈-,使得()221f x at t a ≤+++都成立,求实数t 的取值范围.【答案】(1)3m =;(2)实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.【解析】(1)因为幂函数()223(2)m x f x m -⋅=-在(0,)+∞上单调递增,所以()2213230m m m ⎧-=⎪⇒=⎨->⎪⎩;(2)由(1)可得3()f x x =因为对[2,2]x ∀∈-,使得()221f x at t a ≤+++都成立所以2max ()21f x at t a ≤+++,其中[2,2]x ∈-,由(1)可得函数()f x 在[]22-,上的最大值为8,所以2218at t a +++≥,又[2,2]a ∃∈-,使得2218at t a +++≥都成立所以()2max 270a t t ⎡⎤++-≥⎣⎦,因为220t +>,所以()227y a t t =++-是关于a 的单调递增函数,∴()()22max272270a t t t t ⎡⎤++-=++-≥⎣⎦,即2230t t +-≥,∴32t ≤-或1t ≥,所以实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.11.(2023·浙江)已知幂函数()()2223mf x m m x =--.(1)若()f x 的定义域为R ,求()f x 的解析式;(2)若()f x 为奇函数,[]1,2x ∃∈,使()31f x x k >+-成立,求实数k 的取值范围.【答案】(1)()2f x x=(2)(),1-∞-【解析】(1)因为()()2223mf x m m x =--是幂函数,所以22231m m --=,解得2m =或1m =-,当2m =时,()2f x x =,定义域为R ,符合题意;当1m =-时,()11x xf x -==,定义域为()(),00,∞-+∞U ,不符合题意;所以()2f x x =;(2)由(1)可知()f x 为奇函数时,()11x xf x -==,[]1,2x ∃∈,使()31f x x k >+-成立,即[]1,2x ∃∈,使131x k x>+-成立,所以[]1,2x ∃∈,使113k x x-<-成立,令()[]13,1,2h x x x x=-∈,则()max 1k h x -<,[]12,1,2x x ∀∈且12x x <,则()()()1212211212111333h x h x x x x x x x x x ⎛⎫-=--+=-+ ⎪⎝⎭,因为1212x x ≤<≤,所以211210,0x x x x ->>,所以()2112130x x x x ⎛⎫-+> ⎪⎝⎭,即()()12h x h x >,所以()13h x x x=-在[]1,2上是减函数,所以()()max 1132h x h ==-=-,所以12k -<-,解得1k <-,所以实数k 的取值范围是(),1-∞-。

人教版高中数学必修一《幂函数》综合练习题含答案

人教版高中数学必修一《幂函数》综合练习题含答案

数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。

2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。

高一幂函数的试题及答案

高一幂函数的试题及答案

高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。

三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。

7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。

四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。

9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。

答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。

三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。

幂函数练习(含答案详解)

幂函数练习(含答案详解)

3.3 幂函数练习一、单选题1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( A ) A .12 B .1 C .32D .22、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x-2B .y =x-1C .y =x 2D .y =31x3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )4、幂函数()()2222m f x m m x -=--在()0,∞+上单调递减,则实数m 的值为( A ) A .1-B .3C .1-或3D .3-5、若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( A )A .⎣⎡⎭⎫2,167B .(0,2]C .⎝⎛⎭⎫-∞,167 D .[2,+∞) 6、若幂函数f (x )=()12255a a a x---在(0,+∞)上单调递增,则a 等于( D )A .1B .6C .2D .-17、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a >>>8、已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0二、多选题9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( CD )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞11、已知幂函数f (x )=()2231mm m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足2121)()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能12.若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( BD )A .1-B .1C .2D .3三、填空题13.若幂函数()21my m m x =--为偶函数,则m = ___2_____ .14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =_____0__. 15、若()()21221112-+>+m m m ,则实数m 的取值范围是______⎣⎢⎡⎭⎪⎫5-12,2__________.16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题17.已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,故可得139α=,解得2α=-,故()2f x x -=,其定义域为{|0}x x ≠,关于原点对称;其函数图象如下所示:数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.18、已知幂函数f (x )=(m 2-5m +7)x -m -1(m ∈R)为偶函数.(1)求f ⎝⎛⎭⎫12的值;(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x-3是奇函数,∴不满足题意,∴m =2舍去;当m =3时,f (x )=x -4,满足题意, ∴f (x )=x -4,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-4=16.(2)由f (x )=x-4为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,即2a +1=a 或2a +1=-a ,∴a =-1或a =-13.19、已知幂函数f (x )=21()mm x-+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21()m m x-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2), 所以2=2(m 2+m )-12()12m m +-,即122=2()12mm +-,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).20、19.已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++yg x 在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.解:(1)因为函数()()()2151Z m f x m m x m +=-+∈为幂函数,所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,当5m =时,函数()6f x x =是偶函数,不符合题意,综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,所以()()2121g x f x x x x =+=++ 令21t x =+212t x -=,11,0123,032x x t -≤≤∴≤+≤∴≤≤ 所以2211()222t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11122t =-=-⨯,开口向上,所以()g t 在3⎡⎣上单调递增;所以2min011()(0)0222g t g ==+-=-,(2max 31()(3)33122g t g === 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦的值域为1312⎡⎤-⎢⎥⎣⎦.。

