偏导数与方向导数的存在关系

合集下载

方向导数与偏导数

方向导数与偏导数

¶l
t® 0
x0
t
t® 0
t
目录 上页 下页 返回 结束
方向导数的定义
定义: 设
单位向量为
r e
xr0
.
Î R2, 是平面上一向量,与l 同向的
二元函数

内让自变量x
l

xr0
沿与
r e
l
平行的直线变到
从而对应的函数值有改变量
lim f (xr0 + terl
f(
)-
xr0
f
r (+xr0t)el
第五章
3.1 方向导数与偏导数
目录 上页 下页 返回 结束
r l
引例: 设 xr0 Î 其单位向量记为
R2
r
,
e
,
是平面上某一向量,
r el
是一个二元函数.
l
现讨论
f
在点xr0
处沿l
L r x0
方向的变化率.
解:过点 作与l 平行的直线 L,它的方程为
f (x)在点xr0 处沿方向l 的变化率,就是当点x 在直线 L 上变化时f (x)在点xr0 处的变化率.
zx (x0 , y0 ) ;
即:
x0 x
x0
x
同理给出 f 对 y 的偏导数的记号和定义式.
目录 上页 下页 返回 结束
定义 设函数 z f (x, y)在区域D 内有定义,
则f 对x 及 y 的偏导函数分别定义为

其中 (x, y) ? D,(x Dx, y) ? D,(x, y Dy) ? D.
(1) 定义中的 t 的绝对值是两点 xr0 与xr0 + terl 之间的距离d .

偏导数与全导数-偏微分与全微分的关联

偏导数与全导数-偏微分与全微分的关联

1。

偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线这里在补充点。

就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。

2。

微分偏增量:x增加时f(x,y)增量或y增加时f(x,y)偏微分:在detax趋进于0时偏增量的线性主要部分detaz=fx(x,y)detax+o(detax)右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。

概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。

3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。

u=a(t),v=b(t)z=f[a(t),b(t)]dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。

dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)建议楼主在复合函数求导这里好好看看书,这里分为3种情况。

1.中间变量一元就是上面的情况,才有全导数的概念。

2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。

对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数!偏导数就是在一个范围里导数,如在(x0,y0)处导数。

导数、偏导数、方向导数、梯度,有何区别?

导数、偏导数、方向导数、梯度,有何区别?

导数、偏导数、⽅向导数、梯度,有何区别?0、总结1、定义①导数:反映的是函数y=f(x)在某⼀点处沿x轴正⽅向的变化率。

再强调⼀遍,是函数f(x)在x轴上某⼀点处沿着x轴正⽅向的变化率/变化趋势。

直观地看,也就是在x轴上某⼀点处,如果f’(x)>0,说明f(x)的函数值在x点沿x轴正⽅向是趋于增加的;如果f’(x)<0,说明f(x)的函数值在x点沿x轴正⽅向是趋于减少的。

②偏导数:导数与偏导数本质是⼀致的,都是当⾃变量的变化量趋于0时,函数值的变化量与⾃变量变化量⽐值的极限。

直观地说,偏导数也就是函数在某⼀点上沿坐标轴正⽅向的的变化率。

(注意:偏导数的⽅向不是切线⽅向,⽽是沿着⾃变量坐标轴的⽅向)区别在于:导数,指的是⼀元函数中,函数y=f(x)在某⼀点处沿x轴正⽅向的变化率;偏导数,指的是多元函数中,函数y=f(x1,x2,…,xn)在某⼀点处沿某⼀坐标轴(x1,x2,…,xn)正⽅向的变化率。

③⽅向导数:在前⾯导数和偏导数的定义中,均是沿坐标轴正⽅向讨论函数的变化率。

那么当我们讨论函数沿任意⽅向的变化率时,也就引出了⽅向导数的定义,即:某⼀点在某⼀趋近⽅向上的导数值。

通俗的解释是:我们不仅要知道函数在坐标轴正⽅向上的变化率(即偏导数),⽽且还要设法求得函数在其他特定⽅向上的变化率,⽽⽅向导数就是函数在其他特定⽅向上的变化率。

④梯度:梯度的提出只为回答⼀个问题:函数在变量空间的某⼀点处,沿着哪⼀个⽅向有最⼤的变化率?梯度定义如下:函数在某⼀点的梯度是这样⼀个向量,它的⽅向与取得最⼤⽅向导数的⽅向⼀致,⽽它的模为⽅向导数的最⼤值。

这⾥注意三点: 1)梯度是⼀个向量,即有⽅向有⼤⼩; 2)梯度的⽅向是最⼤⽅向导数的⽅向,即函数增长最快的⽅向; 3)梯度的值是最⼤⽅向导数的值。

2、理解如下视频和⽂章有助于直观理解:注意:假设⼀个⼆元函数z=f(x,y),可视化后是⼀个可以呈现在xyz坐标系中的三维图像,求某个⽅向的偏导数或梯度时,原函数会降⼀维。

