向量的坐标表示及其运算
向量的坐标表示及运算

向量的坐标表示及运算知识回顾:一、概念:a 是平面内任意一个向量,i 、j 分别是与x 轴,y 轴同向的两个单位向量,a =x i +y j ,()y x ,叫做a 的坐标,记作a =()y x ,。
二、向量的坐标的运算: 设a =()11,y x ,b =()22,y x⑴ 加法运算: ⑵ 减法运算:⑶ 实数与向量的积: ⑷ 向量的数量积:⑸ 已知两点A ()11,y x ,B ()22,y x ,则的坐标可以表示为:⑹ a 的模 |a |=三、三种关系:设a =()11,y x ,b =()22,y x⑴ 相等:a =b ⇔ ⑵ 共线:a //b ⇔ ⑶垂直:a ⊥b ⇔知识的运用:例1:设向量a =()2,1-,b =()1,2-,求(a • b )(a +b )。
例2:平面向量a ,b 中,已知()3,4-=a ,1=b ,且a ·b 0=,求b 。
例3:已知a =()2,1,b =()2,3-,当k 为何值时,⑴ k a +b 与a –3b 垂直? ⑵ k a +b 与a –3b 平行?平行时它们是同向还是反向?例4:已知ABC ∆是等腰直角三角形, 90=∠ABC ,()1,2A ,()2,3-B ,求C 点坐标。
课后练习1.已知点()5,1--A 和向量()3,2=a ,若a AB 3=,则点B 的坐标为 。
2.若平面向量b 与向量()2,1-=a 的夹角是90°53=,则=b 。
3.若平面向量b 与向量()2,1-=的夹角是180°53=,则=b 。
4.已知e 为单位向量,()13,13+-=且e 与a 夹角为45°,则=e 。
5.已知向量()2,2-=a ,()k ,5=b 。
若b a +不超过5,则k 的取值范围是A 、[]6,4-B 、[]4,6-C 、[]2,6-D 、[]6,2-6.已知向量()2,1=a ,()4,2--=b ,5=c ,若()b a +·25=c ,则a 与c 的夹角为A 、30°B 、60°C 、120°D 、150°。
8.1向量的坐标表示及其运算

a
位置向量.
j
O i1
1)平面内每一点都有对应的位置向量。
Ab
x
2)平面内任一向量都有唯一的与它相等的位置向量。
思考:与一个位置向量相等的向量有 ______ 个。
பைடு நூலகம்
-2
调用几何画板
4
怎样用i, j表示位置向量OP?
3
P(3,2)
N2
2j
1
j
Oi
2
M
4
3i
6
-1
OP OM ON 3i 2 j
例2:设ABC三个顶点坐标分别为A( x1, y1 ), B( x2 , y2 ), C( x3 , y3 ),G是ABC的重心,求G的坐标。
重心坐标公式
x
y
x1 y1
x2 3 y2 3
x3 y3
例3 : 线段AB的端点为A( x, 5), B(2, y), 直线AB上的点C(1,1),使 AC 2 BC , 求x, y的值.
存在唯一实数 ,使 b a ,则
(x2 , y2 ) (x1, y1) ( x1, y1)
因此 x1 y2 x2 y1 x1( y1) ( x1) y1 0
平面向量平行条件的坐标表示
定理:已知任意向量 a (x1, y1),b (x2, y2),
a//b 的充要条件是 x1 y2 x2 y1 0
②求点A关于点B的对称点H的坐标
③若点C分有向线段 AB 的比 =2,求点C的坐标 ④求点D(0.5,y)分有向线段 AB 的比 及y值。
⑤若 AE 5 AB ,求点E的坐标 22
3, 若P是分 P1 P2定比为2的分点, 则P是分P2P1定比为 ___的分点, 则P1是分PP2定比为 ___的分点, 则P2是分PP1定比为 ___的分点。
向量的坐标表示与运算公式

向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
向量坐标表示及运算

y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)
向量的坐标表示及其运算

a
O
OA x i y j
i
M
x
在上式中,向量OA能表示成两个相互垂直的向量i、j
分别乘以实数x、y后组成的和式,该和式称为i、j 的线
性组合,这种向量的表示方法叫做向量的正交分解。
3,向量的坐标表示:
j
O
y
A (x, y)
a
i
x
在平面直角坐标系内,任意一个向量都存在唯 一一个与它相等的位置向量.
8.1向量的坐标表示及其运算
一、基本概念
1,在平面直角坐标系中,方向与x轴和y轴正方向分别
相同的两个单位向量叫做基本单位向量,分别记为 i 、 j 2,以原点O为起点,A为终 点的向量 OA叫做点A的位 置向量,如图,OA即为一 个位置向量.
1
y
A
b
a i
1
j
O
x
1)平面内每一点都有对应的位置向量。
C(-1,3) B(-3,2)
2 1 4
y
3
D(x,y)
A(2,1)
2 4 6
-6
-4
-2
O
-1 -2
x
-3
-4
2)平面内任一向量都有唯一的与它相等的位置向量。
思考:与一个位置向量相等的向量有 ______ 个。
4
3NΒιβλιοθήκη (3, 2) P2 1
2j
j
-2
O i
-1 -2
2
3i
M
4
6
-3
那么,对于任一位置向量,能否用基本位置 y 向量 i 、来进行表示呢? j A ( x, y) N
OA OM ON x i y j
y Q(x2, y2)
向量的坐标表示与运算

