幂函数经典例题(答案)

合集下载

幂函数练习题及答案解析

幂函数练习题及答案解析

1.下列幂函数为偶函数的是( ) A .y =x 12B .y =3xC .y =x 2D .y =x -1 解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.2.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.4.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 答案:-1或21.函数y =(x +4)2的递减区间是() A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4)解析:选A.y =(x +4)2开口向上,关于x =-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.3.给出四个说法:①当n =0时,y =x n 的图象是一个点; ②幂函数的图象都经过点(0,0),(1,1); ③幂函数的图象不可能出现在第四象限;④幂函数y =x n 在第一象限为减函数,则n <0. 其中正确的说法个数是( ) A .1 B .2 C .3 D .4解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:选A.∵f (x )=x α为奇函数,∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数, ∴α=-1.5.使(3-2x -x 2)-34有意义的x 的取值范围是( ) A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3,∴要使上式有意义,需3-2x -x 2>0, 解得-3<x <1.6.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2B .3C .4D .5 解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1, ∴函数y =(x -1)α恒过点(2,1). 答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数. 答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1, ∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13. 答案:(25)12<(35)12<(76)0<(23)-1310.求函数y =(x -1)-23的单调区间.解:y =(x -1)-23=1(x -1)23=13(x -1)2,定义域为x ≠1.令t =x -1,则y =t -23,t ≠0为偶函数.因为α=-23<0,所以y =t -23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x-1单调递增,故y =(x -1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-12,求m 的取值范围. 解:∵y =x -12的定义域为(0,+∞),且为减函数. ∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m ,解得-13<m <32.∴m 的取值范围是(-13,32).12.已知幂函数y =x m 2+2m -3(m ∈Z )在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又∵m ∈Z ,∴m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). ∵-3<0,∴y =x -3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x )-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=1(-x )4=1x4=x -4=f (x ), ∴函数y =x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x -4是偶函数,∴y =x -4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( ) A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.以下关于函数y =x α当α=0时的图象的说法正确的是( ) A .一条直线 B .一条射线C .除点(0,1)以外的一条直线D .以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.2.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x-34=14x 3,x >0.3.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.5.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个 解析:选B.y =x 2与y =x 0是幂函数.6.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 7.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 128.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________. 解析:结合幂函数的图象性质可知p <1. 答案:p <19.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得 ⎩⎨⎧a 14=12(14)α=12⇒⎩⎨⎧a =116,α=12.所以a a =(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa .答案:a α<αα<a a <αa10.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1, 解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.11.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数, 则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.12.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。

