平面向量的基本定理及坐标表示
高一数学平面向量的基本定理及坐标表示

探究(一):平面向量的坐标运算
思考1:设i、j是与x轴、y轴同向的两个 单位向量,若a=(x1,y1),b=(x2,y2),则
a=x1i+y1j,b=x2i+y2j,根据向量的线
性运算性质,向量a+b,a-b,λa (λ∈R)如何分别用基底i、j表示?
a+b=(x1+x2)i+(y1+y2)j,
a-b=(x1-x2)i+(y1-y2)j,
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
思考3:如何用数学语言描述上述向量 的坐标运算?
两个向量和(差)的坐标分别等于这两 个向量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数 乘原来向量的相应坐标.
思考4:如图,已知点A(x1,y1),B(x2,y2), 那么向量 的坐标如何?一般地,一个 任意向量的坐标如何计算?
向量a,b(b≠0)共线
yC
B
b
a
D
A
O
x
思考4:已知点P1(x1,y1),P2(x2,y2), 若点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
y
P
P2
P1 P P
O
x
思考5:一般地,若点P1(x1,y1),
P2(x2,y2),点P是直线P1P2上一点,
且
,那么点P的坐标有何计算
y Aa
O
x
探究(二):平面向量共线的坐标表示
思考1:如果向量a,b共线(其中b≠0), 那么a,b满足什么关系?
a=λb. 思考2:设a=(x1,y1),b=(x2,y2),若向 量a,b共线(其中b≠0),则这两个向量 的坐标应满足什么关系?反之成立吗?
平面向量基本定理及坐标表示

3.平面向量共线的坐标表示 设 a=(x1,y1),b=(x2,y2),其中 b≠0.a,b 共线⇔ x1y2-x2y1=0 .
[熟记常用结论] 1.若 a 与 b 不共线,且 λa+μb=0,则 λ=μ=0. 2.已知 P 为线段 AB 的中点,若 A(x1,y1),B(x2,y2),则 P 点坐标为x1+2 x2,y1+2 y2. 3.已知△ABC 的顶点 A(x1,y1),B(x2,y2),C(x3,y3),则△ABC 的重心 G 的坐 标为x1+x32+x3,y1+y32+y3. 4.A(x1,y1),B(x2,y2),C(x2,y3)三点共线的充要条件为(x2-x1)(y3-y1)-(x3-x1)(y2 -y1)=0,或(x2-x1)(y3-y2)=(x3-x2)(y2-y1),或(x3-x1)(y3-y2)=(x3-x2)·(y3-y1).
(4)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可表示成xx21=yy12.( × ) (5)平面向量不论经过怎样的平移变换之后其坐标不变.( √ ) (6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )
题组二 教材改编 2.已知▱ABCD 的顶点 A(-1,-2),B(3,-1),C(5,6),则顶点 D 的坐标为________. 解析:设 D(x,y),则由A→B=D→C,得(4,1)=(5-x,6-y), 即14==65--yx,, 解得yx==51.,
边上一点,B→C=3E→C,F 为 AE 的中点,则B→F=( )
A.23A→B-13A→D C.-23A→B+13A→D
B.13A→B-23A→D D.-13A→B+23A→D
解析:如图,取 AB 的中点 G,连接 DG,CG,易知四边形 DCBG 为平行四边形,
平面向量基本定理及坐标表示

5.已知向量a=(8, 1 x),b=(x,1),其中x>0,若(a-
2
2b)∥(2a+b),则x的值为 4 .
解析 a-2b=(8-2x, 1 x-2),2a+b=(16+x,x+1),
2
由已知(a-2b)∥(2a+b),显然2a+b≠0,故有(8-2x,
1 x-2)= (16+x,x+1)
2
8-2x= (16+x)
A.m≠-2 C.m≠1
B.m≠ 1
2
D.m≠-1
解析 若点A、B、C不能构成三角形,则只能共线.
∵ABOBOA(2,-1)-(1,-3)=(1,2), ACOC OA ( m+1 , m-2 ) - ( 1 , -3 ) =
(m,m+1).
假设A、B、C三点共线,
则1×(m+1)-2m=0,即m=1.
