高考数学19种答题方法及6种解题思想

合集下载

高考数学答题复习:解答高考数学题的12种方法

高考数学答题复习:解答高考数学题的12种方法

2019年高考数学答题复习:解答高考数学题的12种方法2019年高考数学答题复习:解答高考数学题的12种方法【】2019年高考已经进入第二轮的复习,考生们在复习中或多或少有一些困惑,精品学习网的编辑为大家总结了2019年高考数学答题复习:解答高考数学题的12种方法,各位考生可以参考。

方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

高考数学思想方法汇总(80页)

高考数学思想方法汇总(80页)

高考数学思想方法前言 (2)第一章高中数学解题基本方法 (3)一、配方法………………………………… (3)二、换元法………………………………… (7)三、待定系数法…………………………………14四、定义法………………………………… (19)五、数学归纳法…………………………………23六、参数法………………………………… (28)七、反证法………………………………… (32)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想…………………………… (35)二、分类讨论思想…………………………… (41)三、函数与方程思想……………………………47四、转化(化归)思想 (54)第三章高考热点问题和解题策略 (59)一、应用问题…………………………… (59)二、探索性问题…………………………… (65)三、选择题解答策略……………………………71四、填空题解答策略……………………………77附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光.高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等.数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用.数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得.可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”.为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷.在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识.第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方.有时也将其称为“凑配法”.最常见的配方是进行恒等变形,使数学式子出现完全平方.它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题.配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b +c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x =(x+1x)2-2=(x-1x)2+2 ;……等等.Ⅰ、再现性题组:1. 在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则 a3+a5=_______.2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____.A. 14<k<1 B. k<14或k>1C. k∈RD. k=14或k=13. 已知sin4α+cos4α=1,则sinα+cosα的值为______.A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x2+5x+3)的单调递增区间是_____.A. (-∞, 54] B. [54,+∞)C. (-12,54] D. [54,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____.【简解】1小题:利用等比数列性质am p-am p+=am2,将已知等式左边后配方(a3+a5)2易求.答案是:5.2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B.3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解.选C.4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解.选D.5小题:答案3-11.Ⅱ、示范性题组:例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____. A. 23 B. 14 C. 5 D. 6【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211424()()xy yz xz x y z ++=++=⎧⎨⎩,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式可得.【解】设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211424()()xy yz xz x y z ++=++=⎧⎨⎩. 长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=6112-=5所以选B.【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解.这也是我们使用配方法的一种解题模式. 例2. 设方程x 2+kx +2=0的两实根为p 、q,若(p q )2+(q p)2≤7成立,求实数k 的取值范围.【解】方程x 2+kx +2=0的两实根为p 、q,由韦达定理得:p +q =-k,pq =2 , (pq )2+(qp )2=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 22484--≤7,解得k ≤-10或k ≥10.