平面向量的基本定理及坐标表示
第二节向量基本定理及坐标表示

2. 平面向量基本定理及坐标表示 (1)平面向量基本定理 不共线 向量,那么对于这一 定理:如果e1,e2是同一平面内的两个 平面内的任意向量a, 有且只有 一对实数λ1、λ2,使 a=λ1e1+λ2e2 .其中, 不共线的向量e1,e2 叫做表示这一平面内 所有向量的一组基底. (2)平面向量的正交分解 把一个向量分解为两个互相垂直 的向量,叫做把向量正交分解. (3)平面向量的坐标表示 ①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位 向量i,j作为基底.对于平面内的一个向量a,有且只有一对实数x、 y,使a=xi+yj.把有序数 (x,y) 对叫做向量a的坐标,记作a= , (x,y) 叫a在x轴上的坐标, y x 其中 叫a在y轴上的坐标. ②设OA=xi+yj,则 向量OA的坐标(x,y) 就是终点A的坐标,即若 (x,y) ,反之亦成立(O是坐标原点). OA=(x,y),则A点坐标为
1 )b, 3
)=
1 9
,
∴
1 (m+n)=mn,即 3
1 1 m n
=3.
题型二 平面向量的坐标运算
【例2】已知O(0,0)、A(1,2)、B(4,5)及OP=OA+tAB,试 问: (1)当t为何值时,P在x轴上?P在第二象限? (2)四边形OABP能否构成平行四边形?若能,求出相应的t 值;若不能,请说明理由.
第二节 平面向量的基本定理及坐标表示
基础梳理
1. 两个向量的夹角 (1)定义 非零 向量a和b,作OA=a,OB=b,则∠AOB=θ叫做 已知两个 向量a与b的夹角. (2)范围 向量夹角θ的范围是 0°≤θ≤180° ,a与b同向时, 夹角θ= 0° ;a与b反向时,夹角θ= 180° . (3)向量垂直 如果向量a与b的夹角是 90°,则a与b垂直,记作 a⊥b .
平面向量的基本定理及坐标表示平面向量的坐标运算公式推导用已知向量表示未知向量

一、共面向量基本定理1.如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
(x,y不全为零)2.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
3.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择两个不共线的向量,平面内的任何一个向量都可以唯一表示,这样几何问题就可以转化为代数问题。
4.平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
5.当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。
(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
二、平面向量的坐标运算AB+BC=AC;ABAC=CB;(λμ)a=λ(μa);(λ+μ)a= λa+μa;a·a=|a|²;a·b=b·a等。
在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。
三、向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ四、基底在向量中的应用:(l)用基底表示出相关向量来解决向量问题是常用的方法之一.(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。
五、用已知向量表示未知向量:用已知向量表示未知向量,一定要结合图像,可从以下角度如手:(1)要用基向量意识,把有关向量尽量统一到基向量上来;(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。
平面向量的基本定理及坐标表示课件

工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
已知 a=(1,0),b=(2,1), (1)当 k 为何值时,ka-b 与 a+2b 共线. → → (2)若AB=2a+3b,BC=a+mb 且 A、B、C 三点共线,求 m 的值.
解析: (1)ka-b=k(1,0)-(2,1)=(k-2,-1). a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b 与 a+2b 共线, ∴2(k-2)-(-1)×5=0, 1 即 2k-4+5=0,得 k=- . 2
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → (2)∵CA=(-2,-4),BC=(1,1), → → → → → ∴MN=CN-CM=-2BC-3CA =(-2,-2)-(-6,-12)=(4,10). 设 M(x1,y1),N(x2,y2), → → 则CM=(x1-3,y1-2),CN=(x2-3,y2-2), → → → → ∵CM=3CA,CN=-2BC, ∴(x1-3,y1-2)=(-6,-12).
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → → → 1 解析: ∵2DC=AB,∴2DC=e2,∴DC= e2. 2 → → → → 又∵BC=BA+AD+DC, → 1 1 ∴BC=-e2+e1+2e2=e1-2e2. → → → → 又由MN=MA+AB+BN得 → 1→ → 1→ MN=2DA+AB+2BC 1 3 1 1 =- e1+e2+ e1-2e2= e2. 2 2 4
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
(x2-3,y2-2)=(-2,-2),
x1-3=-6 x2-3=-2 ∴ , , y1-2=-12 y2-2=-2 x1=-3 x2=1 ∴ , , y1=-10 y2=0
平面向量基本定理及坐标运算