高等数学:BIT7-7 方向导数、偏导数、连续性关系

高等数学:BIT7-7 方向导数、偏导数、连续性关系
方向导数、偏导数、 连续性关系
等值线
在几何上 z f ( x, y)表示一个曲面
曲面被平面 z c
所截得zz
f c
( x,
y) ,
所得曲线在xoy面上投影 如图
y f (x, y) c2 gradf ( x, y)
P 梯度为等高线上的法向量
f (x, y) c 等值线
f (x, y) c1
而梯度的模等 于函数在这个法线方向 的方 向导数.
此时 f ( x , y ) 沿该法线方向的方向导 数为
f n
fx
fx
f
2 x
f
2 y
fy
fy
f
2 x
f
2 y
gradf 0
故应从数值较低的等高线指向 数值较高的等高线.
梯度的概念可以推广到三元函数
三元函数u f ( x, y, z)在空间区域G 内具有
x x0 y y0 z z0 .
(t0 ) (t0 ) (t0 )
切向量: 切线的方向向量称为曲线的切向量.
T (t0 ), (t0 ),(t0 )
法平面:过M点且与切线垂直的平面.
(t0 )( x x0 ) (t0 )( y y0 ) (t0 )(z z0 ) 0
例1

f l
grad f
el
梯度在方向 l 上的投影.
第七节
第七章
微分学在几何上的应用
一、空间曲线的切线与法平面 二、曲面的切平面与法线 三、一元向量值函数
一、空间曲线的切线与法平面
x (t)
设空间曲线的方程
y
(t
)
z (t )
(1)式中的三个函数均可导.

多元函数的偏导数与全微分

多元函数的偏导数与全微分

多元函数的偏导数与全微分多元函数是指含有多个自变量的函数。

在研究多元函数时,我们经常需要考虑函数在各个自变量上的变化情况。

而偏导数就是用来描述多元函数在某个自变量上的变化率。

偏导数的定义如下:对于多元函数f(x1, x2, ..., xn),在某个点P(x1,x2, ..., xn)处,对第i个自变量求导得到的导数称为偏导数,记作∂f/∂xi。

偏导数表示了函数在某一方向上的变化率。

如果函数f是可微的,那么全微分df可以表示为df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... + ∂f/∂xn * dxn,其中dx1, dx2, ..., dxn是自变量的微小变化量。

偏导数与方向导数之间存在一定的联系。

方向导数表示了函数在某一特定方向上的变化率,偏导数是方向导数在坐标轴方向上的特例。

具体来说,对于函数f(x1, x2, ..., xn)在点P(x1, x2, ..., xn)处的方向向量为d,则方向导数可以表示为Df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... +∂f/∂xn * dxn。

当d为坐标轴方向(例如d = (1, 0, 0, ..., 0))时,方向向量的每个分量只有一个非零分量,其他分量为0,此时方向导数就变成了偏导数。

在求解多元函数的偏导数时,常常使用链式法则和求导法则。

链式法则用于求解复合函数的导数,求导法则则是求解一些特定函数的导数公式。

多元函数偏导数在实际问题中有着广泛的应用。

例如,在经济学中,我们经常研究生产函数来描述生产过程中的变化率;在物理学中,偏导数可以用来表示速度、加速度等物理量的变化率。

总结一下,多元函数的偏导数是用来描述函数在某个自变量上的变化率。

全微分则是将多个自变量的偏导数通过线性组合得到的。

偏导数与方向导数密切相关,是方向导数在坐标轴方向上的特例。

在实际问题中,偏导数有着重要的应用价值。

以上就是关于多元函数的偏导数与全微分的相关内容,希望能够帮助你更好地理解和应用多元函数的求导方法。

偏导数几何意义

偏导数几何意义
多元函数微分法
对于多元隐函数,需要使用多元函数微分法进行求导。首先确定函数中的各个自变量, 然后分别对每个自变量求偏导数,最后根据隐函数的约束条件求解出所需的导数。
偏导数在隐函数求导中作用
描述函数在某一点处沿某一方向的变化率
偏导数可以描述多元函数在某一点处沿某一方向的变化率。在隐函数中,偏导数可以帮助我们了解函数在某一点处沿 某一自变量方向的变化情况。
02
偏导数与切线、法线关系
切线方程与偏导数关系
切线斜率
偏导数表示了函数在某一点沿着某一方向的变化率,即切线 的斜率。
切线方程
通过偏导数和函数在某一点的取值,可以确定该点处的切线 方程。
法线方程与偏导数关系
法线斜率
法线与切线垂直,因此法线的斜率与 切线的斜率互为负倒数。偏导数可用 于计算法线的斜率。
性质。例如,在曲面上,切平面和法线可以用于定义曲面的定向、曲率
以及曲面上的测地线等概念。
03
偏导数与方向导数关系
方向导数定义及性质
方向导数定义
方向导数是函数在某一点沿某一方向的 变化率。对于二元函数$z = f(x, y)$,在 点$P(x_0, y_0)$处沿方向$l$(与$x$轴 正向夹角为$alpha$)的方向导数定义为 $lim_{rho to 0} frac{f(x_0 + Delta x, y_0 + Delta y) - f(x_0, y_0)}{rho}$,其 中$rho = sqrt{(Delta x)^2 + (Delta y)^2}$,$Delta x = rho cos alpha$, $Delta y = rho sin alpha$。
方向导数在几何图形中应用
切线斜率