幂函数经典例题(答案解析)

幂函数经典例题(答案解析)

幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

幂函数练习题及答案解析

幂函数练习题及答案解析

幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。

2.若 a < 1,则 5a < 0.5a < 5-a。

解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。

3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。

解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。

(-3)^n。

解析:因为 (-2)^n。

0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。

+∞) 上为减函数。

因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。

-4)。

解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。

-4) 上递减。

2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。

0)。

解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。

0)。

3.正确的说法有 2 个。

解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。

4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。

因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一《幂函数》精选习题(含详细解析)
一、选择题
1.下列函数中,是幂函数的是( )
A.y=2x
B.y=2x3
C.y=
D.y=2x2
2.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )
A.1≤m≤2
B.m=1或m=2
C.m=2
D.m=1
3.函数y=x-2在区间上的最大值是( )
A. B. C.4 D.-4
4若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?
5.在下列函数中,定义域为R的是( )
A.y=
B.y=
C.y=2x
D.y=x-1
6函数y=|x(n∈N,n>9)的图象可能是( )
7下列幂函数在(-∞,0)上为减函数的是( )
A.y=
B.y=x2
C.y=x3
D.y=
8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )
A.y=
B.y=x4
C.y=x-2
D.y=
9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )
二、填空题
10幂函数f(x)=xα过点,则f(x)的定义域是.
11若y=a是幂函数,则该函数的值域是.
12若函数f(x)是幂函数,且满足=3,则f的值等于.
13.设a=,b=,c=,则a,b,c的大小关系是.
14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.
三、解答题
15.比较下列各组数的大小:
(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;
(3)0.20.3,0.30.3,0.30.2.
16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.
17幂函数f的图象经过点(,2),点在幂函数g的图象上,
(1)求f,g的解析式.
(2)x为何值时f>g,x为何值时f<g?
18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).
(1)求函数g(x)的解析式.
(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.
参考答案与解析
1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.
2【解析】选D.由题意得解得m=1.
3【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.
5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).
6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.
7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.
9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.
10【解析】因为幂函数f(x)过点,所以=2α,
所以α=-1,所以f(x)=x-1=,
所以函数f(x)的定义域是(-∞,0)∪(0,+∞).
答案:(-∞,0)∪(0,+∞)
11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).
答案:[0,+∞)
3,
12【解析】依题意设f(x)=xα,则有=3,得α=log
2
则f(x)=,于是f====.
答案:
13【解析】因为y=在x∈(0,+∞)上递增,
所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.
答案:a>c>b
14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.
答案:f=x-1
15【解析】(1)由于函数y=x0.1在第一象限内单调递增,
又因为1.1<1.2,所以1.10.1<1.20.1.
(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.
(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.
再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.
所以0.20.3<0.30.3<0.30.2.
16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.
又y=x3-p在(0,+∞)上为增函数,
所以3-p是偶数且3-p>0.
因为p∈N*,所以p=1,
所以不等式(a+1<(3-2a化为:
(a+1<(3-2a.
因为函数y=是[0,+∞)上的增函数,
所以⇒⇒-1≤a<,故实数a的取值范围为.
17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,
则(-2)β=,所以β=-2,所以g=x-2(x≠0).
(2)从图象可知,当x>1或x<-1时,f>g;
当-1<x<0或0<x<1时,f<g.
18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,
所以g(x)=log
a
.
(2)由>0可解得x<-1或x>1,
所以g(x)的定义域是(-∞,-1)∪(1,+∞).
又a>1,x∈(t,a),可得t≥1,
设x
1,x
2
∈(1,+∞),且x
1
<x
2
,于是x
2
-x
1
>0,x
1
-1>0,x
2
-1>0,
所以-=>0, 所以>.
由a>1,有log
a >log
a
,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),
所以得g(a)=log
a
=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,
综上,a=1+,t=1.。

相关文档
最新文档