答案
D
解析
→ ⊥AB →, →, → 因为AB 分别以AB 1 2 所以以 A 为原点, 1 AB2所
在直线为 x 轴,y 轴建立平面直角坐标系.设 B1(a,0),B2(0,b), O(x,y), → =AB → +AB → =(a,b),即 P(a,b). 则AP 1 2 → |=|OB → |=1,得(x-a)2+y2=x2+(y-b)2=1. 由|OB 1 2 所以(x-a)2=1-y2≥0,(y-b)2=1-x2≥0. 1 → 2 2 1 由|OP|<2,得(x-a) +(y-b) <4, 1 即 0≤1-x +1-y <4.
x2-x12+y2-y12.
4.向量平行与垂直的条件 设 a=(x1,y1),b=(x2,y2),则 (1)a∥b⇔ x1y2-x2y1=0 .
x1x2+y1y2=0 . a ± (3)a≠0,则与 a 平行的单位向量为 |a| .
(2)a、b 均不为 0 时,a⊥b⇔
→ ⊥AB → ,|OB → |=|OB → |=1,AP →= 5.(2013· 重庆)在平面上,AB 1 2 1 2 1 → → → → |的取值范围是( AB1+AB2.若|OP|<2,则|OA 5 A.(0, 2 ] 5 C.( 2 , 2] 5 7 B.( 2 , 2 ] 7 D.( 2 , 2] )
答案 A
解析
B 中不能是空间向量,C 中 λ1e1+λ2e2 一定在平面 α
内,D 中 λ1,λ2 是唯一的.
→ =(3,7),AB → =(-2,3),对称中心为 O, 2.在▱ABCD 中,AD → 等于( 则CO ) 1 B.(-2,-5) 1 D.(2,5)
1 A.(-2,5) 1 C.(2,-5)
2.3 平面向量的基本定理及坐标表示

2.3 平面向量的基本定理及坐标表示6、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、平面向量的正交分解及坐标表示: ()y x y x ,=+=.8、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
)1=λ,设()()()332211,,,,,y x C y x B y x A ,则⑴ 段AB 中点坐标为()2121,y y x x ++,⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.课堂训练 一、选择题1、平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC OA OB αβ=+,其中α、β∈R,且α+β=1,则点C 的轨迹方程为 ( )A 、3x+2y-11=0B 、(x-1)2+(y-2)2=5 C 、2x-y=0 D 、x+2y-5=02、若向量a =(x+3,x 2-3x -4)与相等,已知A (1,2)和B (3,2),则x 的值为A 、-1B 、-1或4C 、4D 、1或-43、已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是( )A 、(1,5)或(5,5)B 、(1,5)或(-3,-5)C 、(5,-5)或(-3,-5)D 、(1,5)或(5,-5)或(-3,-5)4、设i 、j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且j i OA 24+=,j i 43+=,则△OAB 的面积等于( )A 、15B 、10C 、7.5D 、55、己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,|2|21PP P P =, 则P 点坐标为( )A 、(-2,11)B 、()3,34C 、(32,3)D 、(2,-7)6、一个平行四边形的三个顶点的坐标分别是(5,7),(-3,5),(3,4),则第四个顶点的坐标不可能是。
8.2 平面向量的分解及向量的坐标表示