知能迁移3 已知点O(0,0),A(1,2),B(4,
5)且 OPOAtAB,
(1)求点P在第二象限时,实数t的取值范围;
(2)四边形OABP能否为平行四边形?若能,求出
相应的实数t;若不能,请说明理由.
解 ∵O(0,0),A(1,2),B(4,5),
∴ OA =(1,2),AB =(4-1,5-2)=(3,3). (1)设P(x,y),则 OP =(x,y),若点P在第二
同理 NO1a(11)b
2 2n
由MO ∥NO 得MO = NO
即
1 1 2m (1 1 2n
)
1 2 1
2
① ②
①×②整理得m+n=2.
答案 2
题型二 向量的坐标运算 【例2】已知点A(1,0)、B(0,2)、C(-1,
平面向量的基本定理及坐标表示 课件

d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:
点
(x, y)
?
向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a
平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示【考点梳理】1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,由于a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y .3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 【考点突破】考点一、平面向量基本定理及其应用【例1】(1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A .AD →B .12AD →C .12BC →D .BC →(2)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.[答案] (1) A (2)43[解析] (1)如图所示,EB →+FC →=(EC →-BC →)+(FB →+BC →) =EC →+FB →=12AC →+12AB →=12(AC →+AB →)=AD →.(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43. 【类题通法】1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【对点训练】1.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=( )A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB →D .16AC →+32AB →[答案] C[解析] 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.2.如图,在平行四边形ABCD 中,AC ,BD 相交于点O , E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.[答案] 34[解析] 由题意可得BE →=12BA →+12BO →=12BA →+14BD →,由平面向量基本定理可得λ=12,μ=14,所以λ+μ=34.考点二、平面向量的坐标运算【例2】(1)向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A .1B .2C .3D .4 [答案] (1)A (2)D[解析] (1)由a +b =(-1,5),a -b =(5,-3), 得2b =(-1,5)-(5,-3)=(-6,8), ∴b =12(-6,8)=(-3,4),故选A.(2)以向量a ,b 的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A (1,-1),B (6,2),C (5,-1),所以a =(-1,1),b =(6,2),c =(-1,-3),∵c =λa +μb ,∴⎩⎨⎧-1=-λ+6μ,-3=λ+2μ,解之得λ=-2且μ=-12,因此,λμ=-2-12=4,故选D.【类题通法】1.巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.2.向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.【对点训练】1.已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A .(7,4) B .(7,14) C .(5,4) D .(5,14)[答案] D[解析] 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5). 由AB →=3a ,得⎩⎨⎧x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.2.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.[答案] -3[解析] 由向量a =(2,1),b =(1,-2),得m a +n b =(2m +n ,m -2n )=(9,-8),则⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,n =5,故m -n =-3.考点三、平面向量共线的坐标表示【例3】(1)已知向量a =(-1,1),b =(3,m ),若a ∥(a +b ),则m =( ) A .-2 B .2 C .-3D .3(2) 已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________.[答案] (1)C (2) (8,-15)[解析] (1)由题意可知a +b =(2,1+m ), ∵a ∥(a +b ),∴2+(m +1)=0⇒m =-3.(2) 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP →=32BP →,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.所以点P 的坐标为(8,-15). 【类题通法】1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (b ≠0),则a =λb .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【对点训练】1.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. [答案] -54[解析] AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →, ∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-54.2.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________. [答案] (-2,-4)[解析] 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →, 所以有⎩⎨⎧x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.解得⎩⎨⎧x 1=0,y 1=4和⎩⎨⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).。
平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。
第30课--平面向量的基本定理及坐标表示

二、课堂练习 1. 已知 a 1, 2 , b 3, m , m R ,则“ m 6 ”是“ a a b ”的( A. 充要条件 C. 必要不充分条件 答案:A B. 充分不必要条件 D. 既不充分也不必要条件 ).
解析: a b 2, 2 m ,∵ a a b ,∴ 1 (2 m) 2 2 ,解得 m 6 ,所以 “ m 6 ” 是 “ a a b ” 的充要条件,故选 A. 2. 已知向量 a k ,3 , b 1, 4 , c 2,1 ,且 2a 3b c ,则实数 k =( A.