又∵p 、q 为方程x 2+kx +2=0的两实根,∴△=k 2-8≥0即k ≥22或k ≤-22 综合起来,k 的取值范围是:-10≤k ≤-22或者22≤k ≤10.【注】关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理.本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式.假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视.例3.设非零复数a 、b 满足a 2+ab +b 2=0,求(a ab +)1998+(b a b +)1998. 【分析】 对已知式可以联想:变形为(ab )2+(a b )+1=0,则a b =ω (ω为1的立方虚根);或配方为(a +b)2=ab .则代入所求式即得.【解】由a 2+ab +b 2=0变形得:(a b)2+(a b )+1=0 , 设ω=a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a ,ω3=ω3=1. 又由a 2+ab +b 2=0变形得:(a +b)2=ab ,所以 (a a b +)1998+(b a b+)1998=(a ab 2)999+(b ab 2)999=(a b )999+(b a )999=ω999+ω999=2 . 【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂.一系列的变换过程,有较大的灵活性,要求我们善于联想和展开.【另解】由a 2+ab +b 2=0变形得:(a b)2+(a b )+1=0 ,解出b a =-±132i 后,化成三角形式,代入所求表达式的变形式(a b )999+(b a )999后,完成后面的运算.此方法用于只是未-±132i联想到ω时进行解题.假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2=0解出:a =-±132ib,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算. Ⅲ、巩固性题组:1.函数y=(x-a)2+(x-b)2(a、b为常数)的最小值为_____.A. 8B. ()a b-22C.a b222+D.最小值不存在2.α、β是方程x2-2ax+a+6=0的两实根,则(α-1)2 +(β-1)2的最小值是_____.A. -494B. 8C. 18D.不存在3.已知x、y∈R+,且满足x+3y-1=0,则函数t=2x+8y有_____.A.最大值22B.最大值22C.最小值22 B.最小值224.椭圆x2-2ax+3y2+a2-6=0的一个焦点在直线x+y+4=0上,则a=_____.A. 2B. -6C. -2或-6 D. 2或65.化简:218-sin+228+cos的结果是_____.A. 2sin4B. 2sin4-4cos4C. -2sin4D. 4cos4-2sin46. 设F1和F2为双曲线x24-y2=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是_________.7. 若x>-1,则f(x)=x2+2x+11x+的最小值为___________.8. 已知2〈β<α〈34π,cos(α-β)=12 13,sin(α+β)=-35,求sin2α的值.(92年高考题)9. 设二次函数f(x)=Ax2+Bx+C,给定m、n(m<n),且满足A2[(m+n)2+m2n2]+2A[B(m+n)-Cmn]+B2+C2=0 .①解不等式f(x)>0;②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围.10. 设s>1,t>1,m∈R,x=logs t+logts,y=logs 4t+logt4s+m(logs2t+logt2s),①将y表示为x的函数y=f(x),并求出f(x)的定义域;②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围.二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用.换元的方法有:局部换元、三角换元、均值换元等.局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题.三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元.如求函数y=x+1-x的值域时,易发现x∈[0,1],设x=sin2],问题变成了熟悉的求三角函数α,α∈[0,π2值域.为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题.均值换元,如遇到x+y=S形式时,设x=S2-t等等.+t,y=S2我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大.如上几例中的t>0和α∈[0,π2].Ⅰ、再现性题组:1.y =sinx ·cosx +sinx+cosx 的最大值是_________.2.设f(x 2+1)=log a (4-x 4) (a>1),则f(x)的值域是_______________.3.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =___________.4.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________.5.方程1313++-xx=3的解是_______________.6.不等式log 2(2x -1) ·log 2(2x +1-2)〈2的解集是_______________.