数学(新高考Ⅰ卷●湖北卷)丨2021年普通高等学校招生全国统一考试数学试卷及答案
2021年全国新高考Ⅰ卷数学试题及答案

2021年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A. {}2B. {}2,3C. {}3,4D. {}2,3,4【答案】B2. 已知2i z =-,则()i z z +=( )A. 62i -B. 42i -C. 62i +D. 42i +【答案】C3. )A. 2B.C. 4D. 【答案】B4. 下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( ) A. 0,2π⎛⎫ ⎪⎝⎭ B. ,2ππ⎛⎫ ⎪⎝⎭ C. 3,2ππ⎛⎫⎪⎝⎭ D. 3,22ππ⎛⎫ ⎪⎝⎭【答案】A5. 已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A. 13B. 12C. 9D. 6【答案】C6. 若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( ) A. 65- B. 25- C. 25 D. 65【答案】C7. 若过点(),a b 可以作曲线e x y =的两条切线,则( )A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<【答案】D 8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD10. 已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( )A . 12OP OP = B. 12AP AP = C. 312OA OP OP OP ⋅=⋅ D. 123OA OP OP OP ⋅=⋅ 【答案】AC11. 已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB的距离大于2C. 当PBA ∠最小时,PB =D. 当PBA ∠最大时,PB =【答案】ACD12. 在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A. 当1λ=时,1AB P △的周长为定值B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D. 当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()()322x x x a f x -=⋅-是偶函数,则a =______. 【答案】114. 已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =- 15. 函数()212ln f x x x =--的最小值为______.【答案】116. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1n k k S==∑______2dm .【答案】 (1). 5 (2). ()41537202n n -+-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n nb a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300.19. 记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 20. 如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD(2) 621. 在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,点M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 22. 已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b <+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b +=, 故11f f a b ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-, 即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t t x t --=-, 要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t t t t --++<-,即证:()()1ln 1ln 0t t t t -+-<, 令()()()1ln 1ln ,1S t t t t t t =-+->,则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+.设()()ln 1u x x x =+-,则()1111x u x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b <+<.。
2021年高考全国新高考一卷 数学 试题+答案解析

A:甲与丙相互独立 C:乙与丙相互独立
B:甲与丁相互独立 D:丙与丁相互独立
53
微信公众号:数学竞赛的那些事儿
二、选择题:本题共 4 小题, 每小题 5 分, 共 20 分. 每小题给出的选项中, 有多项符合题目要求. 全部选对的 得 5 分, 部分选对的得 2 分, 有选错的得 0 分.
9. 有一组样本数据 x1, x2, · · · , xn, 由这组数据得到新样本数据 y1, y2, · · · , yn, 其中 y1 = xi + c (i = 1, 2, · · · , n), c 为非零常数, 则 ( ).
3.
已知圆锥的底面半径为
√ 2,
其侧面展开图为一个半圆,
则该圆锥的母线长为
(
).
D: 4 + 2i
A: 2
B:
√ 22
C: 4
D:
√ 42
4. 下列区间中, 函数 f (x) = 7 sin(x − π ) 单调递增的区间是 ( ). 6
A: (0, π ) 2
B: ( π , π) 2
C: (π, 3π ) 2
2021 年普通高等学校招生全国统一考试 新高考数学 I 卷
本试卷共 4 页, 22 小题. 满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答卷前, 考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上. 用 2B 铅笔将试卷类型 (B) 填 涂在答题卡相应位置上. 将条形码横贴在答题卡右上角“条形码粘贴处”. 2. 作答选择题时, 选出每小题答案后, 用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑; 如需改动, 用 橡皮擦干净后, 再选涂其他答案. 答案不能答在试卷上. 3. 非选择题必须用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上; 如需 改动, 先划掉原来的答案, 然后再写上新答案; 不准使用铅笔和涂改液. 不按以上要求作答无效. 4. 考生必须保持答题卡的整洁. 考试结束后, 将试卷和答题卡一并交回. 一、选择题:本题共 8 小题, 每小题 5 分, 共 40 分, 在每小题给出的四个选项中, 只有一项符合题目要求.
2021年新高考数学新课改Ⅰ卷真题+答案解析

2021年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合{|24}A x x =-<<,{2,3,4,5}B =,则(A B = )A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.(5分)已知2z i =-,则()(z z i += ) A .62i -B .42i -C .62i +D .42i +3.(5,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .4.(5分)下列区间中,函数()7sin()6f x x π=-单调递增的区间是( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 5.(5分)已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为( )A .13B .12C .9D .66.(5分)若tan 2θ=-,则sin (1sin 2)(sin cos θθθθ+=+ )A .65-B .25-C .25D .657.(5分)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<8.(5分)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
2021年全国新高考Ⅰ卷数学试题附答案

