平面向量的坐标表示与运算

合集下载

平面向量的坐标表示与运算

平面向量的坐标表示与运算

平面向量的坐标表示与运算一、引言平面向量是解决平面几何问题的重要工具之一。

为了方便我们进行计算和分析,我们可以使用坐标表示来表示和计算平面向量。

本教案将介绍平面向量的坐标表示方法以及基本的运算规则。

二、平面向量的坐标表示我们知道,在平面直角坐标系中,每一个点都可以表示为一个有序的坐标 (x, y)。

同样,一个平面向量也可以用一组有序数表示,分别代表向量在 x 轴和 y 轴上的分量。

三、平面向量的坐标运算1. 向量的加法向量的加法是指将两个向量相加,求得它们的和。

在向量的坐标表示中,向量的加法可以通过将两个向量的对应分量相加得到。

2. 向量的数乘向量的数乘是指将一个向量与一个实数相乘,求得新的向量。

在向量的坐标表示中,向量的数乘可以通过将向量的每一个分量与实数相乘得到。

3. 向量的减法向量的减法是指将一个向量减去另一个向量,求得它们的差。

在向量的坐标表示中,向量的减法可以通过将被减向量的每一个分量分别减去减向量的对应分量得到。

4. 向量的数量积向量的数量积是指将两个向量相乘得到一个实数。

在向量的坐标表示中,向量的数量积可以通过将两个向量的对应分量相乘,并将得到的乘积相加得到。

5. 向量的夹角向量的夹角是指两个向量之间的夹角大小。

在向量的坐标表示中,可以利用向量的数量积公式求得两个向量的夹角。

四、实例分析考虑以下平面向量 A 和 B:A = (2, 3)B = (4, -1)我们可以通过向量的坐标运算来求解以下问题:1. 计算 A + B2. 计算 2A3. 计算 A - B4. 计算 A·B5. 计算向量 A 与向量 B 之间的夹角五、总结通过本教案我们学习了平面向量的坐标表示方法以及常见的运算规则,这些知识对于解决平面几何问题非常有用。