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】1。

偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线这里在补充点。

就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。

2。

微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。

概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。

3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。

u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。

d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t)建议楼主在复合函数求导这里好好看看书,这里分为3种情况。

1.中间变量一元就是上面的情况,才有全导数的概念。

偏导数与梯度

偏导数与梯度

偏导数与梯度在数学和物理学的领域中,偏导数和梯度是两个相互关联的重要概念。

它们在解决多元函数中的极值、导数方向等问题上具有广泛的应用。

本文将介绍偏导数和梯度的概念、计算方法以及在实际问题中的应用。

1. 偏导数的概念偏导数是指多元函数对于其中一个变量的导数。

对于一个函数 f(x1, x2, ..., xn),其关于变量 xi 的偏导数表示为∂f/∂xi,其中∂ 表示偏导数的符号。

偏导数表示了函数在某一个方向上的变化率。

2. 偏导数的计算方法计算偏导数的方法与计算普通导数的方法相似,只需要将其他变量视为常数进行求导。

例如,对于函数 f(x, y) = x^2 + 2xy + y^2,需要计算∂f/∂x 和∂f/∂y,可以按照以下步骤进行计算:- 对于∂f/∂x,将 y 视为常数,对 x 进行求导,得到 2x + 2y。

- 对于∂f/∂y,将 x 视为常数,对 y 进行求导,得到 2x + 2y。

3. 偏导数与方向导数的关系偏导数可以被看作是方向导数在坐标轴上的投影。

方向导数表示了函数在某一特定方向上的变化率,而偏导数为我们提供了函数在坐标轴上的变化率,从而可以用来求解方向导数。

4. 梯度的概念梯度是一个向量,由函数的偏导数组成。

对于一个函数 f(x1, x2, ..., xn),其梯度表示为 grad(f) 或∇f,其中∇表示梯度的符号。

梯度指向函数上升最快的方向,其大小表示了函数变化率的大小。

5. 梯度的计算方法梯度的计算方法与偏导数的计算方法类似,只需要将所有的偏导数放在一个向量中。

例如,对于函数 f(x, y) = x^2 + 2xy + y^2,其梯度可以表示为 [2x + 2y, 2x + 2y]。

6. 偏导数与梯度的应用偏导数和梯度在各个领域中都有广泛的应用,以下是其中一些例子:- 在最优化问题中,通过求解函数的偏导数和梯度,可以找到函数的极值点。

- 在物理学中,梯度被用来表示场的变化率,例如电场、温度场等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏导数与方向导数的关系
偏导数和方向导数都是微积分中重要的概念,它们的存在有着密切的关联。

首先,我们来看偏导数。

偏导数是指在多元函数中,对某一个自变量求导数,而将其他自变量视为常数的结果。

它反映了函数在该自变量方向上的变化率。

举个例子,对于函数f(x,y) = x^2 + 3xy,我们可以求出f关于x的偏导数为2x+3y,关于y的偏导数为3x。

这意味着在点(x0,y0)处,函数在x方向上的变化率为2x0+3y0,y方向上的变化率为3x0。

与偏导数相关的还有方向导数。

方向导数是指在多元函数中,在某个指定点上沿着某一方向的导数值。

与偏导数不同的是,方向导数需要在给定点和方向上求出方向向量,再将其归一化为单位向量。

方向导数代表了函数在某个方向上的变化率,因此是偏导数的延伸。

例如,对于函数f(x,y) = x^2 + 3xy,在点(1,2)处,沿着向量v = (1,1)的方向导数为5根号2。

那么,偏导数与方向导数有哪些关系呢?我们可以发现,偏导数可以作为方向导数的特例,也就是说,沿着坐标轴方向的方向导数就是偏导数。

此外,对于任何一个方向,方向导数都可以表示为该方向与各坐标轴方向的夹角余弦值的线性组合,也就是说,方向导数可以由各个偏导数表示。

具体来说,设函数f(x,y)在点(x0,y0)处具有偏导
数fx和fy,v为方向向量,则f在点(x0,y0)处沿着方向v的方向导数为:
Dvf(x0,y0) = fx * cosθx + fy * cosθy,其中θx和θy是方向向量v与坐标轴正方向的夹角。

综上所述,偏导数和方向导数在微积分中都有着重要的作用,二者之间存在着密切的关联,相互延伸。

掌握它们的概念、计算方法和应用场景,对于深入理解微积分和应用数学具有重要的指导意义。

相关文档
最新文档