压弯构件稳定计算

合集下载

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。

2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。

实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。

然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。

B73-实腹式压弯构件弯矩作用平面外整体稳定计算

B73-实腹式压弯构件弯矩作用平面外整体稳定计算

N N
1

Ey
N N
N Ey
N

M M
x
2

0 Ey
crx
o
y
x
NMx=Ne0ຫໍສະໝຸດ xNEy — 构件轴心受压时绕 y 轴弯曲屈曲的临界力; u
Nw — 构件绕纵轴 z 扭转屈曲的临界力;
y
θ
y
Mcrx— 构件受绕 x 轴的均匀弯矩作用时的弯扭屈
Mx
曲临界弯矩。
0.2 o
N M tx x 1
Af W f
y
y
b 1x y
M M cr
1.0
(2)压弯构件弯矩作用平面外稳定计算式
引入抗力分项系数后,规范规定单向压弯构件弯矩作用
平面外的整体稳定验算公式为:
式中:
N


tx
M
x

f
A W
y
b 1x
N
Af

M tx W
x
弯矩使翼缘受压时:
双角钢 T 形截面:
1 0.0017 f 235
b
y
y
y
x
x
Mx
y y
两板组合 T 形截面(含 T 型钢):
1 0.0022 f 235
b
y
y
x
x
Mx
y
弯矩使翼缘受拉 且腹板宽厚比不大于 18 235 f y 时:
1 0.0005 f 235
1.0
化得到的,对其他情况,需采用数值
解法和试验方法来确定平面外的稳定
承载力,但理论和试验研究表明:
N N Ey =5 2 1

压弯构件的整体稳定_图文_图文

压弯构件的整体稳定_图文_图文
1、有侧向支承时,框架平面外的 计算长度等于侧向支承点之间的 距离。 2、无侧向支承时,框架平面外 的计算长度等于柱的全长。
[例题6-8]柱与基础铰接的双跨框架上,沿构件 的轴线作用有轴线压力,边柱为P, 中柱为2P, 沿横梁的水平力为0.2P, 承受弯距如图,框架平 面外有足够支撑。 要求确定柱的承载能力。
Байду номын сангаас
二、腹板的局部稳定
(一) 工字形截面的 腹板
二、腹板的局部稳定 (一) 工字形截面的
腹板
当λ<30时,取λ=30, 当λ>100时,取λ=100,即30≤λ≤100。
二、腹板的局部稳定 (二)箱形截面的腹板
二、腹板的局部稳定 (三)T形截面的腹板
第 五节 压弯构件的计算长度
• 当压弯构件的端部支承条件比较简单,其计算 长度可按照轴心压杆的计算长度系数进行计算;
四、实腹式压弯构件在弯矩作用平面外的稳定计算
四、实腹式压弯构件在弯矩作用平面外的稳定计算
四、实腹式压弯构件在弯矩作用平面外的稳定计算
1、工字形截面 双轴对称时 :
单轴对称时:
2、T形截面(弯矩作用在对称轴平面,绕x 轴) (1)弯矩使翼缘受压时:
双角钢T形截面:
两板组合T形截面:
(2)弯矩使翼缘受拉时: b=1.0 3、箱形截面: b=1.4 4、 对轧制普通工字钢之压弯构件,可由附表直接查得, 当查得的 b >0.6时,应按表查相应的/ b代替 b
构件看作一个平行桁架,分肢视为弦杆,将压 力和弯矩分配到分肢并按轴心压杆计算。分肢 的轴向力按下式计算:
分肢1
分肢2
压弯构件的整体稳定_图文_图文.ppt
二、压弯构件在弯矩作用平面内的弹性性能 力的平衡方程

