广州电生理膜片钳原理

合集下载

膜片钳技术及其发展概况烟台绿叶

膜片钳技术及其发展概况烟台绿叶

(3)使用的标本种类繁多 从最早的肌细胞(心肌、平滑肌、骨骼肌)、神经元和
内分泌细胞发展到血细胞、肝细胞、耳窝毛细胞、胃壁细胞、 上皮细胞、内皮细胞、免疫细胞、精母细胞等多种细胞;从 急性分散细胞和培养细胞(包括细胞株)发展到组织片(如 脑片、脊髓片)乃至整体动物;从蜗牛、青蛙、蝾螈、爪蟾 卵母细胞发展到昆虫细胞、鸡细胞、大鼠细胞、人细胞等等; 从动物细胞发展到细菌、真菌以及植物细胞。此外,膜片钳 技术还广泛地应用到平面双分子层(Planar bilayer)、脂质 体(Liposome)等人工标本上。
数模/模数转换器 高速、低噪音的Digidata 1440A
pClamp 10数据采集分析软件
PatchMaster采样软件
正置显微镜
组织薄片 盲法膜片钳- 普通解剖显微镜 可视膜片钳- DIC显微镜
IR-DIC显微镜 (Olympus BX51, Nikon FN-1)
显微镜X-Y移动台与支撑平台
(4)研究对象已经不局限于离子通道 从对离子通道(配体门控性、电压门控性、第二信使介导的
离子通道、机械敏感性离子通道以及缝隙连接通道等等)的研究 发展到对离子泵、交换体以及可兴奋细胞的胞吞、胞吐机制的研 究等。
(5)膜片钳电极已经不单单是传统意义上的电信号记录电极 它还作为其它研究方法的工具使用,如用于进行单细胞
1983 年 10 月 , Sakmann 和 Neher 主 编 的 《Single-Channel Recording》一书问世,对当时的膜片钳技术进行了全面、 系统的总结,从此奠定了膜片钳技术的里程碑。
1995年,《Single-Channel Recording》一书再版,增添了 大量膜片钳技术的新内容,几乎当时国际上所有的知名膜 片钳专家都参与了编写,成为目前膜片钳技术研究领域的 最经典著作。

膜片钳技术的基本原理

膜片钳技术的基本原理

膜片钳技术的基本原理膜片钳技术的基本原理膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaohm seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA 级)进行检测记录。

膜片钳技术的原理及应用(综述)Intro:细胞是构成生物体的基本单位。

细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。

1976年,德国的两位细胞生物学家埃尔温. 内尔(Erwin Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。

这一技术使对细胞电活动的研究精度提高到1pA 的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。

它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。

为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。

这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。

一. 膜片钳技术的基本原理膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaohm seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA 级)进行检测记录。

(如图1)图1 膜片钳技术原理图Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal 是封接阻抗。

Rs通常为1-5MΩ,若Rseal高达10GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。

膜片钳原理

膜片钳原理

膜片钳技术的原理
膜片钳技术是用微管电极接触细胞膜,以千兆欧 姆(gigaohm seal GΩ)以上的阻抗使之封接,使于电 极尖开口处相接的细胞膜的小区域(膜片 patch)与其 周围在电学学上分隔,在此基础上固定电位,对此膜 片上的离子通道的离子电流( pA 级最小可达 0.06pA ) 进行检测记录的方法。
1980年Neher于在一次实验中偶然的向微电极 内施加一点负压(20-30cmH2O),封接电阻骤然增 大了两个数量级,达到10-100GΩ,且背景噪声显 著减低,后来将这种电阻大于gigaΩ(109 Ω)的封接 称为giga-seal。1981年,Hamill等在实现giga-seal 的基础上建立了膜片钳记录的4种基本模式,在此 基础上,以后有发展了许多新的记录模式,从而大 大扩展了它的应用领域。Neher 和Sakman 也因此 获得1991年度的诺贝尔医学和生理学奖。当今全世 界每年有1000篇以上采用膜片钳技术的研究论文发 表。
膜片钳技术包括细胞的分离和膜处理技术,膜片钳放 大器等试验仪器的安装和调试,微电极的制作,数据 的采集和处理技术等。
膜片钳实验的构成 膜片钳实验仪器设备主要有放大器、微 型操纵器(微超)、倒置显微镜、防震台、 屏蔽笼、灌流槽和数据采集和处理设(计算 机)。其中膜片钳放大器( amplifier )、微 型操纵器(微操 micromanipulator )、倒置显 微镜 (inverted microscope) 是膜片钳实验区别 于一般电生理实验所需要的仪器。
膜片钳和钙图象技术的联合应用测定单一活细胞 的钙浓度
通过膜片钳微电极将指示剂染料注入 细胞,用共聚焦激光扫描显微镜配以高灵 敏的 CCD(charge-coupled device) 图像记录 系统,能快速、精确测定钙的动态参数和 分析处理。近年来这一技术在耳鼻喉研究 领域应用广泛。

