南通神经生物学膜片钳技术原理

合集下载

膜片钳技术的基本原理

膜片钳技术的基本原理

(一)膜片钳技术的基本原理:膜片钳技术是用尖端直径1~2μm的玻璃微电极吸管与经蛋白酶处理干净的细胞膜接触,通过20~30cm H2O的负压吸引造成电极尖端与细胞膜形成高阻封接(10~100GΩ),使电极尖端下的小块膜片与膜的其它部分在电学上绝缘,并在此基础上固定膜片电位,监测几个μm2膜片上1~3个离子通道活动的方法。

高阻封接的形成:高阻封接形成与否是记录细胞离子通道电流能否成功的前提,是进行膜片钳实验的关键一步。

微电极尖端与细胞膜形成封接的过程,可以采用软件或刺激器发出一个脉冲电压作用于微电极,造成膜两侧电位差发生变化,产生电极电流,再通过示波器或显示屏,观察电极电流幅度的变化来确定封接程度。

在电极未入溶液之前,在显示器或示波器上可见一直线。

当电极入液后,软件或刺激器发出的电脉冲经记录微电极、浴液及参考电极形成回路,1mV的封接电压流径5MΩ的电极阻抗,则会产生0.2nA的电流浮动,随着微电极尖端接近、接触细胞膜,电极电阻则进一步增加,而电流幅度则随之减小,当在显示器或示波器上看到电流方波变为直线时,则形成低阻封接(50MΩ),然后经微电极给予负压(-10~-30cm H2O),即可形成高阻封接。

再将电脉冲调为10mV,调节快、慢电容电流补偿,消除电容电流,就可进行细胞贴附式膜片钳实验,如果在此基础上再次给予负压或电脉冲,使微电极尖端下膜片破裂,则形成全细胞式。

进行高阻封接时,需注意的是:①在微电极未入液之前常施以正压,使电极内有液体从电极尖端流出,防止浴液表面灰尘或溶液中粒子附着于电极尖端,影响高阻封接。

②如果微电极尖端与细胞膜接触后,仍不能形成高阻封接,则电极即不能再用,需重新换一根微电极继续封接。

③电极尖端与细胞膜接触,稍加负压后电流波形变得平坦,此时,如使电极超极化,则有助于加速形成高阻封接。

④电极入液后封接的成功率与入浴液后的时间呈反比,电极内液中的肽类或蛋白质成分也会有碍于封接形成。

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。

1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。

该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。

一、膜片钳技术的基本原理用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。

基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。

膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。

膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。

膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。

二、操作步骤1.膜片钳微电极制作(1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。

软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。

玻璃毛细管的直径应符合电极支架的规格,一般外部直径在1.1~1.2mm。

膜片钳技术的原理

膜片钳技术的原理

膜片钳技术的原理及应用(综述)Intro:细胞是构成生物体的基本单位。

细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。

1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。

这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。

它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。

为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。

这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。

一. 膜片钳技术的基本原理膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。

(如图1)图1 膜片钳技术原理图Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。

Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。

实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。

用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。

patch clamp膜片钳技术的原理和应用(超全的哦)

patch clamp膜片钳技术的原理和应用(超全的哦)
1976年德国马普生物物理研究所Neher和Sakmann创 建了膜片钳技术(patch clamp recording technique)。这 是一种以记录通过离子通道的离子电流来反映细胞膜单 一的(或多个的离子通道分子活动的技术)。以后由于 吉欧姆阻抗封接(gigaohm seal, 109Ω)方法的确立和几种方 法的创建。这种技术点燃了细胞和分子水平的生理学研 究的革命之火,它和基因克隆技术(gene cloning)并架 齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度 的诺贝尔生理学与医学奖。
第二部分
一:应用学科
膜片钳技术的应用
膜片钳技术发展至今,已经成为现代细胞电生理的常规 方法,它不仅可以作为基础生物医学研究的工具,而且直 接或间接为临床医学研究服务, 目前膜片钳技术广泛应用于神经(脑)科学、心血管科 学、药理学、细胞生物学、病理生理学、中医药学、植物 细胞生理学、运动生理等多学科领域研究。 随着全自动膜片钳技术(Automatic patch clamp technology)的出现,膜片钳技术因其具有的自动化、高 通量特性,在药物研发、药物筛选中显示了强劲的生命 力。
5.对药物作用机制的研 在通道电流记录中,可分别于不同时间、不同部位(膜内 或膜外)施加各种浓度的药物,研究它们对通道功能的可 能影响,了解那些选择性作用于通道的药物影响人和动物 生理功能的分子机理。这是目前膜片钳技术应用最广泛的 领域,既有对西药药物机制的探讨,也广泛用在重要药理 的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法 观测到人参二醇组皂苷可抑制正常和“缺血”诱导的大鼠大 脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺 血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通 道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型 钙通道有阻滞作用。