(完整版)幂函数练习题及答案

(完整版)幂函数练习题及答案

幂函数练习题及答案、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,填在题后的括号内(每小题 5 分,共50 分).B.幂函数的图象都经过(0 ,0)和(1,1 )点C .若幂函数y x 是奇函数,则y x 是定义域上的增函数D.幂函数的图象不可能出现在第四象限1 6.函数y x3和y x3图象满足请把正确答案的代号1.下列函数中既是偶函数又是( ,0)上是增函数的是4x32.函数3B.y x 221y x 2在区间[ ,2] 上的最大值是2C.D.1A.4 B.1C.D.3.下列所给出的函数中,是幂函数的是A.y x3 3B.y x C.2x3D.5.下列命题中正确的是A.当0 时函数y x的图象是一条直线yy14 4A.关于原点对称B.关于x 轴对称7. 函数 y x|x|,x R ,满足A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数28.函数 y x 2 2x 24 的单调递减区间是 ( )A . ( , 6]B .[ 6, )C .( , 1]D .[ 1, )9. 如图 1— 9所示,幂函数 y x 在第一象限的图象,比较x 1 x 2 f (x 1)f (x 2 )f(x 12x2),f(x 1)2f(x 2)大小关系是( )奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤 (共 76 分) .15 .( 12 分)比较下列各组中两个值大小6 6 5 5C .关于 y 轴对称D .关于直线 y x 对称0, 1, 2, 3 , 4 ,1的大小(A.1 34 21 B . 012 3 41C.2 4 0 31 1D.3 24 11410 . 对于幂函数 f (x) x , 若 0 x 1 x 2 ,则A . f(x 1x 2 2f (x 1) f (x 2)2 B . f(x 1x2)f (x 1) f(x 2)2C .x 1f( 1x 22f (x 1) f (x 2 )2D . 无法确定、填空题:请把答案填在题中横线上(每小题6 分,共 24 分)k n( 1)k14 .幂函数 yxm(m,n,kN*, m,n 互质 ) 图象在一、二象限,不过原点,则 k,m,n 的34(1 )0.611与0.7 11;(2)( 0.88)1与( 0.89)3 .16.(12分)已知幂函数2f(x) x m 2m 3(m Z)的图象与x轴,y轴都无交点,且关于y 轴对称,试确f (x)的解析式.117 .(12 分)求证:函数y x3在R上为奇函数且为增函数18 .(12 分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系3 1 21)y x2;(2)y x3;(3)y x3;14)y x 2;(5)y x 3;(6)y x 219.(14分)由于对某种商品开始收税,使其定价比原定价上涨后,商品卖出个数减少bx 成,税率是新定价的a成,这里a,b 均为正常数,且a<10 ,设售货款扣除税款后,剩余y 元,要使y 最大,求x的值.20 .(14 分)利用幂函数图象,画出下列函数的图象(写清步骤)x2 2x 22x2 2x 152)y (x 2)3 1.xx成(即上涨率为10),涨价A)(B)(C)(D )(E)(F)参考答案、CCBADDCADA二、11 .(0, );12.f (x)4x3 (x 0);13.5;14.m, k为奇数,n是偶数;三、15 .解:( 1 ) 函数y6x11在(0, )上是增函数且0 0.6 0.76 0.61160.711(2 )5函数y x3在(0, ) 上增函数且0.88 0.895 0.88350.89350.88350.893 ,即5( 0.88)350.89) 3 .16 .解:2 m 由m22m2mZ303是偶数得m 1,1,3.m 1和3时解析式为 f (x) 0 x ,m 1时解析式为f (x) x17 .解:显然 f ( x) x)3 f (x) ,奇函数;令x1 x2 ,则 f (x1) f (x2 ) 3x13x2 (x1 2x2 )(x12x1x2 x2 ) ,其中,显然x1x2 0,2x1 x1x2 x2 1= (x1 2x2)3x2422,由于且不能同时为0 ,否则x1x2 0 ,故(x11(x1 x2 )1221 2 3 2x2 ) x222420,3x22420,0.从而f(x1) f (x2) 0. 所以该函数为增函数18 .解:六个幂函数的定义域,奇偶性,单调性如下:3(1) y x2x3定义域[0,) ,既不是奇函数也不是偶函数,在[0,) 是增函数;12)y x 3 3 x 定义域为 R ,是奇函数,在 [0, )是增函数;23)y x 3 3 x 2 定义域为 R ,是偶函数,在 [0, )是增函数; 21 4)y x 2 12 定义域 R UR 是偶函数,在 (0, )是减函数;x 315)y x 3 13定义域 R UR 是奇函数,在 (0, )是减函数;x16)y x 2 1定义域为 R 既不是奇函数也不是偶 函数,在 (0, ) x 上减函数 .通过上面分析,可以得出( 1) (A ),( 2) (F ),( 3) (5 ) (D ),( 6 ) (B ) .x19.解:设原定价 A 元,卖出 B 个,则现在定价为 A (1+ 1x 0),20 .解:E ),( 4) ( C ),现在卖出个数为 B (1 - bx ),现在售货金额为 A (1+ x ) B(110 10bx )=AB(1+10x1x 0)(1bx-10),x应交税款为 AB(1+ )(110bx a-10 ) ·10 ,x剩余款为 y = AB(1+)(1 105(1 b) 时y 最大b所以 x-b 1x 0)(1 1a 0)= AB (1要使 y 最大, x 的值为a )( 10 100 5(1 b) xb 1b x 101),向上平移 x 2 2x 2x 2 2x 11 x2 2x(x1 1)21把函数 ,y12的图象向左平移x 21 个单位,再1 个单位可以得到函数2x 2 x2x 2的图象 .2x 1 5(x 2) 31的图象可以由5x 3 图象向右平移 2 个单位,再向下平移。