【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t 22+t -12,对称轴t =-1,当t =2,y max =12+2;2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4];3小题:已知变形为11a n +-1a n=-1,设b n=1a n,则b 1=-1,b n =-1+(n -1)(-1)=-n,所以a n =-1n;4小题:设x +y =k,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1;5小题:设3x =y,则3y 2+2y -1=0,解得y =13,所以x =-1;6小题:设log 2(2x -1)=y,则y(y +1)<2,解得-2<y<1,所以x ∈(log 254,log 23).Ⅱ、示范性题组:例 1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求1S max+1S min的值.(93年全国高中数学联赛题)【分析】 由S =x 2+y 2联想到cos 2α+sin2α=1,于是进行三角换元,设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式求S max 和S min 的值.【解】设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式得: 4S -5S ·sin αcos α=5解得 S =10852-sin α;∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴1013≤1085-sin α≤103 ∴1S max +1S min =310+1310=1610=85此种解法后面求S 最大值和最小值,还可由sin2α=810S S-的有界性而求,即解不等式:|810S S|≤1.这种方法是求函数值域时经常用到的“有界法”.【另解】 由S =x 2+y 2,设x 2=S 2+t,y 2=S 2-t,t ∈[-S 2,S 2], 则xy =±S t 224-代入①式得:4S ±5S t 224-=5,移项平方整理得 100t 2+39S 2-160S +100=0 .∴ 39S 2-160S +100≤0 解得:1013≤S ≤103∴1S max+1S min=310+1310=1610=85【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2与三角公式cos 2α+sin 2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题.第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2而按照均值换元的思路,设x 2=S 2+t 、y 2=S 2-t,减少了元的个数,问题且容易求解.另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法.和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b,y =a -b,这称为“和差换元法”,换元后有可能简化代数式.本题设x =a +b,y =a -b,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,53],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=1013+2013a 2∈[1013,103],再求1S max +1S min的值.例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B,1cos A +1cos C=-2cos B ,求cosA C-2的值.(96年全国理)【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得A CB +=⎧⎨⎩12060°=°;由“A +C =120°”进行均值换元,则设A C =°α=°-α6060+⎧⎨⎩,再代入可求cos α即cos A C -2.【解】由△ABC 中已知A +C =2B,可得A CB +=⎧⎨⎩12060°=°, 由A +C =120°,设A C =°α=°-α6060+⎧⎨⎩,代入已知等式得:1cos A +1cos C=160cos()︒+α+160cos()︒-α=11232cos sin αα-+11232cos sin αα+=cos cos sin ααα143422-=cos cos αα234-=-22,解得:cos α=22, 即:cosA C -2=22. 【另解】由A +C =2B,得A +C =120°,B =60°.所以1cos A +1cos C=-2cos B=-22,设1cos A =-2+m,1cos C =-2-m , 所以cosA =12-+m ,cosC =12--m,两式分别相加、相减得: cosA +cosC =2cosA C +2cosA C -2=cosA C -2=2222m -,cosA -cosC =-2sinA C +2sinA C -2=-3sinA C -2=222mm -, 即:sin A C-2=-2322m m ()-,=-2222m -,代入sin 2A C -2+cos 2A C -2=1整理得:3m 4-16m-12=0,解出m 2=6,代入cos A C -2=2222m -=22. 【注】 本题两种解法由“A +C =120°”、“1cos A +1cos C=-22”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练.假如未想到进行均值换元,也可由三角运算直接解出:由A +C =2B,得A +C =120°,B =60°.所以1cos A+1cos C=-2cos B =-22,即cosA +cosC =-22cosAcosC,和积互化得:2cos A C +2cos A C -2=-2[cos(A+C)+cos(A-C),即cos A C-2=22-2cos(A-C)=22-2(2cos 2A C -2-1),整理得:42cos 2A C-2+2cos A C -2-32=0,解得:cos A C-2=22例3. 