0,5 2,1 2, 1
解析: ( 1 )令 m 1 , n 2 , p 2 , q 1 ,∴ mp nq 0 , mq np 5 , a b 0,5 .
mp nq 5 ( 2 )∵ a b 5,0 ,∴ ①,又∵ a 5 , b 5 , mq np 0 m 2 n 2 25 ∴ 2 ,∴ m , n , p , q Z ,∴ m 2 , n 1 , p 2 , q 1 是方程组①的一组解,∴ a 2,1 , 2 p q 25
m 的取值范围是(
). B. (,3) C. (, 3) (3, ) D. [ 3,3)
A. (, 0) (0, ) 答案:C
解析:根据平面向量基本定理可知,当 a 与 b 不共线时,平面上的任意向量 c 都可以唯一地表示为
c a b ( , R ) ;由上可知, 2 m 3 3m ,即 m 3 ,故选 C. m ( n
5 2 1 7 ,只有该组向量不是共线向量,故选 B.
平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。
平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。
一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。
平行向量的特点是它们的模相等,方向相同或者相反。
2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。
3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。
设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。
二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。
设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。
在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。
根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。
对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。
设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。
平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的基本定理及坐标表示【知识梳理】一、平面向量基本定理及坐标表示1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的正交分解: 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.3.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作为基底.对于平面内的一个向量a ,有且只有一对实数x ,y ,使a =x i +y j ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.(2)设OA =x i +y j ,则向量OA 的坐标(x ,y )就是终点A 的坐标,即若OA =(x ,y ),则A 点坐标为(x ,y ),反之亦成立.(O 是坐标原点)二、平面向量坐标运算:1.向量加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1).2.向量坐标的求法:(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB |=(x 2-x 1)2+(y 2-y 1)2.三、平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.若a ∥b ⇔x 1y 2-x 2y 1=0.【基础自测】 1.若向量AB =(1,2),BC =(3,4),则AC =______解析: ∵AC =AB +BC ,∴AC =(1,2)+(3,4)=(4,6).2.已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于________解析:选A 由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1).3.已知两点A (4,1),B (7,-3),则与AB 同向的单位向量是__________ 解析:∵A (4,1),B (7,-3),∴AB =(3,-4),∴与AB 同向的单位向量为AB |AB |=⎝⎛⎭⎫35,-45. 4.在平行四边形ABCD 中,若AB =(1,3),AC =(2,5),则AD =________,BD =________. 解析:AD =BC =AC -AB =(2,5)-(1,3)=(1,2),BD =AD -AB =(1,2)-(1,3)=(0,-1).5.梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别是CD ,AB 的中点,设AB=a ,AD =b .若MN =m a +n b ,则n m=________. 解析:∵MN =MD +DA +AN =-14a -b +12a =14a -b ,∴m =14,n =-1.∴n m=-4. 【说明】 1.基底的不唯一性: 只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的.2.向量坐标与点的坐标的区别要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息.【考点探究】 【考点探究一】平面向量基本定理及其应用[例1] 如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD =a ,AB =b ,若AB =2DC ,则AO =________(用向量a 和b 表示).[解] ∵AB =2DC ,∴△DOC ∽△BOA ,且OC OA =12,∴AO =23AC =23(AD +DC )=23⎝⎛⎭⎫a +12b=23a +13b .【由题悟法】用向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,也就是利用已知向量表示未知向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.【以题试法】1.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为_______解析: 设CM =m CB =m (AB -AC )(0≤m ≤1),则AM =AC +CM =(1-m ) AC +m AB ,AN =12AM =m 2AB +1-m 2AC ,所以λ+μ=m 2+1-m 2=12. 【考点探究二】平面向量的坐标运算[例2] 已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c .①求3a +b -3c ;②求满足a =m b +n c 的实数m ,n .[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).①3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).②∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. 【一题多变】本例中第(2)题增加条件CM =3c ,ON =2b ,求M ,N 的坐标及向量MN 的坐标.解:∵CM =OM -OC =3c ,∴OM =3c +OC =(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN =ON -OC =-2b ,∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2),∴N (9,2).