幂函数经典例题(答案)

幂函数经典例题(答案)

幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

高一幂函数的试题及答案

高一幂函数的试题及答案

高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。

三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。

7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。

四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。

9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。

答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。

三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。

必修一幂函数(含答案)

必修一幂函数(含答案)

必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案一、选择题1. 下列函数中,属于幂函数的是:A. y = 3x^2B. y = 5x + 2C. y = 2^xD. y = √x答案:C2. 对于幂函数y = ax^n,若n > 0,则函数图像为:A. 上升曲线B. 下降曲线C. 横坐标轴D. 常数函数y = a答案:A3. 若幂函数y = 3^x在点(0, a)处的函数值为12,则a的值为:A. 9B. 8C. 4D. 2答案:C二、填空题1. 当幂函数图像关于点(1, b)对称时,函数的底数a为_________。

答案:12. 若幂函数y = a^x的图像过点(2, 4),则底数a的值为_________。

答案:23. 幂函数y = 3^x图像的对称轴方程为_________。

答案:x = 0三、计算题1. 求解以下幂函数方程:1) 8^x = 2解:8^x = 2取对数得:xlog8 = log2x = log2 / log8 ≈ 0.3332) (1/2)^x = 4解:(1/2)^x = 4取对数得:xlog(1/2) = log4x = log4 / log(1/2) ≈ -22. 求以下幂函数的极限:1) lim(x→∞) 3^x解:当x趋于正无穷时,幂函数3^x趋于无穷大,因此极限为正无穷。

2) lim(x→-∞) 2^x解:当x趋于负无穷时,幂函数2^x趋于零,因此极限为零。

四、证明题证明:幂函数y = a^x和指数函数y = e^x都是定义域为实数集合R 的递增函数。

证明过程略。

综上所述,幂函数是具有底数a和自变量x的数学函数,根据底数的不同,幂函数的特性也会有所不同。

通过练习题的训练,我们可以更好地理解和掌握幂函数的概念、性质以及解题方法,提升数学应用能力和解决问题的能力。

幂函数经典例题(答案解析)

幂函数经典例题(答案解析)

幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

幂函数题型及解析

幂函数题型及解析

幂函数题型及解析1.(1)下列函数是幂函数的是________y=x 2,y=()x,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x(a >1)分析:由幂函数的定义直接进行判断知甩给的函数中是幂函数的是y=x 2和y=x .解:由幂函数的定义知,y=x 2,y=()x,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x(a >1),七个函数中是幂函数的是y=x 2和y=x ,(2)①y=x 2+1; ②y=2x; ③y=; ④y=(x ﹣1)2; ⑤y=x 5; ⑥y=x x+1分析:根据幂函数的定义,对以下函数进行判断即可.解:根据幂函数y=x α,α∈R 的定义知, ①y=x 2+1不是幂函数,②y=2x不是幂函数,③y==x ﹣2是幂函数,④y=(x ﹣1)2不是幂函数,⑤y=x 5是幂函数,⑥y=x x+1不是幂函数;综上是幂函数的为③⑤2.已知幂函数y=f (x )的图象过点(9,).(1)求f (x )的解析式;(2)求f (25)的值;(3)若f (a )=b (a ,b >0),则a 用b 可表示成什么?分析:(1)设出幂函数f (x )的解析式,根据图象过点(9,),求出函数解析式;(2)根据函数的解析式求出f (25)的值;(3)根据函数的解析式求出a 与b 的关系. 解:(1)设幂函数f (x )=x t,∵图象过点(9,),∴;即32t =3﹣1,∴,∴; (2)∵f (x )=,∴f (25)=25===;(3)∵f (a )=a=b ,∴a =b ,∴a ﹣1=b 2,∴a=.3.比较下列各组中两个值的大小;(3)32)2.1(--,32)25.1(--;(4)()与41)65(-;(5);(6)(),();(723;(8)(),()分析:由幂函数的单调性,有的需要结合指数函数的性质,逐个题目比较可得.解:(1)∵幂函数y=53x 在(0,+∞)单调递增,∴535.1<537.1;(2)∵幂函数y=x 在(0,+∞)单调递增,∴>;(3))∵幂函数y=32-x在(﹣∞,0)单调递增,∴32)2.1(-->32)25.1(--;(4)∵0<<,∴()<41)65(-;(5)<;(6)()>();(72>3;(8)()<()4.若函数y=(m 2+2m ﹣2)x m为幂函数且在第一象限为增函数,求m 的值②已知幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,当x ∈(0,+∞)时为减函数,求幂函数 分析:根据幂函数的性质,列出不等式组,求出m 的值即可解:①∵函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,∴m 2+2m-2=1且m >0;解得m=1②解:∵幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,∴m 2﹣m ﹣1=1,解得m=2,或m=﹣1;又x ∈(0,+∞)时y 为减函数,∴当m=2时,m 2-2m-3=﹣3,幂函数为y=x -3,满足题意;当m=-1时,m 2-2m-3=0,幂函数为y=x 0,不满足题意;综上幂函数y=x -35.幂函数y=(m 2﹣3m+3)x m是偶函数,求m 的值分析:根据幂函数的定义先求出m 的值,结合幂函数是偶函数进行判断即可.解:∵函数是幂函数,∴m 2﹣3m+3=1,即m 2﹣3m+2=0,则m=1或m=2,当m=1时,y=x 是奇函数,不满足条件.当m=2时,y=x 2是偶函数,满足条件,即m=26.求函数y=32-x的定义域和值域.分析:本题考察幂函数的概念及性质,把y=32-x 化为根式的形式,容易写出它的定义域和值域.解:∵函数y=32-x= ,∴x ≠0,且y >0;∴函数y 的定义域是{x |x ≠0},值域是{y |y >0}7.﹣x2﹣3x+4的定义域、值域和单调区间.分析:根据二次函数以及指数函数的性质求出函数的单调性和值域即可. 解:令f (x )=﹣x 2﹣3x +4=﹣(x 2+3x +)+=﹣+,∴f (x )在(﹣∞,﹣)递增,在(﹣,+∞)递减,∴﹣x2﹣3x+4在(﹣∞,﹣)递减,在(﹣,+∞)递增,∴y min ==,∴﹣x2﹣3x+4的定义域是R 、值域是[,+∞),在(﹣∞,﹣)递减,在(﹣,+∞)递增8.