膜片钳技术及其应用

膜片钳技术及其应用
细胞信号转导的研究
膜片钳技术可以用于研究细胞信号转导过程中离子通道和受体的变 化,了解信号转导的机制。
细胞功能调控的研究
膜片钳技术可以用于研究细胞功能调控的机制,例如细胞兴奋性的 调节和细胞内离子浓度的变化。
04 膜片钳技术的优势与局限 性
膜片钳技术的优势
高灵敏度
细胞无损
膜片钳技术具有高灵敏度,能够检测单 个离子通道的活动,从而提供关于细胞 膜电位和离子通道功能的重要信息。
膜片钳技术可以在保持细胞完整性的 情况下进行实验,不会对细胞造成严 重损伤或干扰细胞的正常功能。
实时监测
膜片钳技术可以对细胞膜电位进行实时 监测,从而了解离子通道的动态变化, 有助于深入理解细胞生理和病理过程。
膜片钳技术的局限性
1 2 3
实验条件要求高
膜片钳技术需要高精度的实验设备和条件,包括 低温、低噪声和低阻抗等,这增加了实验的难度 和成本。
03
04
05
膜片钳放大器
微操纵器
细胞培养皿或显 微镜载玻片
电极溶液
细胞内和细胞外 灌流液
用于放大细胞膜电信号, 提高信号的检测灵敏度。
用于精确控制电极的移动 ,以便在细胞膜上定位和 进行膜片钳实验。
用于培养和固定细胞,以 便进行膜片钳实验。
用于填充电极,以保持电 极的湿润和导电性。
用于维持细胞内外环境的 稳定,并排除干扰实验的 物质。
03
在单细胞水平上研究细胞信号转导和离子通道功能,深入了 解细胞生理和病理过程。
膜片钳技术与其他技术的联合应用
结合光学成像技术,利用膜片钳技术对神经元电生理特性进行同时监测和成像,实现多参数的同时测 量。
与基因编辑技术结合,利用膜片钳技术对特定基因表达的离子通道进行功能研究,深入了解基因与离子 通道的关系。

膜片钳技术原理及相关基本知识0306

膜片钳技术原理及相关基本知识0306

失活 状态
Inactive state
复活
recovery
静息 状态
resting state
开放 状态
激活
activation
open state
离子通道的功能
(Function of Ion Channels)
1.产生细胞生物电现象,与细胞兴奋性相关。
2.神经递质的释放、腺体的分泌、肌肉的运动、 学习和记忆 3.维持细胞正常形态和功能完整性
• 机械门控通道
一类是牵拉活化或失活的离子通道,另一类是剪切力敏 感的离子通道,前者几乎存在于所有的细胞膜,研究较多 的有血管内皮细胞、心肌细胞以及内耳中的毛细胞等,后 者仅发现于内皮细胞和心肌细胞
• 水通道
2003年诺贝尔化学奖: Pete Agre、 Roderick MacKinnon
电生理学研究简史:
• 二千年前,观察到电鳐鱼放电现象。 • 1825 年, Nobili 发明了电流计,用其证实了肌 •
肉有电流存在。 1912 年, Bridge 确定了 AP 的“全或无”现象。 同年,Oxford提出了突触的概念及反射弧的生 理学研究,获1932年Nobel奖。
• 1937年,Hodgkin和Huxley在枪乌贼巨大神经轴 •
离子通道结构研究:目前,绝大
多数离子通道的一级结构得到了阐明 ,但最根本的还是要搞清楚各种离子 通道的三维结构,在这方面,美国的 二位科学家彼得· 阿格雷和罗德里克· 麦 金农做出了一些开创性的工作,他们 利用X光绕射方法得到了K离子通道的 三维结构,二位因此获得2003年诺贝 尔化学奖。有关离子通道结构不是本 PPT的重点,可参考杨宝峰的≪离子通 道药理学≫和Hill的≪ Ionic Channels Of Excitable Membranes ≫. .