设a>0,求f(x)=2a(sinx +cosx)-sinx ·cosx -2a 2的最大值和最小值. 【解】 设sinx +cosx =t,则t ∈[-2,2],由(sinx +cosx)2=1+2sinx ·cosx 得:sinx ·cosx =t 212-∴ f(x)=g(t)=-12(t -2a)2+12(a>0),t ∈[-2,2]t =-2时,取最小值:-2a 2-22a -12当2a ≥2时,t =2,取最大值:-2a 2+22a -12;当0<2a ≤2时,t =2a,取最大值:12.∴ f(x)的最小值为-2a2-22a-12,最大值为122222212222()()<<-+-≥⎧⎨⎪⎪⎩⎪⎪aa a a.【注】此题属于局部换元法,设sinx+cosx=t后,抓住sinx+cosx与sinx·cosx 的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解.换元过程中一定要注意新的参数的范围(t∈[-2,2])与sinx+cosx对应,否则将会出错.本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论.一般地,在遇到题目已知和未知中含有sinx 与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究.例 4. 设对所于有实数x,不等式x2log241()aa++2x log221aa++log2()aa+1422>0恒成立,求a的取值范围.(87年全国理)【分析】不等式中log241 ()aa+、log221aa+、log2()aa+1422三项有何联系?进行对数式的有关变形后不难发现,再实施换元法.【解】 设log 221a a +=t,则log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221a a +=3-t,log 2()a a +1422=2log 2a a +12=-2t, 代入后原不等式简化为(3-t )x 2+2tx -2t>0,它对一切实数x 恒成立,所以:3048302->=+-<⎧⎨⎩t t t t ∆(),解得t t t <<>⎧⎨⎩306或∴ t<0即log 221a a +<0 0<21a a +<1,解得0<a<1. 【注】应用局部换元法,起到了化繁为简、化难为易的作用.为什么会想到换元及如何设元,关键是发现已知不等式中log 241()a a +、 log 221a a +、log 2()a a +1422三项之间的联系.在解决不等式恒成立问题时,使用了“判别式法”.另外,本题还要求对数运算十分熟练.一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点.例 5. 已知sin θx =cos θy ,且cos 22θx +sin 22θy =10322()x y + (②式),求x y 的值.【解】 设sin θx =cos θy =k,则sin θ=kx,cos θ=ky,且sin 2θ+cos 2θ=k 2(x 2+y 2)=1,代入②式得: k y x 222+k x y 222=10322()x y +=1032k 即:y x 22+x y 22=103设x y 22=t,则t +1t =103 , 解得:t =3或13∴x y =±3或±33 【另解】 由x y =sin cos θθ=tg θ,将等式②两边同时除以cos 22θx ,再表示成含tg θ的式子:1+tg 4θ=()()11031122+⨯+tg tg θθ=103tg 2θ,设tg 2θ=t,则3t 2—10t +3=0,∴t =3或13, 解得x y =±3或±33. 【注】 第一种解法由sin θx =cos θy 而进行等量代换,进行换元,减少了变量的个数.第二种解法将已知变形为xy =sin cos θθ,不难发现进行结果为tg θ,再进行换元和变形.两种解法要求代数变形比较熟练.在解高次方程时,都使用了换元法使方程次数降低.例6. 实数x 、y 满足()x -192+()y +1162=1,若x +y -k>0恒成立,求k 的范围.【分析】由已知条件()x -192+()y +1162=1,可以发现它与a 2+b 2=1有相似之处,于是实施三角换元. 【解】由()x -192+()y +1162=1,设x -13=cos θ,y +14=sin θ, 即:x y =+=-+⎧⎨⎩1314cos sin θθ 代入不等式x +y -k>0得:3cos θ+4sin θ-k>0,即k<3cos θ+4sin θ=5sin(θ+ψ)所以k<-5时不等式恒成立.【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围.一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”.本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式ax +by +c>0 (a>0)所表示的区域为直线ax +by +c =0所分平面成两部分中含x 轴正方向的一部分.此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上x +y -k>0的区域.即当直线x +y -k =0在与椭圆下部相切的切线之下时.当直线与椭+圆相切时,方程组16191144022()()x y x y k -++=+-=⎧⎨⎩有相等的一组实数解,消元后由△=0可求得k =-3,所以k<-3时原不等式恒成立.Ⅲ、巩固性题组:1. 已知f(x 3)=lgx (x>0),则f(4)的值为_____.A. 2lg2B. 13lg2 C. 23lg2 D. 23lg4 2. 函数y =(x +1)4+2的单调增区间是______.A. [-2,+∞)B. [-1,+∞) D. (-∞,+∞)C. (-∞,-1]3. 设等差数列{a n }的公差d =12,且S 100=145,则a 1+a 3+a 5+……+a 99的值为_____.A. 85B. 72.5C. 60D. 52.54. 