已知幂函数y=234m m x --(m ∈Z )的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象 分析:由题意得4-3m-m 2>0解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,故m=0,﹣1,﹣2,﹣3,即可画出图象.解:由题意得4﹣3m ﹣m 2>0,即有(m+4)(m ﹣1)<0,解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,所以m=0,﹣1,﹣2,﹣3,m=﹣3,y=x 4,m=﹣2,y=x 6,m=﹣1,y=x 6,m=0,y=x 4其图象如图:9.已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数图象.分析:由题意可得,可得幂指数n 2﹣2n ﹣3为负数,且为偶数.由于当n=1时,幂指数n 2﹣2n ﹣3=﹣4,满足条件,可得函数的解析式,从而得到函数的图象. 解:已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,可得幂指数n 2﹣2n ﹣3为非正数,且为偶数.由于当n=1时,幂指数n 2﹣2n ﹣3=﹣4,满足条件,当n=3时,n 2﹣2n ﹣3=0,满足条件故函数为y=x ﹣4,或y=x 0,它的图象如图所示:10.已知幂函数y=x m ﹣2(m ∈N )的图象与x ,y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象. 分析:由题意利用幂函数的性质可得m ∈N ,m ﹣2≤0,且m ﹣2为偶数,由此求得m 的值.解:∵幂函数y=x m ﹣2(m ∈N )的图象与x ,y 轴都无交点,且关于y 轴对称,∴①m﹣2<0,m ﹣2为偶数,故m=0,即幂函数y=x ﹣2,它的图象如右图所示.或②m﹣2=0,m=2,此时y=x 0,(x ≠0),它的图象如图所示11.已知幂函数的图象与x轴,y轴没有交点,且关于y轴对称,求m的值分析:由幂函数的概念与该函数为偶函数的性质可知,m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数,从而可得答案.解:∵幂函数y=(m∈Z)的图象与x轴,y轴没有交点,且关于y轴对称,∴m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数(m∈Z),由m2﹣2m﹣3≤0得:﹣1≤m≤3,又m∈Z,∴m=﹣1,0,1,2,3.当m=﹣1时,m2﹣2m﹣3=1+2﹣3=0,为偶数,符合题意;当m=0时,m2﹣2m﹣3=﹣3,为奇数,不符合题意;当m=1时,m2﹣2m﹣3=1﹣2﹣3=﹣4,为偶数,符合题意;当m=2时,m2﹣2m﹣3=4﹣4﹣3=﹣3,为奇数,不符合题意;当m=3时,m2﹣2m﹣3=9﹣6﹣3=0,为偶数,符合题意.综上所述,m=﹣1,1,312. 已知幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,求m的值,并且画出它的图象.分析:由题意知,m2﹣2m﹣3<0,且 m2﹣2m﹣3为奇数,解此不等式组可得m的值.解:幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,∴m2﹣2m﹣3<0,且 m2﹣2m﹣3为奇数,即﹣1<m<3 且 m2﹣2m﹣3 为奇数,∴m=0或2,∴y=x﹣3,其图象为:13.2m+3<3m,求实数m的取值范围分析:2m+3<3m,即为()﹣(4m+6)<()3m,再由y=()x在R上递增,得到﹣(4m+6)<3m,解出即可.2m+3<3m2(2m+3)<()3m,即有()﹣(4m+6)<()3m,由于y=()x在R上递增,则﹣(4m+6)<3m,解得,m >﹣,故实数m的取值范围是(﹣,+∞)14.已知幂函数.(1)试求该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点,求m的值并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.分析:(1)将指数因式分解,据指数的形式得到定义域,利用幂函数的性质知单调性(2)将点的坐标代入列出方程解得m,利用函数的单调性去掉法则f,列出不等式解得,注意定义域.解:(1)∵m2+m=m(m+1),m∈N*∴m2+m为偶数,∴x≥0,所以函数定义域为[0,+∞)由幂函数的性质知:其函数在定义域内单调递增.(2)依题意得:,∴,∴m=1(m∈N*)由已知得:,∴,故a的取值范围为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数经典例题(答案)幕函数的概念例1、下列结论中,正确的是()A ・幕函数的图象都通过点(0,0), (1,1) B.