向量的坐标表示与运算向量是线性代数中的重要概念之一,广泛应用于物理学、工程学以及其他科学领域。
向量具有大小和方向两个属性,可以通过坐标表示和进行运算。
本文将介绍向量的坐标表示方法,并讨论常见的向量运算。
一、向量的坐标表示向量可以通过坐标表示为一个有序数对或者有序数组。
一般来说,我们采用n维空间中的坐标系表示向量,其中n表示向量的维度。
在二维空间中,向量可以表示为一个有序数对(x, y),在三维空间中,向量可以表示为一个有序数组(x, y, z)。
在n维空间中,向量可以表示为一个有序数组(x1, x2, ..., xn)。
向量的坐标表示可以简洁地表示向量的大小和方向。
二、向量的基本运算1. 向量的加法向量的加法是指将两个向量相应位置的分量相加得到一个新的向量。
假设有两个向量A和B,它们的坐标表示分别为(A1, A2, ..., An)和(B1,B2, ..., Bn),则它们的和向量C的坐标表示为(A1+B1, A2+B2, ...,An+Bn)。
2. 向量的减法向量的减法是指将两个向量相应位置的分量相减得到一个新的向量。
假设有两个向量A和B,它们的坐标表示分别为(A1, A2, ..., An)和(B1,B2, ..., Bn),则它们的差向量D的坐标表示为(A1-B1, A2-B2, ..., An-Bn)。
3. 向量的数乘向量的数乘是指将一个向量的每个分量乘以一个标量得到一个新的向量。
假设有一个向量A,它的坐标表示为(A1, A2, ..., An),如果乘以一个标量c,那么得到的数乘向量E的坐标表示为(cA1, cA2, ..., cAn)。
三、向量的运算性质1. 交换律向量的加法满足交换律,即A + B = B + A。
这意味着两个向量相加的结果与它们的顺序无关,只与各个向量的分量有关。
2. 结合律向量的加法满足结合律,即(A + B) + C = A + (B + C)。
这意味着多个向量相加的结果与它们的加法顺序无关,只与各个向量的分量有关。
向量的坐标表示及其运算教案

向量的坐标表示及其运算教案一、教学目标1. 了解向量的概念,掌握向量的坐标表示方法。
2. 掌握向量的线性运算,包括加法、减法、数乘和数量积。
3. 能够运用向量的坐标表示和运算解决实际问题。
二、教学内容1. 向量的概念:向量是有大小和方向的量。
2. 向量的坐标表示:在二维和三维空间中,向量可以用坐标表示。
二维空间中的向量:\( \vec{a} = (a_1, a_2) \)三维空间中的向量:\( \vec{a} = (a_1, a_2, a_3) \)3. 向量的加法:\( \vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \)4. 向量的减法:\( \vec{a} \vec{b} = (a_1 b_1, a_2 b_2, a_3 b_3) \)5. 向量的数乘:\( k\vec{a} = (ka_1, ka_2, ka_3) \)6. 向量的数量积(点积):\( \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \)三、教学方法1. 采用讲授法,讲解向量的概念、坐标表示和运算方法。
2. 利用多媒体课件,展示向量的图形,帮助学生直观理解向量的概念和运算。
3. 引导学生通过小组讨论,探讨向量运算的规律和应用。
4. 利用例题,讲解向量运算在实际问题中的应用。
四、教学步骤1. 导入新课:回顾初中阶段学习的向量知识,引出高中阶段向量学习的内容。
2. 讲解向量的概念,引导学生理解向量的本质。
3. 介绍向量的坐标表示方法,让学生掌握向量的坐标表示。
4. 讲解向量的加法、减法、数乘和数量积运算,让学生熟练掌握运算方法。
5. 利用多媒体课件,展示向量的图形,让学生直观理解向量的运算。
五、课后作业1. 填空题:向量\( \vec{a} = (2, 3) \) 的长度是_______。
向量\( \vec{a} = (1, 2) \) 与向量\( \vec{b} = (-1, 2) \) 垂直。
8.1.2向量的坐标表示及其运算