5.压弯构件稳定计算

5.压弯构件稳定计算

压弯构件的整体失稳
2. 压弯构件弯矩作用平面内的整体稳定
确定压弯构件弯矩作用平面内极限承载力的方法可分为两类,即: 极限荷载计算方法和相关公式方法。
极限荷载计算法
采用解析法或数值法直接求解压弯构件弯矩作用平面内的极限荷载。
解析法是在各种近似假定的基础上,通过理论方法求得构件在弯矩 作用平面内极限荷载的解析解。 数值法可以求得单一构件弯矩作用平面内极限承载力的数值解,可 以考虑构件的几何缺陷和残余应力的影响,适用于各种边界条件以 及弹塑性工作阶段,是最常用的方法。
Af y W v0 ( 1) 1 A N E 1
m M
N W 1 N E fy
边缘屈服准则导出的相关公式。 规范将上式作为格构式压弯构件绕虚轴平面内稳定计算的 相关公式
N x A
m M x
N W1x 1 x N Ex
ex ey x
N x A
mx M x
xW1x 1 0.8 N Ex
ty M y f byW1y N
(a)
y
y1 ey x
y
y1
x1
N y A
my M y M tx x f bxW1x N yW1y 1 0.8 N Ey
A 470 10 2 400 15 16700 mm2
I x (400 5003 390 4703 ) / 12 792.4 106 mm4
Wx 792.4 106 / 250 3.170106 mm3
ix 217.8mm
x 16000/ 217.8 73.5 [ ] 150

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。

2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。

实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。

然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。

C82-压弯构件弯矩作用平面内整体稳定计算式

C82-压弯构件弯矩作用平面内整体稳定计算式
件。) 框架柱和两端支承的构件
① 无横向荷载作用, βmx =0.65+0.35M2/M1
M1 和 M2 是构件两端的弯矩,|M1|≥|M2|;当两端弯矩使构 件产生同向曲率时取同号,使构件产生反向 曲率(有反弯点) 时取异号。
N M1
M2 N
N M1
M2 N
M2/M1>0
M2/M1<0
② 有端弯矩和横向荷载同时作用
(3)压弯构件弯矩作用平面内整体稳定计算式
单向压弯构件弯矩作用平面内整体稳定验算公式为:
绕虚轴( x 轴)弯曲的格构式压弯构件
y
N
M mx x
f
A W 1 N N
x
实腹式压弯构件和绕实轴弯曲的格构 式压弯构件
N
M mx x
f
A W 1 0.8N N
2
1
x

拉 fy
式中:
γ2x — 较小翼缘端的截面塑性发展系数;
W2x — 较小翼缘端的毛截面模量;
x Mx
x
压 拉
1.25— 经验修正系数。
2
fy
等效弯矩系数 βmx
按以下规定采用。 悬臂构件和在内力分析中未考虑二阶效应的无支撑和弱支撑框
架柱,βmx =1.0 (弯矩作用平面内两端有相对侧移的压弯构
x
x 1x
Ex
1 y
x
1
y
x
对于单轴对称截面(如 T 形截面)压弯构件 当弯矩作用在对称
轴平面内且使较大翼缘受压时,有可能在
较小翼缘(或无翼缘)一侧产生较大的拉应力而出现受拉破坏

1
对这种情况,除上述计算外,尚应补
充如下计算:

5.压弯构件稳定计算解析

5.压弯构件稳定计算解析

1. 压弯构件整体失稳形式
压弯构件弯矩作用平面内失稳 ——在N和M同时作用下, 一开始构件就在弯矩作用平面内发生变形,呈弯曲状态, 当N和M同时增加到一定大小时则到达极限状态,超过此 极限状态,要维持内外力平衡,只能减 小N和M。在弯矩 作用平面内只产生弯曲屈曲。属于极值点失稳。 压弯构件弯矩作用平面外失稳——当构件在弯矩作用平面 外没有足够的支撑以阻止其产生侧向位移和扭转时,构件 可能发生弯扭屈曲而破坏,这种弯扭屈曲又称为压弯构件 弯矩作用平面外的整体失稳。属于分支点失稳,失稳的分 荷载为Pyw <Pu。