幕函数的图象可以出现在第四象限C ・当幕指数么取1,3,;时,幕函数y=*是增函数D.当幕指数么=一1时,幕函数),=亡在定义域上是减函数解析 当無指数α=-l 时,幕函数y=χ~l 的图象不通过原点,故选项A 不 正确;因为所有的農函数在区间(0, +8)上都有定义,且y=χa (α∈R), j>0, 所以專函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-l 时,y =Ll 在区间(一8, 0)和(0, +8)上是减函数,但它在定义域上不是减函数.答案C 例2、已知幕函数金)=(Z+i χτ[(7+3L2r 2)(f ∈Z)是偶函数且在(0, +8)上 为增函数,求实数/的值•'分析 关于舉函数y=x a(<z ∈R, α≠0)的奇偶性问题,设"(|p|、Igl 互质),当彳为偶数时,"必为奇数,y=x"是非奇非偶函数;当$是奇数时,P=X?的 q q 奇偶性与P 的值相对应. 解 Ty(X)是幕函数,.∙./3-r+l = 1, Λr=-l,l 或 0.7当f=0时,M=X 1是奇函数; 当Z=-I 时,/(x)=x ⅛偶函数; 当f=l 时.是偶函数,且2和;都大于0.¢(0, +8)上为增函数.点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条 件∕∈Z 给予足够的重视•例J 如图是幕函数尸=0与在第一象限内的图象,贝∣J()故t=∖F=-1 且/(x)=A ∣∙A .-1<n<0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1m>1 解析在(0,1)内取同一值x0,作直线x=x0,与各图象有交点,则“点低指数大”.如图,0<m<1,n<-1.答案B点评在区间(0,1)上,幂函数的指数越大,图象越靠近x轴;在区间(1,+∞ )上,幂函数的指数越大,图象越远离x 轴.1例4、已知x12>x3,求x 的取值范围.1作出函数y=x2和y= x3的图象(如右图所示),易得x<0或x>1. 例5、函11错解由于x2≥0,x3∈R,则由x2>x3,可得x∈R.错因分析上述错解原因是没有掌握幂函数的图象特征,尤其是y=xα在α>1 和0<α<1 两种情况下图象的分布.正解数f(x)=(m2-m-1)xm2+m-3 是幂函数,且当x∈(0,+∞ )时,f (x)是增函数,求f(x)的解析式.分析解答本题可严格根据幂函数的定义形式列方程求出m,再由单调性确定m.解根据幂函数定义得m2-m-1=1,解得m=2 或m=-1,当m=2 时,f(x)=x3在(0,+∞)上是增函数;当m=-1 时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故f (x)=x3. 点评幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.1变式已知y=(m2+2m-2)x m2-1+2n-3 是幂函数,求m,n 的值.m2+2m-2=1解由题意得m2-1≠ 0 ,2n-3=0m=-3解得 3 ,n=23所以m=-3,n=2.例6、比较下列各组中两个数的大小:3 3-2-21.5 1.5--(1)1.55,1.75;(2)0.71.5,0.61.5;(3)(-1.2)3,(-1.25)3.解析:(1)考查幂函数 y = x 5 的单调性,在第一象限内函数单调递增,333(2)考查幂函数 y =x 3 的单调性,同理 0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数,-2-2 -2 - 2 -2 -2∵(-1.2) 4=1.2 3 ,(-1.25) 3=1.25 3,又1.2 3 >1.25 3-2>1.25 3. 点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作 为桥梁来比较大小.例 7、比较下列各组数的大小5 5 7 1 7(1) 3-52与 3.1-25; (2)-8-87与- 9 78.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可 用 0 与 1 去比较,这种方法叫 “搭桥 ”法.5解 (1)函数 y =x -2在(0,+ ∞)上为减函数,55又 3<3.1,所以 3- 2>3.1- 2.7 1 7 7 1 1 1 7 1(2)- 8-87=- 8 78,函数 y =x 78在(0,+∞)上为增函数,又 18>91,则 8 78> 9 7 8,7 1 7从而- 8-87<- 9 78.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更 善于运用 “搭桥”法进行分组,常数 0和 1是常用的参数.