已知x 2+4y 2=4x,则x +y 的范围是_________________.5. 已知a ≥0,b ≥0,a +b =1,则a +12+b +12的范围是____________.6. 不等式x >ax +32的解集是(4,b),则a =________,b =_______.7. 函数y =2x +x +1的值域是________________.8. 在等比数列{a n}中,a 1+a 2+…+a 10=2,a 11+a 12+…+a 30=12,求a 31+a 32+…+a 60.9. 实数m 在什么范围内取值,对任意实数x,不等式sin 2x +2mcosx +4m -1<0恒成立. 10. 已知矩形ABCD,顶点C(4,4),A 点在曲线x 2+y 2=2 (x>0,y>0)上移动,且AB 、AD 始终平行x 轴、y 轴,的最小面积.三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a 值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等. 待定系数法解题的关键是依据已知,正确列出等式或方程.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解. y D C A B O x使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程.比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程.Ⅰ、再现性题组:1.设f(x)=x2+m,f(x)的反函数f 1(x)=nx-5,那么m、n的值依次为_____.A. 52 , -2 B. -52, 2 C.5 2 , 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-1 2,13),则a+b的值是_____.A. 10B. -10C. 14D. -143. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____.A. -297B.-252C. 297D. 2074. 函数y =a -bcos3x (b<0)的最大值为32,最小值为-12,则y =-4asin3bx 的最小正周期是_____.5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________.6. 与双曲线x 2-y 24=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________.【简解】1小题:由f(x)=x 2+m 求出f 1(x)=2x -2m,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b,选D ;3小题:分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ;4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π;5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;6小题:设双曲线方程x 2-y 24=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1.Ⅱ、示范性题组: 例1. 已知函数y =mx x n x 22431+++的最大值为7,最小值为-1,求此函数式.【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”.【解】 函数式变形为: (y -m)x 2-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴△=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2-(m +n)y +(mn -12)=0的两根, 代入两根得:1120497120+++-=-++-=⎧⎨⎩()()m n mn m n mn 解得:m n ==⎧⎨⎩51或m n ==⎧⎨⎩15 ∴ y =5431122x x x +++或者y =x x x 224351+++此题也可由解集(-1,7)而设(y +1)(y -7)≤0,即y 2-6y -7≤0,然后与不等式①比较系数而得:m n mn +=-=-⎧⎨⎩6127,解出m 、n 而求得函数式y.【注】 在所求函数式中有两个系数m 、n 需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m 、n 的关于y 的一元二次不等式,且知道了它的解集,求参数m 、n.两种方法可以求解,一是视为方程两根,代入后列出m 、n 的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m 、n 的方程组求解.本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y 视为参数,函数式化成含参数y 的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y 的不等式,解出y 的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程.例 2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程.【分析】求椭圆方程,根据所给条件,确定几何数据a 、b 、c 之值,问题就全部解决了.设a 、b 、c 后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a -c 的值后列出第二个方程. 