压弯构件的稳定计算
1、压弯构件在弯矩作用平面内的稳定计算 2、压弯构件在弯矩作用平面内的稳定计算
3、双向压弯构件的稳定计算
§5.1 实腹式压弯构件在弯矩作用平面内的稳定计算
压弯构件的截面尺寸通常由稳定承载力确定。双轴对称 截面一般将弯矩绕强轴作用,单轴对称截面则将弯矩作用在 对称轴平面内。构件可能在弯矩作用平面内弯曲失稳,也可 能在弯矩作用平面外弯扭失稳。所以,压弯构件要分别计算 弯矩作用平面内和弯矩作用平面外的稳定性。
mx 1.0

对于 T形截面等单轴对称压弯构件,当弯矩作用于对称轴 平面且使较大翼缘受压时,构件失稳时出现的塑性区除存在 前述受压区屈服和受压、受拉区同时屈服两种情况外,还可
N x A
mx M x
N xW1x 1 0.8 '2 x
mx —等效弯矩系数,按下列情况取值:
(1) 框架柱和两端支承的构件: ① 无横向荷载作用时: mx 0.65 0.35M 2 / M1 ,M1和M2 为端弯
1 N / NE
构件中点截面边缘纤维达到屈服时 N m M Nv 0 f y

压弯构件稳定计算课件

压弯构件稳定计算课件
可以计算出框架结构在压弯作用下的临界承载力和安全系数,从而评估其稳定性。
压弯构件的优化设计建议
优化材料选择
总结词
选择高强度、高弹性模量的材料可以提高压弯构件的稳定性。
详细描述
在材料选择上,可以考虑使用高强度钢材或其他合金材料, 这些材料具有较高的抗弯刚度和稳定性,能够提高压弯构件 的承载能力。
优化截面形状和尺寸
整体稳定计算公式
根据压弯构件的几何尺寸、 材料特性、边界条件等因 素,通过计算确定构件的 整体稳定性。
计算方法
采用有限元法、能量法、 传递矩阵法等数值分析方 法进行计算。
影响因素
包括截面尺寸、材料特性、 支撑条件、荷载大小和分 布等。
压弯构件的局部稳定计算
局部稳定计算公式
针对压弯构件的局部区域,如翼 缘、腹板等,进行稳定性计算。
压弯构件的承载能力
承载能力与截面尺寸、材料强度有关
压弯构件的承载能力主要取决于截面尺寸和所用材料的强度,截面尺寸越大、材 料强度越高,承载能力越强。
需满足稳定性要求
在承载能力满足要求的前提下,还需满足稳定性要求,以防止构件在受压过程中 发生屈曲或失稳。
压弯构件的稳定性分析方法
01
02
03
弹性稳定性分析
总结词
合理的截面形状和尺寸可以改善压弯构 件的稳定性。
VS
详细描述
根据压弯构件的受力特点,可以设计合理 的截面形状,如工字形、箱形等,以充分 利用材料的力学性能。同时,合理的尺寸 也能够提高构件的稳定性,如增加翼缘宽 度、减小腹板厚度等。
优化支撑和连接方式
总结词
合理的支撑和连接方式可以增强压弯构件的 整体稳定性。
随着计算机技术和有限元方法的不断 发展,采用数值模拟方法进行压弯构 件的稳定性分析,提高了计算精度和 可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压弯构件稳定计算
(1)概述
压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。

同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即
正常使用极限状态:刚度条件;
承载能力极限状态:强度、整体稳定、局部稳定.
(2) 类型与截面形式
⏹单向压弯构件: 只绕截面一个形心主轴受弯;
⏹双向压弯构件: 绕两个形心主轴均有弯矩作用。

⏹弯矩由偏心轴力引起的压弯构件也称作偏压构件。

⏹截面形式:
同轴心受力构件一样,分实腹式截面与格构式截面。

实腹式:型钢截面与组合截面
格构式:缀条式与缀板式
☻按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i)
☻按截面几何特征分为开口截面,闭口截面(g、h、i、j)
☻按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图)
☻按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p)
(3)破坏形式
强度破坏、整体失稳破坏和局部失稳破坏。