变式 比较下列各组数的大小:2 2 π 2 (1) -3 - 3与 - 6 - 3;∵函数 y =x -23在(0,+ ∞)上为减函数,又 ∵23>6π,3 3 2(2)4.15,(- 1.9)5与 3.8-3.∴ (-1.2) 3222 解 (1) - 32- 23= 232,3,π 2 π 26-3= 6 - 3,∴ -2-2= 2- 2<π-2= -π-2.∴ -3-3=3 - 3< 6-3= -6-3.(2)(4.1)25>125=1,0<3.8-23<1-32=1,(-1.9)53<0, 所以(-1.9)53<3.8- 23<(4.1)52.例 8、 已知幂函数 y =x 3m -9 (m ∈N *)的图象关于 y 轴对称,且在 (0,+∞ ) 上函数值随 x 的增大而减小,求满足 (a +1)-m 3<(3-2a )-m3的 a 的范围.解 ∵函数在 (0,+ ∞)上递减, ∴3m -9<0,解得 m<3, 又 m ∈N *,∴m =1,2.又函数图象关于 y 轴对称, ∴3m -9 为偶数,故 m = 1,11∴有 (a +1)-3<(3-2a )-3.1 又∵y =x -3在(-∞,0),(0,+ ∞)上均递减, ∴a +1>3- 2a>0 或 0>a + 1>3- 2a 或 a + 1<0<3- 2a ,23解得 3<a<2或 a<-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数 y =x α,由于 α的值不同,单调性和奇偶性也就不同.变式 已知幂函数 y =xm 2-2m -3 (m ∈Z )的图象与 x 轴、y 轴都无公共点, 且关于 y 轴对称,求 m 的值,且画出它的图象.解 由已知,得 m 2-2m -3≤0,∴- 1≤ m ≤3. 又∵m ∈Z ,∴m =- 1,0,1,2,3,当 m =0 或 m =2 时, y =x -3为奇函数,其图象不关于 y 轴对称,不符合题 意.当 m =- 1 或 m =3 时,有 y =x 0,其图象如图 ① 所示. 当 m =1 时,y =x 4,其图象如图 ②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点 (1,1)和点 (0,0);②幂函数的图象不可能在第四象 限;③n =0 时, y =x n 的图象是一条直线;④幂函数 y =x n,当 n>0 时,是增函 数;⑤幂函数 y = x n ,当 n<0 时,在第一象限内函数值随 x 值的增大而减小. 其中正确的是 ( ) A .①和④ B .④和⑤ C .②和③ D .②和⑤ 答案 D2.下列函数中,不是幂函数的是 ( ) A .y =2x B .y =x 1 C . y = x D .y =x 2答案 A1 1 13.设 α∈ -2,- 1,- 2, 3,2,1,2,3 ,则使 f(x)= x α为奇函数且在 (0 +∞ )内单调递减的 α值的个数是 ( ) A .1 B .2 C . 3 D .4 答案 A4.当 x ∈(1,+∞)时,下列函数图象恒在直线 y =x 下方的偶函数是 ( )1-22-1A .y =x 2B .y =x 2C .y =x 2D . y =x 1答案 B5.如果幂函数 y =(m 2-3m +3)·xm 2-m -2 的图象不过原点,则 m 的取值 ) A .-1≤m ≤2 B .m =1或 m =2 C .m =2 D .m =1答案 B∴m =1或 m =2.16.在函数 y =x 2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为 ()xA .1B .0C . 2D . 3 答案 C解析 依据幂函数的定义判定,应选 C.17.幂函数 f(x)的图象过点 4,2 ,那么 f(8)的值为 ( ) A .2 6B .64C. 42D.614答案 C1 1 1解析 设 f(x)=x α (α为常数 ),将 4,2 点代入得 2= 4α,∴ α=-是( 解析 由已知m 2-3m +3=1m 2-m -2≤0=x 2,f(x)8.下列函数中,值域为 [0,+∞ )的函数是 ( )A .y = 2xB .y =x 2C .y =x 2D .y =log a x (a>0,且 a ≠1)答案 B解析 根据函数图象,选 B. 二、填空题11.若幂函数 y =f(x)的图象经过点 9, 3 ,则 f(25)= _________ .1 答案V VI5答案 [0,+∞ )22解析 由 4= 8α,得 α= 3, ∴y = x 3≥0.3. 如图所示是幂函数 y=x α在第一象限内的图象,已知α取± 2,± 四个 值,则相应于曲线 C1,C2,C3,C4 的α依次为 .11答案 2,2,- 2,- 24.