二、定比分点的概念
于P 的任意一点, 则存在唯一的实数 ,使得 , P 1 2
设P 是直线 l 上的两点,点 P 是 l 上不同 1, P 2
PP 1 PP 2
其中 叫做点 P 分有向线段 PP 所成的比 1 2
P1
P P1 P
P2 P2 P2
P
l l l
0
例 6.已知 A3,2 , B8,3点 P 在直线 AB 上, 且满足 AP 2 PB ,求点 P 的坐标.
例 7.在 ABC 中, A x1 , y1 , B x2 , y2 , C x3 , y3 , 求 ABC 重心 G 的坐标.
A
G
.
E
B
D
C
x1 x2 x3 y1 y2 y3 G , 3 3
例 1.已知 a x 1,2, b 1, x (1)若 a // b ,求实数 x 的值; (2)若 a b //a b ,求实数 x 的值.
例 2.已知 a // b , a 2,3 ,且 b 2 13,求 b 的坐标.
方法一: 方法二:
例3. O 是坐标原点, OA (k ,12), OB (4,5),
A, B, C 三点共线? OC (10, k ) ,当 k 为何值时, 分析: A, B, C 三点共线的充要条件是 AB // BC
解: AB OB OA (4 k , 7)
BC OC OB (6, k 5) AB// BC (4 k ) (k 5) 6 (7) 0 2 化简得: k 2 或 11 k 9k 22 0 解得: A, B, C 三点共线. 因此 k 2 或 11时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资源信息表
(2)向量的坐标表示及其运算(2)
一、教学内容分析
向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础.
二、教学目标设计
1.理解并掌握两个非零向量平行的充要条件,巩固加深充
要条件的证明方式;
2.会用平行的充要条件解决点共线问题;
3、定比分点坐标公式.
三、教学重点及难点
课本例5的演绎证明;
分类思想,数形结合思想在解决问题时的运用;
特殊——一般——特殊的探究问题意识.
五、教学过程设计:
复习向量平行的概念:
提问:(1)升么是平行向量方向相同或相反的向量叫做平行向
量。
(2)实数与向量相乘有何几何意义
(3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得
a b λ=⋅成立,则两向量a 与向量b 平行
(4)思考:如果向量,a b 用坐标表示为)
,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12
12
x x y y λλ=⎧⎨=⎩
思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则
2
121y y
x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出
课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==,
则//a b 的充要条件是1221x y x y =.
分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明,
(Ⅰ)先证必要性://a b 1221x y x y ⇒=
非零向量//a b ⇔存在非零实数λ,使得a b λ=,即
1122(,)(,)x y x y λ=,化简整理可得:12
12
x x y y λλ=⎧⎨
=⎩,消去λ即得1221x y x y = (Ⅱ)再证充分性:1221x y x y =//a b ⇒
(1)若12210x y x y =≠,则1x 、2x 、1y 、2y 全不为零,显然有
11
22
0x y x y λ==≠,即1122(,)(,)x y x y λ=a b λ⇒=//a b ⇒
(2)若12210x y x y ==,则1x 、2x 、1y 、2y 中至少有两个为零. ①如果10x =,则由a 是非零向量得出一定有10y ≠,⇒20x =, 又由b 是非零向量得出20y ≠,从而,此时存在1
2
0y y λ=
≠使12(0,)(0,)y y λ=,即a b λ=//a b ⇒
②如果10x ≠,则有20y =,同理可证//a b 综上,当1221x y x y =时,总有//a b 所以,命题得证.
[说明] 本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例. 练习2:
1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________; 2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( )
① 存在一个实数λ,使=λ或=λ; ②2
121y y
x x =;③(+)0a a 0a a a =⋅a 0a 0a a a =⋅a 0a 1a =0
a a =述命题中,其
中假命题的序号为 ;
[说明] 安排此组练习快速巩固所学基础知识,当堂消化,及时反馈.
知识拓展应用
问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ (学生讨论与分析)
[说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系
法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线. *法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线.
问题二:定比分点公式:
设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.
解:由12PP PP λ= ,可知
{
)
()(2121x x x x y y y y -=--=-λλ,因为λ≠-1,
所以⎩⎨⎧++
=++=λ
λλ
λ112
121x x x y y y ,这就是点P 的坐标.
[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定
比分点公式. 2.小组交流
(1)定比分点公式中反映了那几个量之间的关系当λ=1时,
点P 的坐标是什么
(2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点. 思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( )
A 、 始→分,分→终.
B 、始→分,终→分.
C 、终→分,分→
始
(3)关于定比λ和分点P 叙述正确的序号是 1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈
[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=2
2
2
121x x x y y y ,此公式叫
做线段21P P 的中点公式. 此公式应用很广泛.
3.例题辨析
例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x ,
),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.
解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB
的中点,于是点D 的坐标是(
2
,22
121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =
则由定比分点公式得 ⎪⎩
⎪⎨⎧+++=+++=
212
22122213213x x x x y y y y ,整理得
⎪⎩
⎪⎨⎧++=++=333
2121x x x x y y y y 这就是△ABC 的重心G 的坐标.
[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.
例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),
所以定比λ=-3
2
.
解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式
得12=
λλ+-⨯+1)3(2 解出实数λ=-3
2
.
解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又
21
PP PP = 32
,
所以λ=-3
2 .
[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试. 课后作业。