【解】 设椭圆长轴2a 、短轴2b 、焦距2c,则|BF ’|=a ∴a b c a a b a c 2222222105=++=-=-⎧⎨⎪⎩⎪()解得:a b ==⎧⎨⎪⎩⎪105∴ 所求椭圆方程是:x 210+y 25=1 也可有垂直关系推证出等腰Rt △BB ’F ’后,由其性质推证出等腰Rt △B ’O ’F ’,再进行如下列式: b c a c a b c =-=-=+⎧⎨⎪⎩⎪105222,更容易求出a 、b的值.【注】 圆锥曲线中,参数(a 、b 、c 、e 、p )的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式.在曲线的平移中,几何数据(a 、b 、c 、e )不变,本题就利用了这一特征,列出关于a -c 的等式. 一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入.y B’B例 3. 是否存在常数a 、b 、c,使得等式1·22+2·32+…+n(n +1)2=n n ()+112(an 2+bn +c)对一切自然数n 都成立?并证明你的结论. (89年全国高考题)【分析】是否存在,不妨假设存在.由已知等式对一切自然数n 都成立,取特殊值n =1、2、3列出关于a 、b 、c 的方程组,解方程组求出a 、b 、c 的值,再用数学归纳法证明等式对所有自然数n 都成立.【解】假设存在a 、b 、c 使得等式成立,令:n =1,得4=16(a +b +c);n =2,得22=12(4a +2b +c);n =3,得70=9a +3b +c.整理得:a b c a b c a b C ++=++=++=⎧⎨⎪⎩⎪2442449370,解得a b c ===⎧⎨⎪⎩⎪31110,于是对n =1、2、3,等式1·22+2·32+…+n(n +1)2=n n ()+112(3n 2+11n +10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:假设对n =k 时等式成立,即1·22+2·32+…+k(k +1)2=k k ()+112(3k 2+11k +10); 当n =k +1时,1·22+2·32+…+k(k +1)2+(k +1)(k +2)2=k k ()+112(3k 2+11k +10) +(k +1)(k +2)2=k k ()+112(k +2)(3k +5)+(k +1)(k +2)2=()()k k ++1212(3k 2+5k +12k +24)=()()k k ++1212[3(k +1)2+11(k +1)+10],也就是说,等式对n =k +1也成立.综上所述,当a =8、b =11、c =10时,题设的等式对一切自然数n 都成立.【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到.此种解法中,也体现了方程思想和特殊值法.对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行.本题如果记得两个特殊数列13+23+…+n 3、12+22+…+n 2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n +1)2=n 3+2n 2+n 得S n =1·22+2·32+…+n(n +1)2=(13+23+…+n 3)+2(12+22+…+n 2)+(1+2+…+n)=n n 2214()++2×n n n ()()++1216+n n ()+12=n n ()+112(3n 2+11n +10),综上所述,当a =8、b =11、c =10时,题设的等式对一切自然数n 都成立.例 4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm 的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x 为何值时,矩形盒子容积最大,最大容积是多少?【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究.【解】 依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm.∴ 盒子容积 V =(30-2x)(14-2x)x =4(15-x)(7-x)x ,显然:15-x>0,7-x>0,x>0.设V =4ab (15a -ax)(7b -bx)x(a>0,b>0)要使用均值不等式,则--+=-=-=⎧⎨⎩a b a ax b bx x 10157 解得:a =14, b =34, x =3 .从而V =643(154-x4)(214-34x)x ≤643(1542143+)3=643×27=576. 所以当x =3时,矩形盒子的容积最大,最大容积是576cm 3.【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用“待定系数法”求.本题解答中也可以令V =4ab (15a -ax)(7-x)bx 或 4ab (15-x)(7a -ax)bx,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”.Ⅲ、巩固性题组:1.函数y=log a x的x∈[2,+∞)上恒有|y|>1,则a的取值范围是_____.A. 2>a>12且a≠1 B. 0<a<12或1<a<2C. 1<a<2D. a>2或0<a<122.方程x2+px+q=0与x2+qx+p=0只有一个公共根,则其余两个不同根之和为_____.A. 1B. -1C. p+qD. 无法确定3.如果函数y=sin2x+a·cos2x的图像关于直线x=-π8对称,那么a=_____.A. 2B. -2C. 1D. -14.满足C n0+1·C n1+2·C n2+…+n·Cnn<500的最大正整数是_____.A. 4B. 5C. 6D.75.无穷等比数列{a n}的前n项和为S n=a-12n, 则所有项的和等于_____.A. -12 B. 1 C. 12D.与a有关6.(1+kx)9=b0+b1x+b2x2+…+b9x9,若b0+b1+b2+…+b9=-1,则k=______.7.经过两直线11x-3y-9=0与12x+y-19=0的交点,且过点(3,-2)的直线方程为_____________.。