若幂函数 y =f(x)的图象经过点 (2, 2),则 f(25)的值是 ______ 答案 5解析 设 y =x α,∵点 (2, 2)在 y =x α的图象上,VI 1 1∴ 2=2α, ∴α=2,∴f(x)= x 2.故 f(25)= 252=5.5.幂函数 y = x α(α∈R)的图象一定不经过第 ____ 象限.答案 四12,1f(8)=8-12=2. 4.11 解析设f(x) =xα,则9α=3,α=-2.11∴f(25)=25-21=51.2.设幂函数y=xα的图象经过点(8,4),则函数y=xα的值域是2 13 2 23 3, 15 0, 23 23,按由小到大的排列顺序为三、解答题2 1.求函数 y = x 5 1解析:设 t =x 5 , 当 t =- 1 时, y mi2 ∴函数 y =x 5+2x 5+4(x ≥-32)的值域为[ 3,+ ). 点评:这是复合函数求值域的问题,应用换元法.2.已知 f(x)=(m 2+2m) ·xm 2+m -1,m 是何值时, (2)反比例函数; (3)二次函数; (4)幂函数.解 (1)若 f(x)为正比例函数,则 m 2+m -1=12, ∴m =1. m 2+2m ≠0(2)若 f(x)为反比例函数,则 m 2+m - 1=- 1,∴m =- 1.m 2+2m ≠0(3) 若 f(x)为二次函数,则 m 2+m - 1= 2 -1± 132, ∴ m = .m 2+ 2m ≠ 0 2 2 6.把下列各数 23, 5 - 1, 3 - 3, 答案2 3 5 3 3< 7.已知幂函数 -1< 1 0< 3 2<22. 3 3 5 2 3 3 1 f (x )=x -12,若 f (a +1)<f (10- 2a ),则 a 的取值范围是 答案 3<a<51 2 +1)<f (10-2a ), a +1>0, ∴ 10- 2a>0, a +1>10-2a.解析 f(x) =x(x>0),由图象知 x ∈ (0,+ ∞)时为减函数,又 f(a a>-1,a<5,a>3. ∴3<a<5.1+2x 5 + 4( x ≥- 32)值域.22∵ x ≥- 32,∴ t ≥- 2,则 y =t 2+2t +4=(t +1)2+3 min =3.f(x)是(1)正比例函数;(4) 若f(x)为幂函数,则m2+2m=1,∴m=-1± 23.已知点( 2,2)在幂函数f(x)的图象上,点-2,上,问当x 为何值时,14在幂函数g(x)的图象(1) f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x). 解 设 f(x)= x α,由题意得: 2=( 2)2? α=2, ∴f(x)=x 2.同理可求: g(x)=x-2,在同一坐标系内作出 y=f(x) 与y=g(x)的图象,如图所 由图象可知:(1)当 x>1 或 x<-1 时,f(x)>g(x) .(2) 当 x= ±1时, f(x)=g(x) .(3)当-1<x<0 或 0<x<1 时, f(x)<g(x) .4.已知函数 y =(a 2-3a +2)xa 2-5a +5 (a 为常数 ).(1)a 为何值时此函数为幂函数?(2)a 为何值时此函数为正比例函数?(3)a 为何值时此函数为反比例函数?解 (1)由题意,得 a 2- 3a +2=1,即 a 2 - 3a + 1= 0.解得 a =3±2 5,即 a = 3±2 5时,此函数为幂函数;解得 a =4,即 a =4 时,此函数为正比例函数;解得 a =3,即 a =3 时,此函数为反比例函数.5.已知函数 y = 4 15-2x - x 2 .(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.示. (2)由题意,得 a 2-5a + 5=1, a 2-3a +(3)由题意,得 a 2-5a + 5=- 1,a 2-3a + 2≠ 0.解析:这是复合函数问题,利用换元法令t=15-2x-x2,则y=4 t ,(1)由15-2x-x2≥0 得函数的定义域为[-5,3],2∴t =16-(x-1)2[0,16].∴函数的值域为[0,2].(2)∵函数的定义域为[-5,3]且关于原点不对称,∴函数既不是奇函数也不是偶函数.(3)∵函数的定义域为[-5,3],对称轴为x=1,∴x [-5,1]时,t 随x 的增大而增大;x (1,3)时,t 随x的增大而减小.又∵函数y=4 t 在t [0,16]时,y随t 的增大而增大,∴函数y=415-2x-x2的单调增区间为[-5,1],单调减区间为(1,3]答案:(1)定义域为[-5,3],值域为[0,2];(2)函数即不是奇函数,也不是偶函数;。

相关文档
最新文档