膜片钳技术

膜片钳技术

膜片钳技术1、膜片钳技术原理膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。

膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。

膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。

由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。

此密封不仅电学上近乎绝缘,在机械上也是较牢固的。

又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。

膜片钳技术的原理图[51]Rs是与膜片抗阻串联的局部串联电阻(或称入路阻抗),Rseal是封接阻抗。

RS通常为1~5MΩ,如果Rseal高达10GΩ以上是成为Ip/I=Rseal/(Rs+Rseal)-1。

此Ip可作为I~V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压下降而被检测出。

实际上这是场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场效应管运算放大器(A2)时被减掉。

本实验采用的是全细胞记录模式。

全细胞记录构型(whole-cell recording)高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。

膜片钳实验与技术

膜片钳实验与技术

汇报人:
通过施加电压或 药物刺激可以观 察到离子通道的 开放或关闭状态 从而了解离子通 道的电学特性和 药理学特性。
膜片钳实验原理的 应用广泛可用于研 究药物对特定离子 通道的作用机制和 效果以及研究细胞 生理和病理过程中 的离子通道变化。
准备实验器材:包括膜片钳放大器、微电极、细胞、溶液等
制作细胞膜片:使用微操纵器将微电极置于细胞膜表面形成封 接
膜片钳技术的未 来发展方向
神经科学:研究神经元电活动与行为之间的关系 药理学:筛选和验证药物作用靶点及效果 生理学:研究细胞生理功能及信号转导机制 病理学:探究疾病发生发展过程中细胞电生理变化
PRT THREE
膜片钳技术是通 过玻璃微电极记 录细胞膜单一离 子通道活动的技 术。
膜片钳实验原理 基于膜片钳夹持 技术能够将细胞 膜的某一离子通 道单独夹持在玻 璃微电极之间。
膜片钳技术将进一 步应用于研究神经 元功能和药物作用 机制
膜片钳技术有望在 基因治疗和细胞疗 法等领域发挥重要 作用
膜片钳技术将与新 型技术相结合提高 实验效率和精确度
膜片钳技术将为研 究生物电信号和离 子通道提供更深入 的见解
挑战:高精度的测量和控制技术 挑战:细胞类型特异性标记和分离技术 展望:结合新技术实现更高效和准确的膜片钳实验 展望:拓展膜片钳技术在生物医学领域的应用范围
膜片钳技术用于筛 选潜在药物候选物
膜片钳技术用于研 究药物对神经元信 号转导的影响
膜片钳技术用于研 究药物对心血管系动化与智能化:提高实验效率和准确度 新型材料的应用:提高膜片钳技术的稳定性和可靠性 跨学科融合:与其他领域的技术相结合拓展应用范围 标准化与规范化:推动膜片钳技术的普及和推广
PRT FIVE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通神经生物学膜片钳技术原理
南通神经生物学膜片钳技术原理
南通神经生物学膜片钳技术是一种应用于神经生物学研究的技术,它可以准确、快速、实时地采集分析神经细胞膜片上的信号。

它的基本原理是利用膜片上的电流信号来预测和判断信号变化,从而提供有效的研究工具。

膜片钳技术的基本原理是:通过在膜片上分别安装电极来测量膜片上的电位,通过不同的电位,可以观察不同的神经细胞功能变化。

当神经元在不同时间段内启动或抑制时,膜片上的电位会发生变化,从而能够追踪神经元的活动状态,进而了解其功能。

膜片钳技术的实现需要一些特殊的设备,如分析室、计算机、实验设备等。

膜片钳由电气设备和软件组成,电气设备用于采集膜片上的电流信号,软件则用于处理膜片信号,提取有效信号,确定神经细胞功能,最后分析得出结论。

膜片钳技术在神经生物学研究中有着重要作用,它可以实时反映神经元的激活情况,以及神经细胞之间的相互作用,为神经生物学研究奠定基础。

- 1 -。

相关文档
最新文档