希望同学们能够通过练习和实践,巩固这些知识,提升自己的数学能力。

平面向量加、减运算的坐标表示讲解

平面向量加、减运算的坐标表示讲解

平面向量加、减运算的坐标表示讲解
平面向量的加法和减法运算可以通过坐标表示进行讲解。

首先,让我们考虑两个平面向量a和b,它们分别可以表示为(a1, a2)和
(b1, b2),其中a1、a2、b1和b2分别表示向量a和b在x轴和y
轴上的分量。

对于向量的加法,我们可以将两个向量a和b相加得到一个新
的向量c,表示为c = a + b。

这个新向量c的坐标表示为(c1, c2),其中c1等于a1加上b1,c2等于a2加上b2。

换句话说,c1和c2
分别表示了向量a和b在x轴和y轴上的分量之和,从而得到了向
量c的坐标表示。

对于向量的减法,我们可以将两个向量a和b相减得到一个新
的向量d,表示为d = a b。

这个新向量d的坐标表示为(d1, d2),
其中d1等于a1减去b1,d2等于a2减去b2。

同样地,d1和d2分
别表示了向量a和b在x轴和y轴上的分量之差,从而得到了向量
d的坐标表示。

总结起来,平面向量的加法和减法运算的坐标表示可以通过对
应分量的加法和减法来实现,这样可以更直观地理解向量之间的关系。

希望这样的讲解能够帮助你更好地理解平面向量的加减运算。

平面向量的坐标表示与运算学习平面向量的坐标表示及其运算法则

平面向量的坐标表示与运算学习平面向量的坐标表示及其运算法则

平面向量的坐标表示与运算学习平面向量的坐标表示及其运算法则平面向量的坐标表示与运算平面向量是解析几何学中的重要概念,它可以通过坐标表示和进行各种运算。

本文将介绍平面向量的坐标表示及其运算法则。

一、平面向量的坐标表示在平面直角坐标系中,一个向量可以用有序实数对(x, y)表示,其中x代表向量在x轴上的投影长度,y代表向量在y轴上的投影长度。

这个有序实数对称为向量的坐标表示。

例如,对于平面上的向量AB,若A点的坐标为(x₁, y₁),B点的坐标为(x₂, y₂),则向量AB的坐标表示为(x₂ - x₁, y₂ - y₁)。

二、平面向量的运算法则1. 加法:向量的加法是指将两个向量相加得到一个新的向量。

平面向量的加法满足平行四边形法则,即将两个向量的起点相接,然后将它们的终点连线,新的向量就是连接相接点与连接终点的线段的向量。

对于向量AB和向量CD,它们的和向量为向量AC。

和向量的坐标表示为(x₂ - x₁ + x₄ - x₃, y₂ - y₁ + y₄ - y₃)。

2. 数乘:向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。

数乘改变了向量的大小,但不改变其方向。

对于向量AB和实数k,向量kAB的坐标表示为(k(x₂ - x₁), k(y₂- y₁))。

3. 减法:向量的减法是指将一个向量减去另一个向量得到一个新的向量。

向量的减法可以通过向量的加法和数乘来表示。

对于向量AB和向量CD,它们的差向量为向量AD。

差向量的坐标表示为(x₂ - x₁ - x₄ + x₃, y₂ - y₁ - y₄ + y₃)。

4. 模长:向量的模长表示了向量的大小。

在平面直角坐标系中,向量(x, y)的模长表示为√(x² + y²)。

三、平面向量的运算实例例1:已知向量A(3, 4),向量B(5, 2),求向量A + 向量B 和向量A - 向量B的坐标表示。

解:向量A + 向量B的坐标表示为(3 + 5, 4 + 2),即(8, 6)。

平面向量的坐标和坐标变换公式

平面向量的坐标和坐标变换公式

平面向量的坐标和坐标变换公式平面向量是二维空间中的量,它可以表示为一个有方向和大小的箭头。

在数学中,我们通常使用坐标来描述向量的位置和方向。

本文将介绍平面向量的坐标表示以及坐标变换公式。

一、平面向量的坐标表示在平面直角坐标系中,可以用两个实数表示一个平面向量。

设向量A的坐标表示为(Ax, Ay),其中Ax表示向量A在x轴上的分量,Ay表示向量A在y轴上的分量。

例如,向量A在坐标系中的起点为原点(0,0),终点为点P(x,y),则向量A的坐标表示为(Ax, Ay) = (x, y)。

二、平面向量的坐标变换公式当平面向量发生坐标变换时,它的起点和终点位置可能发生改变。

为了描述这种改变,需要引入坐标变换公式。

1. 平移变换平移是指将平面向量的起点和终点同时平移相同的距离。

设平面向量A在坐标系A中的坐标表示为(Ax, Ay),在坐标系B中的坐标表示为(Bx, By),平移向量坐标为(Tx, Ty)。

则坐标变换公式为:(Bx, By) = (Ax + Tx, Ay + Ty)2. 旋转变换旋转是指将平面向量绕原点旋转一定的角度。

设平面向量A在坐标系A中的坐标表示为(Ax, Ay),在坐标系B中的坐标表示为(Bx, By),旋转角度为θ。

则坐标变换公式为:Bx = Ax * cosθ - Ay * sinθBy = Ax * sinθ + Ay * cosθ3. 缩放变换缩放是指将平面向量的大小进行伸缩。

设平面向量A在坐标系A中的坐标表示为(Ax, Ay),在坐标系B中的坐标表示为(Bx, By),缩放因子为k。

则坐标变换公式为:Bx = k * AxBy = k * Ay4. 倾斜变换倾斜是指将平面向量在x轴或y轴方向上进行伸缩。

设平面向量A 在坐标系A中的坐标表示为(Ax, Ay),在坐标系B中的坐标表示为(Bx, By),倾斜角度为α。

则坐标变换公式为:Bx = Ax + Ay * tanαBy = Ay + Ax * tanα总结:本文介绍了平面向量的坐标表示以及坐标变换公式,并按照题目要求采用相应的格式进行了阐述。