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。

1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。

该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。

一、膜片钳技术的基本原理用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。

基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。

膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。

膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。

膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。

二、操作步骤1.膜片钳微电极制作(1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。

软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。

玻璃毛细管的直径应符合电极支架的规格,一般外部直径在1.1~1.2mm。

patch clamp膜片钳技术的原理和应用(超全的哦)

patch clamp膜片钳技术的原理和应用(超全的哦)
1976年德国马普生物物理研究所Neher和Sakmann创 建了膜片钳技术(patch clamp recording technique)。这 是一种以记录通过离子通道的离子电流来反映细胞膜单 一的(或多个的离子通道分子活动的技术)。以后由于 吉欧姆阻抗封接(gigaohm seal, 109Ω)方法的确立和几种方 法的创建。这种技术点燃了细胞和分子水平的生理学研 究的革命之火,它和基因克隆技术(gene cloning)并架 齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度 的诺贝尔生理学与医学奖。
第二部分
一:应用学科
膜片钳技术的应用
膜片钳技术发展至今,已经成为现代细胞电生理的常规 方法,它不仅可以作为基础生物医学研究的工具,而且直 接或间接为临床医学研究服务, 目前膜片钳技术广泛应用于神经(脑)科学、心血管科 学、药理学、细胞生物学、病理生理学、中医药学、植物 细胞生理学、运动生理等多学科领域研究。 随着全自动膜片钳技术(Automatic patch clamp technology)的出现,膜片钳技术因其具有的自动化、高 通量特性,在药物研发、药物筛选中显示了强劲的生命 力。
5.对药物作用机制的研 在通道电流记录中,可分别于不同时间、不同部位(膜内 或膜外)施加各种浓度的药物,研究它们对通道功能的可 能影响,了解那些选择性作用于通道的药物影响人和动物 生理功能的分子机理。这是目前膜片钳技术应用最广泛的 领域,既有对西药药物机制的探讨,也广泛用在重要药理 的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法 观测到人参二醇组皂苷可抑制正常和“缺血”诱导的大鼠大 脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺 血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通 道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型 钙通道有阻滞作用。

膜片钳技术及其应用

膜片钳技术及其应用
细胞信号转导的研究
膜片钳技术可以用于研究细胞信号转导过程中离子通道和受体的变 化,了解信号转导的机制。
细胞功能调控的研究
膜片钳技术可以用于研究细胞功能调控的机制,例如细胞兴奋性的 调节和细胞内离子浓度的变化。
04 膜片钳技术的优势与局限 性
膜片钳技术的优势
高灵敏度
细胞无损
膜片钳技术具有高灵敏度,能够检测单 个离子通道的活动,从而提供关于细胞 膜电位和离子通道功能的重要信息。
膜片钳技术可以在保持细胞完整性的 情况下进行实验,不会对细胞造成严 重损伤或干扰细胞的正常功能。
实时监测
膜片钳技术可以对细胞膜电位进行实时 监测,从而了解离子通道的动态变化, 有助于深入理解细胞生理和病理过程。
膜片钳技术的局限性
1 2 3
实验条件要求高
膜片钳技术需要高精度的实验设备和条件,包括 低温、低噪声和低阻抗等,这增加了实验的难度 和成本。
03
04
05
膜片钳放大器
微操纵器
细胞培养皿或显 微镜载玻片
电极溶液
细胞内和细胞外 灌流液
用于放大细胞膜电信号, 提高信号的检测灵敏度。
用于精确控制电极的移动 ,以便在细胞膜上定位和 进行膜片钳实验。
用于培养和固定细胞,以 便进行膜片钳实验。
用于填充电极,以保持电 极的湿润和导电性。
用于维持细胞内外环境的 稳定,并排除干扰实验的 物质。
03
在单细胞水平上研究细胞信号转导和离子通道功能,深入了 解细胞生理和病理过程。
膜片钳技术与其他技术的联合应用
结合光学成像技术,利用膜片钳技术对神经元电生理特性进行同时监测和成像,实现多参数的同时测 量。
与基因编辑技术结合,利用膜片钳技术对特定基因表达的离子通道进行功能研究,深入了解基因与离子 通道的关系。