最新高考数学专题复习精品课件 数学解题思想方法

最新高考数学专题复习精品课件 数学解题思想方法

专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
二、数形结合思想 1.数形结合思想的含义 ( 1 ) 所谓数形结合,就是根据数与形之间的对应关系,通 过数与形的相互转化来解决数学问题的一种重要思想方 法.数形结合思想通过“以形助数,以数辅形”,使复杂问 题简单化,抽象问题具体化,能够变抽象思维为形象思维, 有助于把握数学问题的本质,它是数学的规律性与灵活性的 有机结合.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
( 4 ) 参数法:引进参数,使原问题的变换具有灵活性,易 于转化. ( 5 ) 构造法:“构造”一个合适的数学模型,把问题变为 易于解决的问题. ( 6 ) 坐标法:以坐标系为工具,用计算方法解决几何问 题,是转化方法的一个重要途径. ( 7 ) 类比法:运用类比推理,猜测问题的结论,易于确定 转化途径.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
( 1 1 ) 补集法:如果正面解决原问题有困难,可把原问题结 果看作集合A,而把包含该问题的整体问题的结果类比为全集 U,通过解决全集U及补集∁UA获得原问题的解决. 以上所列的一些方法有些是互相交叉的,不能截然分 割,只能说在哪一方面有所侧重.
专题八 数学思想方法
走向高考 ·二轮专题复习 ·新课标版 ·数学
2.化归的原则 ( 1 ) 目标简单化原则,即复杂的问题向简单的问题转化; ( 2 ) 和谐统一性原则,即化归应朝着待解决的问题在表现形式 上趋于和谐,在量、形、关系上趋于统一的方向进行,使问 题的条件和结论更均匀和恰当;( 3 ) 具体化原则,即化归方向 应由抽象到具体;( 4 ) 低层次原则,即将高维空间问题化归成 低维空间问题.基于上述原则,化归就有一定的策略.我们 在应用化归方法时,应“有章可循,有法可依”通常可以从 以下几个方面去考虑:

高考数学的六个答题方法

高考数学的六个答题方法

高考数学的六个答题方法高考数学的六个答题方法1.调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们正午最好歇息半个小时或一个小时,此间尽量放松自己,从心理上暗示自己:只有静心歇息才能保证考试时清醒。