平面向量的坐标表示与运算

平面向量的坐标表示与运算

平面向量的坐标表示与运算平面向量是数学中的重要概念,它在几何和物理学中都有广泛的应用。

在平面直角坐标系中,平面向量的坐标表示与运算是研究平面向量的基础。

一、平面向量的坐标表示在平面直角坐标系中,一个平面向量可以用两个有序实数表示,这两个实数分别表示向量在x轴和y轴上的投影。

设向量a的坐标为(a₁, a₂),则a可以表示为:a = a₁i + a₂j,其中i和j分别是x轴和y轴的单位向量。

二、平面向量的运算1. 向量的加法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a加b的结果可以表示为:a +b = (a₁ + b₁)i + (a₂ + b₂)j。

2. 向量的减法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a减b的结果可以表示为:a -b = (a₁ - b₁)i + (a₂ - b₂)j。

3. 向量的数量乘法设向量a的坐标为(a₁, a₂),实数k,则向量a乘以k的结果可以表示为:k*a = ka = (ka₁)i + (ka₂)j。

4. 向量的数量除法设向量a的坐标为(a₁, a₂),实数k(k ≠ 0),则向量a除以k的结果可以表示为:a/k = a*(1/k) = (a₁/k)i + (a₂/k)j。

5. 向量的数量积设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a与向量b的数量积结果可以表示为:a·b = a₁b₁ + a₂b₂。

6. 向量的模长设向量a的坐标为(a₁, a₂),则向量a的模长可以表示为:|a| = √(a₁² + a₂²)。

三、示例分析为了更好地理解平面向量的坐标表示与运算,下面以实际问题为例进行分析。

问题:有两个平面向量a(-3, 4)和b(2, -1),求这两个向量的和、差、数量积和模长。

解答:1. 向量的加法:a +b = (-3 + 2)i + (4 - 1)j = -i + 3j。

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则在数学中,平面向量是具有大小和方向的量,常用箭头表示。

平面向量有许多运算法则,包括相加、相减、数量乘法等。

1. 平面向量的表示方法平面向量通常用坐标表示,形式为 (x, y) 或 i*x + j*y,x、y分别表示向量在x轴和y轴上的分量,i和j是单位向量。

2. 平面向量的相加设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。

则 A + B 的坐标表示为 (x1 + x2, y1 + y2)。

3. 平面向量的相减设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。

则 A - B 的坐标表示为 (x1 - x2, y1 - y2)。

4. 平面向量的数量乘法设有一个平面向量 A,A 的坐标表示为 (x, y),k 为实数。

则 kA 的坐标表示为 (k*x, k*y)。

5. 平面向量的数量除法设有一个平面向量 A,A 的坐标表示为 (x, y),k 为非零实数。

则A/k 的坐标表示为 (x/k, y/k)。

6. 平面向量的数量积设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。

两个向量的数量积为 A·B = x1*x2 + y1*y2,是一个数量。

7. 平面向量的向量积设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。

两个向量的向量积为 A×B = x1*y2 - x2*y1,是一个向量。

8. 平面向量的模长一个平面向量 A 的模长表示为 |A|,计算公式为|A| = √(x^2 + y^2),其中 x 和 y 分别为向量 A 在 x 轴和 y 轴上的分量。