∴MN =(9,-18).【由题悟法】 1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[注意] 向量的坐标与点的坐标不同:向量平移后,其起点和终点的坐标都发生变化,但向量的坐标不变.【以题试法】2.已知向量a =(6,4),b =(0,2),OC =a +λb ,O 为坐标原点,若点C 在函数y =sin ⎝⎛⎭⎫π12x 的图象上,则实数λ的值为________.解析:由题意得OC =(6,4)+λ(0,2)=(6,4+2λ),故点C 的坐标为(6,4+2λ),根据条件得4+2λ=sin 6π12=1,解得λ=-32. 【考点探究三】平面向量共线的坐标表示[例3] (2011·广东高考)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=_____[解] 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,所以λ=12. 【一题多变】在本例条件下,问是否存在非零常数λ,使a +λb 和a -λc 平行?若平行, 是同向还是反向? 解:∵a +λb =(1+λ,2),a -λc =(1-3λ,2-4λ),若(a +λb )∥(a -λc ),∴(1+λ)(2-4λ)-2(1-3λ)=0.∴λ=1.∴a +λb =(2,2)与a -λc =(-2,-2)反向.即存在λ=1使a +λb 与a -λc 平行且反向.【由题悟法】a ∥b 的充要条件有两种表达方式(1)a ∥b (b ≠0)⇔a =λb (λ∈R );(2)设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.两种充要条件的表达形式不同.第(1)种是用线性关系的形式表示的,而且有前提条件b ≠0,而第(2)种无b ≠0限制.【以题试法】3.(1)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=___________ 解析:由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12. (2)已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb ,λ,μ∈R ,那么A ,B ,C 三点共线的充要条件为( )A .λ+μ=2 ;B .λ-μ=1 ;C .λμ=-1 ;D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴存在实数t ,满足AB =t AC ,即λa +b =t a +μt b ,又a ,b是不共线的向量,∴⎩⎪⎨⎪⎧λ=t ,1=μt ,即λμ=1. 【巩固练习】1.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC 等于_________解析: BC =3PC =3(2PQ -PA )=6PQ -3PA =(6,30)-(12,9)=(-6,21).2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =____________解析:由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3.如图所示,向量OA =a ,OB =b ,OC =c ,A ,B ,C 在一条直线上,且AC =-3CB ,则( )A .c =-12a +32b ;B .c =32a -12b ; C .c =-a +2b ; D .c =a +2b解析:选A ∵AC =-3CB ,∴OC -OA =-3(OB -OC ).∴OC =-12OA +32OB ,即c =-12a +32b . 4.已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①直线OC 与直线BA 平行;②AB +BC =CA ;③OA +OC =OB ;④AC =OB -2OA .其中正确的结论的个数是___________解析:3个 ∵OC =(-2,1),BA =(2,-1),∴OC ∥BA ,又A ,B ,C ,O 不共线, ∴OC ∥AB .①正确;∵AB +BC =AC ,∴②错误;∵OA +OC =(0,2)=OB ,∴③正确;∵OB -2OA =(-4,0),AC =(-4,0),∴④正确.5.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ、μ为实数),则m 的取值范围是__________________解析:由题意知向量a ,b 不共线,故m ≠3m -22,解得m ≠2. 答案(-∞,2)∪(2,+∞) 6.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =____________解析:由已知得DE =13EB ,又∵△DEF ∽△BEA ,∴DF =13AB . 即DF =13DC .∴CF =23CD . ∴CF =23CD =23(OD -OC )=23⎝⎛⎭⎫12b -12a =13b -13a . ∴AF =AC +CF =a +13b -13a =23a +13b . 7.已知向量a =⎝⎛⎭⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =________. 解析:a -2b =⎝⎛⎭⎫8-2x ,x 2-2,2a +b =(16+x ,x +1), 由题意得(8-2x )·(x +1)=⎝⎛⎭⎫x 2-2·(16+x ),整理得x 2=16,又x >0,所以x =4.8. P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =_____.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧ -1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 9.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ,AC 不共线.∵AB =OB -OA =(2,-1)-(1,-3)=(1,2), AC =OC -OA =(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k ≠0,解得k ≠1.10.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC =2AB ,求点C 的坐标.解:(1)由已知得AB =(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC . ∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3). 11.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3),因为k a -b 与a +3b 平行,所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.12.已知O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB .(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.解:(1) OM =t 1OA +t 2AB =t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)当t 1=1时,由(1)知OM =(4t 2,4t 2+2).∵AB =OB -OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB ,∴不论t 2为何实数,A ,B ,M 三点共线.。