强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。

整体失稳破坏:
⏹单向压弯构件:
弯矩平面内失稳:极值失稳,应考虑
效应(二阶效应)。

弯矩平面外失稳:弯扭变形,分岔失稳。

⏹双向压弯构件:一定伴随扭转变形,为分岔失稳。

7.2.1 强度计算
⏹两个工作阶段,两个特征点。

弹性工作阶段:以边缘屈服为特征点(弹性承载力);
弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。

7.2.2 极限承载力与相关条件
联立以上两式,消去η,则有如下相关方程
7.2.3 为计算方便,改用线性相关方程, 得《规范》公式 :
⏹关于±号的说明:如右图所示对于单对称截面,弯矩绕非对称
轴作用时,会出现图示两种控制应力状况。

7.2.4 刚度条件:
⏹一般情况,刚度由构件的长细比控制,即:
7.3.1 概述
实腹式压弯构件在轴力及弯矩作用下,即可能发生弯矩作用平面内的弯曲失稳,也可能发生弯矩作用平面外的弯曲扭转失稳(类似梁)。

两方面在设计中均应保证。

7.3.2 弯矩作用平面内的整体稳定
考虑初弯曲V0的影响
以受压边缘纤维屈服为破坏准则,则有
若令M X=0,则构件变为轴心压杆,则有轴力极限值:
上式成为:
联立a、b两式,消去V0则有:
引入弯矩非均匀分布时的等效弯矩系数,可得:
适用于绕虚轴的格构式及冷弯薄壁型钢压弯构件
如果采用极限承载力准则, 则有
(试验研究与数值分析相结合确定)
适用于实腹式压弯构件及绕实轴的格构式压弯构件
βmx:等效弯矩系数,按产生的最大弯矩相等的原则选用。

对于不对称的工字形截面、T形截面而且弯矩使较大的翼缘受压时,还应按下式计算:
βmx的取值:
(1)两端有相对水平位移(有侧移框架柱):βmx=1.0(2)两端无相对水平位移:
无横向荷载时:
有端弯矩和横向荷载时:
使构件产生同向曲率时: βmx=1.0
使构件产生反向曲率时:βmx=0.85
无端弯矩但有一个跨中集中荷载作用:
无端弯矩但有几个横向集中荷载作用或横向均匀荷载作用:βmx=1.0
7.3.3 弯矩作用平面外的整体稳定
首先建立平面外弯扭屈曲的微分方程
进行一系列推导,得到相关方程
最后得到实用设计公式
φb---均匀弯曲的受弯构件整体稳定系数
η---截面影响系数,闭口截面为0.7,其他截面为1.0βtx---等效弯矩系数,可采用下面数值:
βtx的取值
在弯矩作用平面外有支撑时
(1)所考虑段内无横向荷载作用
(2)有端弯矩和横向荷载同时作用
使构件段产生同向曲率,βtx=1.0
使构件段产生异向曲率,βtx=0.85
(3)无端弯矩但有横向荷载作用βtx=1.0
7.4.1格构式压弯构件的计算
(1) 整体稳定计算:绕虚轴
(式7-10),且:
7.4.2单肢稳定计算
弯矩绕虚轴作用时,单肢轴力按下式计算
缀板式构件的计算尚应考虑剪力引起的局部弯矩, 并按压弯构件计算。

其剪力可取下面两个值的较大者。

缀板式构件单肢的平面外稳定计算,可按轴心压杆,计算长度取两相邻侧向支承点间的距离。

7.5.1 按照不允许板件发生局部失稳的准则
翼缘板:
(外伸翼缘)
(两边支承)
腹板:
1.工字形截面
2.箱形截面
腹板的宽厚比不应大于上述值的0.8倍;且当此值小于时, 用该数值。

3.T形截面
7.5.2 考虑利用屈曲后强度的准则
该准则的核心是采用有效截面的概念。

即认为腹板局部屈曲后部分截面退出工作,然后考虑有效截面的作用再按此截面进行构件的强度和整体稳定性验算。

但计算构件长细比时仍按毛截面考虑。

对于有效截面,目前缺乏统一的计算方法。

有待于进一步研究。

相关文档
最新文档