58
因为k a − b 与 a + 3b 平行,所以3(k − 2) + 7 = 0 ,即得 k = − 7 3 a − b = (k − 2, −1) = (− , −1) , a + 3b = (7,3) , 此时k 3
1
则 a + 3b
= −3(k a − b)
,即此时向量 a + 3b 与 ka − b 方向相反。
运算类型 几何方法
坐标方法
运算性质
a +b =b +a
(a +b) +c = a +(b +c)
向量的加 1.平行四 边形法则2. a+b=(x +x2, y +y2) 法 1 1 三角形法 则 向量的 减法
a−b =(x1 −x2, y1 −y2)
AB + BC = AC
a − b = a + (−b )
向量与函数的综合
高考总复习·数学 高考总复习 数学
已知向量 u = ( x, y) v = ( y,2 y − x) 的对应关系用 v = f (u) 表示。 与 (1)证明:对于任意向量 a, b 及常数m,n恒有 成立;
f (ma + nb) = mf (a) + nf (b)
(2)设 a = (1,1), b = (1,0) ,求向量 f (a) 及 f (b) 的坐标; (3)求使 f (c) = ( p, q) ,(p,q为常数)的向量 故 f (ma + nb) = (ma2 + nb2 ,2ma2 + 2nb2 − ma1 − nb1 )
e1
2
二.平面向量的坐标表示 在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 i , j → 作为基底。由平面向量的基本定理知,该平面内的任一向量 a 可 → a a 表示成 → = xi + yj ,由于→与数对(x,y)是一一对应的,因此把(x,y)叫 做向量 a 的坐标,记作 a =(x,y),其中x叫作在x轴上的坐标,y叫 做在y轴上的坐标。
平面向量的基本定理及坐标表示 课件

d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:
点
(x, y)
?
向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a
平面向量基本定理及坐标表示