9. 平面向量的数量积与夹角设有两个非零平面向量 A 和 B,它们之间的夹角θ 满足以下公式:cosθ = (A·B) / (|A|*|B|)。

平面向量的概念、运算及坐标表示(讲义及

平面向量的概念、运算及坐标表示(讲义及

平面向量的概念、运算及坐标表示(讲义)➢ 知识点睛一、平面向量的基本概念 1. 定义:既有,又有 的量叫做向量.−−→表示:a , AB−−→模:向量 AB 的叫做向量的模,记作 .2. 几个特殊的向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量二、平面向量的线性运算1(几何意义)加法 减法 数乘定义求两个向量和的运算向量a 加上向量b 的, 即 a +(-b )=a -b实数与向量的 积是一个向量,记作λa法则法则法则λa = λ a当λ>0 时,λa 与 a 的方向 ; 当λ<0 时,λa 与 a的方向;当λ=0 时,λa =0运算律 交换律:λ(μa )= (λ+μ)a = λ(a +b )= (-λ)a = λ(a -b )=a +b =结合律: a -b =a +(-b )(a +b )+c =λ(μ1a ±μ2b )=λμ1a ±λμ2b三、向量相关定理1.共线向量定理:向量a(a≠0)与b 共线,当且仅当有唯一一个实数λ,使.扩充:对空间三点P,A,B,可通过证明下列任意一个结论成立来证明三点共线.−−→−−→① PA =λPB ;−−→−−→−−→②对平面任一点O,OP =OA+t AB ;−−→−−→−−→③对平面任一点O,OP =x OA+y OB(x +y =1).2.平面向量基本定理(1)基底:平面内的向量e1,e2 叫做表示这一平面内所有向量的一组基底.(2)定理:如果e1,e2 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a= .四、向量的坐标表示及运算1.坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i,j 作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j.这样,平面内的任一向量a 都可由x,y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a= .2.坐标运算设a=(x1,y1),b=(x2,y2),则a+b= ,a-b= ,λa= .(1)坐标求法−−→设A(x1,y1),B(x2,y2),则AB= .(2)向量位置关系与坐标a∥b ⇔ ⇔ .➢精讲精练1.下列四个命题:①若a = 0 ,则a 为零向量;②若a =b ,则−−→−−→ a=b 或a=-b;③若a∥b,则a =b ;④若非零向量AB 与CD 是共线向量,则A,B,C,D 四点共线.其中正确的有()A.0 个B.1 个C.2 个D.3 个2.根据图示填空:(1)a+b= ;(2)c-a= ;(3)a+b+d= ;(4)f-a-b= ;(5)c+d+e= ;(6)g-c-d= .3.若a,b 为非零向量,且a +b =a +b ,则()A.a∥b,且a 与b 方向相同B.a=bC.a=-bD.a,b 无论什么关系均可−−→−−→−−→4.如图,在正六边形ABCDEF 中,BA + CD + EF =()−−→−−→−−→A.0 B.BE C.AD D.CF−−→−−→−−→5.已知正方形ABCD 的边长为1,AB =a,BC =b,AC =c,则a +b +c =()A.0 B.3 C. 2 D.2 2−−→−−→−−→−−→6.平面上有A,B,C 三点,设m= AB +BC ,n= AB -BC ,若m,n 的长度恰好相等,则有()A.A,B,C 三点必在同一直线上B.△ABC 必为等腰三角形且∠B 为顶角C.△ABC 必为直角三角形且∠B=90°D.△ABC 必为等腰直角三角形−−→ −−→ −−→7. 已知AB =a+5b,BC =-2a+8b,CD =3(a-b),则()A.A,B,D 三点共线B.A,B,C 三点共线C.B,C,D 三点共线D.A,C,D 三点共线8.在△ABC 中,M 为边BC 上的任意一点,N 为AM 的中点,−−→−−→−−→若AN =λ AB +μ AC ,则λ+μ的值为()A.12 B.13C.14D.1−−→9.如图,平面内有三个向量OA−−→,OB−−→,OC−−→,其中OA−−→与OB 的−−→−−→−−→−−→夹角为120°,OA 与OC 的夹角为30°,且OA =OB = 1,−−→ OC = 2−−→,若OC−−→=λOA −−→+μOB ,则λ+μ的值为.3λ λ λ +λ 10.已知 D ,E 分别是△ABC 的边 AB ,BC 上的点,且 AD = 1AB ,2 BE = 2BC .若 −−→−−→ −−→ λ ( , 为实数),则3 的值为 DE = .1 AB +λ2AC 1 2 1 2−−→ 11.如图,在△ABC 中,1 −−→ −−→ −−→ −−→ , ,若 =a ,−−→−−→BD = DC 2AE =3 ED AB AC =b ,则 BE =()A . 1 a + 1 bB . - 1 a + 1 b3 3 24 C . 1 a + 1 bD . - 1 a + 1 b2 43 3−−→1 −−→ −−→ 1 −−→ 12.如图,在△AOB 中, OC = OA ,OD 4 = OB ,AD 与 BC 2−−→相交于点 M ,设 OA −−→OM =.−−→=a , OB=b ,若以 a ,b 为基底,则13. 已知平行四边形 ABCD 的三个顶点 A ,B ,C 的坐标分别为 (-2,1),(-1,3),(3,4),则顶点 D 的坐标是.14. 若向量a=(1,1),b=(-1,1),c=(4,2),则c=()A.3a+b B.3a-bC.-a+3b D.a+3b15. 向量a,b,c 在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λ=.μ16. 已知平面向量a=(1,2),b=(-2,m),若a∥b,则2a+3b=()A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)17. 已知向量a=(2,-1),b=(-1,m),c=(-1,2),若a+b 与c 共线,则m = .【参考答案】➢知识点睛一、平面向量的基本概念−−→1. 大小,方向,长度,AB二、平面向量的线性运算加法:三角形,平行四边形,b+a,a+(b+c)减法:相反向量数乘:相同,相反,(λμ)a,λa+μa,λa+λb,-(λa),λa-λb三、向量相关定理1. b=λa2. (1)不共线;(2)λ1e1+λ2e2四、向量的坐标表示及运算1. (x,y)2. (x1+x2,y1+y2),(x1-x2,y1-y2),(λx1,λy1)(1)(x2-x1,y2-y1)(2)b=λa,x2 =y2 =λ(x ,y ≠ 0 )x1y1➢精讲精练1. B2. (1)c;(2)b;(3)f;(4)d;(5)g;(6)e3. A4. D5. D6. C7. A8. A9. 610. 1211. B12. 1 a +3 b7 713. (2,2)14. B15. 416. B17. -11 1。