(2)准时到位。

今年的答题卡不再独自发放,要求答在答题卷上,但发卷时间应在开考前5-10 分钟内。

建议同学们提早15-20 分钟抵达考场。

2.通览试卷,建立自信。

刚拿到试卷,一般心情比较紧张,此时不易仓促作答,应从头到尾、通览全卷,哪些是必定会做的题要成竹在胸,先易后难,稳固情绪。

答题时,见到简单题,要仔细,莫忘乎所以。

面对偏难的题,要耐心,不可以急。

3.提升解选择题的速度、填空题的正确度。

数学选择题是知识灵巧运用,解题要求是只需结果、不要过程。

所以,逆代法、估量法、特例法、清除法、数形联合法尽显威力。

12 个选择题,若能掌握得好,简单的一分钟一题,难题也不超出五分钟。

因为选择题的特别性,由此提出解选择题要求“快、准、巧”,禁忌“小题大做”。

填空题也是只需结果、不要过程,所以要力求“完好、严实”。

4.审题要慢,做题要快,下手要准。

题目自己就是破解这道题的信息源,所以审题必定要逐字逐句看清楚,只有仔细地审题才能从题目自己获取尽可能多的信息。

找到解题方法后,书写要简洁简要,快速规范,不拖拖拉拉,切记高考评分标准是按步给分,要点步骤不可以丢,但同意合理省略非要点步骤。

答题时,尽量使用数学语言、符号,这比文字表达要节俭而谨慎。

5.保质保量拿下中低等题目。

中下题目往常占全卷的80%以上,是试题的主要部分,是考生得分的主要根源。

谁能保质保量地拿下这些题目,就已算是打了个获胜,有了成功在握的心理,对攻陷高难题会更放得开。

6.要切记分段得分的原则,规范答题。

会做的题目要特别注意表达的正确、考虑的周祥、书写的规范、语言的科学,防备被“分段扣点分”。

难题要学会:(1)缺步解答:聪慧的解题策略是,将它们分解为一系列的步骤,或许是一个个小问题,能解决多少就解决多少,能演算几步就写几步。

高考数学常用的解题思想方法

高考数学常用的解题思想方法
性 , 即观 察一 归纳一 猜想一 证 明. 此
【 1 ( 南 ・理 ) 第1 例 1 湖 行 l l
*)
2 _ < ) + L ) + ( +—1 ( +1 ( <2
a n+ 1 nn nn 1 + n
将杨 辉 三 角 中 的奇 数 换 成 第2 行
解 析 : 第 1次 全 行 的 数 都 为 1的是 第 1
- -
2 一1 , 行
第 2次 全 行 的数 都 为 1的是 第 3 1 —2 一
行,
第 3次 全 行 的数 都 为 1的是 第 7= 。 1 =2 一 =
行,
2 +上 < +1 ( +上 ) 2 , ) < +
ak+ 1
怠。
ak 1 +
怠。
猜想 第 2 一 1行 是 第 次 全 行 的 数 都 为
1再 用数 学归 纳法或 通过递 推关 系加 以证 明. ,
如下 图 2 示 , 2 一 1 3行 的数 全 为 所 第 —6

最 +) 与三n<志1+ p 1—; < ( ) ( 。 + + 志 — 。
1 1 0
1 数 成0 到 , 换 , 如图1 : ㈠ 偶 得
所示 的 O 1的三 角 数 表 . 第5 ll l ~ 行 o1 o 从 上 往下数 , 1次全 行 的 … ・ ・ ・ … … 第 ・: … 数 都为 1的 是第 1行 , 2 第 一 次全 行的数 都为 1的是第 3行 , , … 第 次全 行
( 础知 识 、 能 和 思想 方 法 ) 懂 得 正 确 的解 基 技 , 题 策略也 十分重 要 , 须 掌握 一 般 的思 维方 式 必 1 从 而逆推 出第 6 行 为 , 1 1 0 1 0 10 … …1 0 1 , 10 10 10 1 0 1 共有 3 个 1 2 .

高考数学答题指导主要依据五思想

高考数学答题指导主要依据五思想

2021高考数学答题指导主要依据五思想:为了帮助考生们了解高考信息,查字典数学网分享了高考数学答题指导,供您参考!高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。

利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

它既是寻找问题解决切入点的法宝,又是优化解题途径的良方,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解题思想三:特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解题思想四:极限思想解题步骤极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解题思想五:分类讨论思想我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

在分类讨论解题时,要做到标准统一,不重不漏。

2023高考数学六大解题方法

2023高考数学六大解题方法

2023高考数学六大解题方法高考数学六大解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。

在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。

2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。

3、顺推解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。

4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。

极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。

5、直接法直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。

用这种方法的学生往往数学基础比较扎实。

6、估算法就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。

数列题解题方法注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可。

其它的一般注意类型采用不同的方法(已知sn求an、已知sn与an关系求an(前两种都是利用an=sn-sn-1,注意讨论n=1、n;1),累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项)。

数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19种数学解题方法
1、函数
函数题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;
4、选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法;
5、参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8、曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10、三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,
重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11、数列问题
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12、立体几何问题
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13、导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14、概率
概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15、换元法
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16、二项分布
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17、绝对值问题
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18、平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19、中心对称
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

6种数学解题思想
1、函数与方程思想
函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2、数形结合思想
数与形在一定的条件下可以转化。

如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。

因此数形结合的思想对问题的解决有举足轻重的作用。

解题类型:
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

①“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

①“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

3、分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。

原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

常见的类型:
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3:由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。

分类的原则:分类不重不漏。

4、转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。

数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。

转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法:
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
①换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
①数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
①等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
①特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
①构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
①坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。

5、特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。

相关文档
最新文档