B.(2, 1) 2
D.(1,3)
解析 ∵A(0,2),B(-1,-2),C(3,1), ∴BC=(3,1)-(-1,-2)=(4,3). 设D(x,y),∵AD =(x,y-2)B,C =2AD , ∴(4,3)=(2x,2y-4).∴x=2,y=7 .
2
2.已知a=(4,2),b=(x,3),且a∥b,则x等于(B )
2
8-2x= (16+x)
题型分类 深度剖析
题型一 平面对量基本定理 【例1】如图所示,在平行四边形ABCD中,
M,N分别为DC,BC旳中点,已知AM =c, AN =d,试用c,d表达AB ,AD .
思维启迪 直接用c、d表达AB、AD有难度,可换一 种角度,由 AB、AD表达 AM、AN ,进而解方程组可 求 AB、 A.D
(x-4)2+(y-1)2=1,
2分 4分 6分
8分
解得
x 4
5 5
或x 4
5 5
.
y
1
25 5
y
1
2
5
5
10分
d ( 20 5 , 5 2 5 )或d ( 20 5 , 5 2 5 ). 12分
5
5
5
5
探究提向升量平行旳坐标公式实质是把向量问题转 化为实数旳运算问题.经过坐标公式建立参数旳方 程,经过解方程或方程组求得参数,充分体现了方程 思想在向量中旳应用.
知能迁移3 已知点O(0,0),A(1,2),B(4, 5)且 OP OA t AB, (1)求点P在第二象限时,实数t旳取值范围; (2)四边形OABP能否为平行四边形?若能,求出 相应旳实数t;若不能,请阐明理由. 解 ∵O(0,0),A(1,2),B(4,5), ∴ OA =(1,2),AB =(4-1,5-2)=(3,3). (1)设P(x,y),则OP =(x,y),若点P在第 二象限, 则 x<0 且(x,y)=(1,2)+t(3,3), y>0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的基本定理及坐标表示
【考点梳理】
1.平面向量基本定理
(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.
(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示
在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,由于a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中a 在x 轴上的坐标是x ,a 在y 轴上的坐标是y .
3.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则
a +
b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),
λa =(λx 1,λy 1),|a |=x 2
1+y 21.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →
=(x 2-x 1,y 2-y 1), |AB →
|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示
设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 【考点突破】
考点一、平面向量基本定理及其应用
【例1】(1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →
=( )
A .AD →
B .12AD →
C .12BC →
D .BC →
(2)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →
+μAF →
,其中λ,μ∈R ,则λ+μ=________.
[答案] (1) A (2)4
3
[解析] (1)如图所示,EB →+FC →=(EC →-BC →)+(FB →+BC →
) =EC →+FB →=12AC →+12AB →=12
(AC →+AB →)=AD →.
(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →
=AB →+12AD →,
又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,
于是得⎩⎪⎨⎪⎧
1
2λ+μ=1,λ+1
2μ=1,解得⎩⎪⎨
⎪⎧
λ=2
3,
μ=23,
所以λ+μ=4
3. 【类题通法】
1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
【对点训练】
1.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →
=( )
A .12AC →+13A
B → B .12A
C →+16AB → C .16AC →+12AB →
D .16AC →+32AB →
[答案] C
[解析] 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →
)=12AB →+16AC →.
2.如图,在平行四边形ABCD 中,AC ,BD 相交于点O , E 为线段AO 的中点.若BE →=λBA →+μBD →
(λ,μ∈R ),则λ+μ=________.
[答案] 3
4
[解析] 由题意可得BE →=12BA →+12BO →=12BA →+14BD →
,由平面向量基本定理可得λ=12,μ=14,所以λ+μ=34.
考点二、平面向量的坐标运算
【例2】(1)向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)
D .(-3,-4)
(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则λ
μ=( )
A .1
B .2
C .3
D .4 [答案] (1)A (2)D
[解析] (1)由a +b =(-1,5),a -b =(5,-3), 得2b =(-1,5)-(5,-3)=(-6,8), ∴b =1
2(-6,8)=(-3,4),故选A.
(2)以向量a ,b 的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A (1,-1),B (6,2),C (5,-1),所以a =(-1,1),b =(6,2),c =(-1,-3),∵c =λa +μb ,∴⎩⎨⎧-1=-λ+6μ,-3=λ+2μ,解之得λ=-2且μ=-12,因此,λμ=-2-
12=4,故选D.
【类题通法】
1.巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.
2.向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.
【对点训练】
1.已知点A (-1,5)和向量a =(2,3),若AB →
=3a ,则点B 的坐标为( ) A .(7,4) B .(7,14) C .(5,4) D .(5,14)
[答案] D
[解析] 设点B 的坐标为(x ,y ),则AB →
=(x +1,y -5). 由AB →
=3a ,得⎩⎨⎧x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.
2.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -
n 的值为________.
[答案] -3
[解析] 由向量a =(2,1),b =(1,-2),得m a +n b =(2m +n ,m -2n )=(9,-8),则⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,
n =5,
故m -n =-3.
考点三、平面向量共线的坐标表示
【例3】(1)已知向量a =(-1,1),b =(3,m ),若a ∥(a +b ),则m =( ) A .-2 B .2 C .-3
D .3
(2) 已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=3
2
|BP |,则点P 的坐标为________.
[答案] (1)C (2) (8,-15)
[解析] (1)由题意可知a +b =(2,1+m ), ∵a ∥(a +b ),
∴2+(m +1)=0⇒m =-3.
(2) 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP →=32BP →
,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.
所以点P 的坐标为(8,-15). 【类题通法】
1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (b ≠0),则a =λb .
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
【对点训练】
1.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. [答案] -5
4
[解析] AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →
, ∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-5
4.
2.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →
的坐标为________. [答案] (-2,-4)
[解析] 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →
=(3,6), DA →=(-1-x 2,2-y 2),BA →
=(-3,-6). 因为AC →=13AB →,DA →
=-13BA →, 所以有⎩⎨⎧x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.
解得⎩⎨⎧x 1=0,y 1=4和⎩⎨⎧x 2=-2,
y 2=0.
所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →
=(-2,-4).。