平面向量的坐标表示及坐标运算

平面向量的坐标表示及坐标运算

平面向量的坐标表示及坐标运算一个平面上的向量可以用坐标的形式表示出来。

一般而言,在平面上的向量都可以用一个坐标向量来表示,用一对数字表示向量的大小和方向,可以是极坐标,也可以是直角坐标。

极坐标是把向量投影到平面上,以圆心为原点,向量的起点到圆心的距离表示大小,圆心到向量的角度表示方向。

在不同情况下,极坐标可以取不同的圆心,比如笛卡尔坐标系的极坐标,其圆心就是笛卡尔坐标系的原点;也可以取向量的起点为圆心,这样的极坐标叫作空间极坐标。

直角坐标是指将一个向量从起点投射到X轴,再从X轴投射到Y 轴,X轴上的距离表示向量的X成分,Y轴上的距离表示向量的Y成分。

这样就把一个向量表示为两个正数(或零)的组合,例如(3,4),即表示一个向量,其X成分为3,Y成分为4。

二、坐标运算1.量加法:当两个向量的起点在同一个点时,他们的坐标向量可以相加,即:(a,b)+(c,d)=(a+c,b+d)。

2.量减法:同样地,当两个向量的起点在同一个点时,他们的坐标向量可以相减,即:(a,b)-(c,d)=(a-c,b-d)。

3.放向量:缩放向量意味着将向量的大小变更,而不改变向量的方向,可以用缩放系数来表示,令K为缩放系数,则:K*(a,b)=(Ka,Kb),即对向量的每个成分乘以一个系数,就可以完成缩放的运算。

4.量的模:向量的模也称为向量的长度,表示向量大小的一个数值,它可以用欧式距离来表示,欧式距离计算公式的定义为:||A||=√(a^2+b^2),其中a和b分别表示向量的X和Y成分。

5.量的夹角:向量的夹角指向量之间的夹角,可以用弧度表示,也可以用角度表示,计算向量的夹角可以用余弦定理来计算,其计算公式定义为:cosθ=AB/||A||*||B||。

6.量的点积:点积用来表示两个向量的关系,可以用X和Y在向量上的分量来表示,它的计算公式定义为:AB=a*b+c*d,其中a,b,c,d分别表示两个向量的X和Y成分。