膜片钳记录法

膜片钳记录法

膜片钳记录法(Patch Clamp Recording)是一种生理学实验技术,用于测量细胞膜离子通道或受体的电生理特性和活动。

该技术的基本原理是使用微型玻璃电极将一个非常小的玻璃管(称为膜片)贴附到单个细胞的表面上,从而形成一个微小的、高阻抗的突触点。

然后在膜片和细胞膜之间形成一个密封,并使用微电极或电极芯片记录跨越这个突触点的电位变化。

这种技术可以测量非常小的电流变化(尤其是亚毫安级别),因此非常适合研究离子通道和受体的活动。

通过控制细胞环境的情况,例如改变温度、pH值或添加化学物质,可以进一步调节离子通道和受体的电生理属性及其响应模式。

这种方法还可以用于研究各种细胞类型的电生理特性,包括神经元和心肌细胞等。

膜片钳记录法是一种十分精密的技术,在操作过程中需要非常小心谨慎,以避免损坏细胞或膜片。

同时,该技术需要一定的专业知识和设备支持,因此通常由有经验的生理学家和技术人员来执行。

总之,膜片钳记录法是一种重要的电生理技术,已经成为研究离子通道和受体的电生理学特性的关键工具之一,对于揭示神经、心血管等多种疾病的发病机制和治疗方法也具有重要意义。

膜片钳技术

膜片钳技术

膜片钳技术1、膜片钳技术原理膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。

膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。

膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。

由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。

此密封不仅电学上近乎绝缘,在机械上也是较牢固的。

又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。

膜片钳技术的原理图[51]Rs是与膜片抗阻串联的局部串联电阻(或称入路阻抗),Rseal是封接阻抗。

RS通常为1~5MΩ,如果Rseal高达10GΩ以上是成为Ip/I=Rseal/(Rs+Rseal)-1。

此Ip可作为I~V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压下降而被检测出。

实际上这是场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场效应管运算放大器(A2)时被减掉。

本实验采用的是全细胞记录模式。

全细胞记录构型(whole-cell recording)高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州电生理膜片钳原理
一、膜片钳技术简介
膜片钳技术是一种用于记录单个细胞或亚细胞电生理活动的方法。

它通过在细胞膜上形成一个小型突起,称为膜片,以隔离细胞膜和电极之间的直接接触。

这种技术使得科学家能够精确地测量细胞膜电位的变化,进而研究细胞的功能和生理过程。

二、广州电生理膜片钳原理详解
在膜片钳的控制下,一个被称为玻璃膜片的薄而坚硬的玻璃片将电极与细胞膜间隔开。

这使得电极能够记录到细胞的电活动信号,而不会干扰细胞膜的电位。

同时,膜片钳技术还能保护细胞免受电极插入引起的损伤。

此外,在缺氧水剂下保存细胞是膜片钳技术的另一个重要特点。

这种方法可以保持细胞的活性和完整性,使得电极能够记录到更加真实和可靠的细胞电活动信号。

因此,广州电生理膜片钳是一种高效、准确的电生理记录技术,被广泛应用于神经科学、心血管研究等领域。

三、广州电生理膜片钳技术的应用
广州电生理膜片钳技术在神经科学领域的应用主要包括研究神经元电活动、离子通道功能以及神经递质的释放和转运等。

此外,在心血管研究领域,该技术也被用于研究心肌细胞的电活动和离子通道功能等。

总之,广州电生理膜片钳技术是一种重要的电生理记录技术,能够精确地测量细胞膜电位的变化,进而研究细胞的功能和生理过程。

它具有高精度、高保真度和高可靠性等优点,被广泛应用于神经科学、心血管研究等领域。

相关文档
最新文档