三、总结以上,就是平面向量的坐标表示及坐标运算的相关内容,在了解了平面向量的坐标表示方式以及如何进行坐标运算后,我们可以更加熟练的处理向量的坐标运算,也可以更清楚的理解向量的含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 向量坐标. 若A(x1 , y1) , B(x2 , y2) 则 AB =(x - x , y – y ) 2 1 2 1
5、坐标形式下向量的模; 6、单位向量
7、向量共线
即:
两个向量共线等价于 交叉相乘,积相等
例 题 5、 已 知 a 10, b (3, 4) 且 a // b, 2 求 向 量 a.
解:设 a ( x , y ), 则 a 又 b ( 3, 4 ), a // b x y 10
2 2
x y 10 4 x 3 y 0
4
练习1 1.已知o是坐标原点,点A在第二象限, │OA│=2, ∠XOA=150°,则向量 OA 的坐标为 . 2.已知a=(-1,2),b=(1,-2),则a + b= , a-b= ,y = . .
3.已知a=(x-2,3),b=(1,y+2),且a = b,则x =
4. 已知A(1,2),B(3,2),向量a=(x+3,x-3y-4)与 AB 相 等,求实数x的值. 5. 已知o是坐标原点, A(2,-1),B(-4,8), AB+3BC=0 求 OC 的坐标.
(3)向量 CD 能否由 i , j 表示出来? CD 2 i 3 j
思考:如图,在直角坐标系中, 已知A(1,0),B(0,1),C(3,4),D(5,7). j 设 OA i , OB ,填空:
y
7
D
C
2.3 平面向量的坐标运算
例3. 已知 ABCD的三个顶点A、B、C的坐标分别为 (-2,1)、( -1,3)、(3,4),求顶点D的坐标. 解:设顶点D的坐标为(x,y)
( 1 2), 1) 1,) AB ( 3 ( 2 DC ( 3 x , 4 y )
3t+1<0, 解得 3t+2>0 ,
OP OA t AB

2 3
t
1 3
探究3:两个向量共线的坐标表示
向量平行的坐标表示:
a / / b x1 y 2 x 2 y1 0
若向量 a ( x1 , y1 ), b ( x 2 , y 2 ), 则有
解(1) a +b=(2,1)+(-3,4)=(-1,5); a-b=(2,1)-(-3,4)=(5,-3); (2) 3a-2b=3(2,1)- 2(-3,4)
=(6,3)-(-6,8)
=(12,-5) |3a-2b|=| (12,-5) |=13 所以与3a-2b共线的单位向量是
3a 2b 1 12 5 (12, 5) ( , ) 13 13 13 | 3a 2b |
同理可得 a - b ( x1 x 2 , y 1 y 2 ) 两个向量和与差的坐标分别等于这两向量相对应坐标的和与差
a (x , y )
实数与向量的积的坐标等于这个实数乘原来的向量的相 应坐标.
2.3 平面向量的坐标运算
例2.已知a=(2,1),b=(-3,4),求: (1) a+b,a-b的坐标;(2)与3a+2b共线的单位向量.
例1 如图,已知
y D
A(-1,3),B(1,-3),C(4,1),A
AO,OD, 的坐标。 CO
D(3,4),求向量OA,OB,
C O x

B
练习
已知o是坐标原点,点A在第一 象限,│OA│= 4, ∠XOA=60°, .
则向量 OA 的坐标为
课堂小结:
1 向量坐标定义. 2 加、减法法则.
a + b=( x2 , y2) + (x1 , y1)= (x2+x1 , y2+y1) a - b=( x2 , y2) - (x1 , y1)= (x2- x1 , y2-y1)
3 实数与向量积的运算法则:
λa =λ(x ,y )=(λx ,λy )
x
A
3
5
3 i 4 j OC ________, OD 5 i P为终点的向量能 否用坐标表示?如何表示?
y a
o
P
x
向量的坐标表示
4 3
OP xi y j ( x , y )
(2 , 2
x
)
3. 知 p ( 3, 1), 且 | p | 5, 已 则 4. 知 m (sin cos , sin cos ), 已 则 m的 长 度 为
思考:如果已知点O(0,0),A(1,2),B(4,5)及 若点P在第二象限内,则点t的取值范围是? 解: O(0,0),A(1,2),B(4,5) O A =(1,2), =(3,3),而 OP OA t AB AB OP =(1,2)+t(3,3)=(3t+1,3t+2), P(3t+1,3t+2),而点P在第二象限内
探索2:
在平面直角坐标系内,起点不在坐标 原点O的向量如何用坐标来表示?
解决方案:
已知
A ( x1 , y 1 ), B( x 2 ,. ) 求 AB y2
A ( x1 , y 1 )
y
B ( x2 , y2 )
解:AB OB OA
( x1 , y 1 ) ( x 2 , y 2 ) ( x 2 x1 , y 2 y 1 )
3. a OA ( x , y ),则有: a
AB ( x 2 x1 , y 2 y1 )
OA
x y
2
2
4. 若A ( x1 , y1 ),B( x 2 , y 2 ),则
2 2 | AB | ( x 2 x1 ) ( y 2 y1 )
2.3 平面向量的坐标运算
平面向量的坐标运算
已知a ( x1 , y 1 ) ,b ( x 2 , y 2 ) ,求a+b,a-b. 解:a+b=( x1 i + y 1 j ) + ( x 2 i + y 2 j ) =( x1 + x 2 )i+( y 1+ y 2 )j 即 a + b ( x1 x 2 , y 1 y 2 )
O
x
一个向量的坐标等于表示此向量的有向线段的终点的坐 标减去始点的坐标.
思考: 1.点A的坐标与向量a 的坐标的关系?
若a以原点为起点,两者相同
y
A(x, y) a
向量a 一 一 对 应 坐标(x ,y)
a j O i
x
2.用坐标表示两个向量相等 a b x1 x2 , y1 y 2
2.3 平面向量的坐标运算
2.3平面向量的坐标运算
平面向量的坐标表示 1.平面向量基本定理的内容?什么叫基底? 2.分别与x 轴、y 轴方向相同的两单位向量i 、j 能否作
为基底?
3.在平面内有点A和点B,怎样 表示向量AB y
j O i
x
4 1 1 (1)| i | _____, | j | ______, B j 5 | O C | ______; o i (2)若用 i , j 来表示 O C , O D ,则:
练习2
1、下列向量中不是单位向量的有 ① a= (cos , sin ) ② b= ( ③ c=
x

lg 2 , lg 5 )
④ d=(1-x,x) 2、已知单位正方形ABCD,AB a , BC b , AC c , 求 2 a 3b c 的模 。
2 2
x 6 x 6 解得: 或 y 8 y 8
a ( 6 , 8 )或 a ( 6 ,8 )
练习
1.已 知 [0, 2 ), O P1 (cos , sin ) O P2 (3 cos , 4 sin ), 则 | P1 P2 | 的 取值范围是 2、平面内给定三个向量a=(3,2),b=(-1,2) c=(4,1),回答下列问题: (1)求3a+b-2c; (2)求满足a=mb+nc的实数m,n; (3)若(a+kc) ∥ (2b-a),求实数k (4)设d=(x,y)满足(d-c) ∥(a+b)且 |d-c|=1,求d.
P( x , y )
2
1
j
-2 2 4 6
O
-1 -2
i
向量 OP
一一对应 P(x ,y)
-3
1 、把 a=x i+y j 称为向量基底形式. 2 、把(x , y)叫做向量a的(直角)坐标, 记为:a=(x , y) , 称其为向量的坐标形式. 3、 a=x i+y j =( x , y) 4、其中 x、 y 叫做 a 在X 、Y轴上的坐标. 单位向量 i =(1,0),j =(0,1)
由 AB DC ,得
(1 , 2 ) ( 3 x , 4 y )
1 3 x 2 4 y
x 2 y 2
顶点 D 的坐标为( 2,) 2
P1P2上的一点,且P1P PP2 ( 1),求点P的坐标。
例3 已知P1 ( x1, y1 ), P2 ( x2 , y2 ),P是直线
相关文档
最新文档