三、填空题:本题共4小题,每小题5分,共20分.
13.已知函数 是偶函数,则 ______.
【答案】1
【解析】
【分析】利用偶函数的定义可求参数 的值.
【详解】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
故答案为:1
【详解】A: 且 ,故平均数不相同,错误;
B:若第一组中位数为 ,则第二组的中位数为 ,显然不相同,错误;
C: ,故方差相同,正确;
D:由极差的定义知:若第一组的极差为 ,则第二组的极差为 ,故极差相同,正确;
故选:CD
10.已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
对于C,当 时, ,取 , 中点分别为 , ,则 ,所以 点轨迹为线段 ,不妨建系解决,建立空间直角坐标系如图, , , ,则 , , ,所以 或 .故 均满足,故C错误;
对于D,当 时, ,取 , 中点为 . ,所以 点轨迹为线段 .设 ,因为 ,所以 , ,所以 ,此时 与 重合,故D正确.
故选:BD.
8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()
A.甲与丙相互独立B.甲与丁相互独立
【详解】(1)由题设可得
又 , ,
故 ,即 ,即
所以 为等差数列,故 .
(2)设 的前 项和为 ,则 ,
因为 ,
2021年全国新高考Ⅰ卷数学试题(解析版)

D. 当 PBA 最大时, PB 3 2
【答案】ACD
【解析】
【分析】计算出圆心到直线 AB 的距离,可得出点 P 到直线 AB 的距离的取值范围,可判断 AB 选项的正误; 分析可知,当 PBA 最大或最小时, PB 与圆 M 相切,利用勾股定理可判断 CD 选项的正误.
所以,曲线 y ex 在点 P 处的切线方程为 y et et x t ,即 y et x 1 t et ,
由题意可知,点 a, b 在直线 y et x 1 t et 上,可得 b aet 1 t et a 1 t et ,
令 f t a 1 t et ,则 f t a t et .
A. 2
B. 2 2
C. 4
D. 4 2
【答案】B
【解析】
【分析】设圆锥的母线长为 l ,根据圆锥底面圆的周长等于扇形的弧长可求得 l 的值,即为所求.
【详解】设圆锥的母线长为 l ,由于圆锥底面圆的周长等于扇形的弧长,则 l 2 2 ,解得 l 2 2 .
故选:B.
4.
下列区间中,函数
f
x
C. 0 a eb
D. 0 b ea
【答案】D
【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定 结果;
解法二:画出曲线 y ex 的图象,根据直观即可判定点 a, b 在曲线下方和 x 轴上方时才可以作出两条切线.
【详解】在曲线 y ex 上任取一点 P t, et ,对函数 y ex 求导得 y ex ,
ymax ymin (xmax c) (xmin c) xmax xmin ,故极差相同,正确;
故选:CD
10. 已知 O 为坐标原点,点 P1 cos,sin ,P2 cos , sin ,P3 cos ,sin ,A(1, 0),
2021年新高考I卷数学真题和答案

2021年新高考I卷数学真题和答案2021年新高考I卷数学真题和答案2021年新高考I卷数学真题和答案今年教育部考试中心命制了全国甲、乙卷文理及新高考I卷、II卷(不分文理)6套数学试卷,使用新高考I卷的有山东、福建、湖北、江苏、广东、湖南、河北。
下面是小编为你整理的2021年新高考I卷数学真题和答案,希望对你有帮助!数学真题:单选题本大题共9小题,每小题5分,共45分。
在每小题给出的4个选项中,有且只有一项是符合题目要求。
1. 设集合A={x|-2<x<4}. B = {2,3,4,5},则A∩B=A{2}B{2,3}C{3,4,}D{2,3,4}7.若过点(a,b)可以作曲线y=ex的两条切线,则Aeb<aBea<bC0<a<ebD0<b<ea8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的.球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则A甲与丙相互独立B甲与丁相互独立C乙与丙相互独立D丙与丁相互独立9.有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则A两组样本数据的样本平均数相同B两组样本数据的样本中位数相同C两组样本数据的样本标准差相同D两组样本数据的样本极差相同15. 函数f(x) =|2x-l|-2lnx的最小值为________________18.(12 分)某学校组织"一带一路”知识竞赛,有A,B两类问题每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分。
2021年普通高等学校招生全国统一考试数学试卷及答案

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用 28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=A.{2}B.{2,3}C.{3,4,}D.{2,3,4}2.已知z=2-i,则(z(z⃗+i)=A.6-2iB.4-2iC.6+2iD.4+2i3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为A.2B.2√2C.4D.4√24.下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是A.(0,π2) B.(π2,π) C.( π,3π2) D.(3π2,2 π)5.已知F1,F2是椭圆C:x29+y24=1的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为A.13B.12C.9D.66.若tanθ=-2,则sinθ(1+sin2θ)sinθ+cosθ=A.−65B. −25 C. 25 D. 657.若过点(a,b)可以作曲线y=e x 的两条切线,则 A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则 A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析

2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.乙与丙相互独立D.丙与丁相互独立
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.有一组样本数据 , ,…, ,由这组数据得到新样本数据 , ,…, ,其中 ( 为非零常数,则()
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.
(1)证明: ;
(2)若 是边长为1 等边三角形,点 在棱 上, ,且二面角 的大小为 ,求三棱锥 的体积.
21.在平面直角坐标系 中,已知点 、 ,点 的轨迹为 .
(1)求 的方程;
(2)设点 在直线 上,过 两条直线分别交 于 、 两点和 , 两点,且 ,求直线 的斜率与直线 的斜率之和.
22.Байду номын сангаас知函数 .
A. 两组样本数据的样本平均数相同
B. 两组样本数据 样本中位数相同
C. 两组样本数据的样本标准差相同
D. 两组样数据的样本极差相同
10.已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
11.已知点 在圆 上,点 、 ,则()
A.点 到直线 的距离小于
B.点 到直线 的距离大于
C.当 最小时,
机密★启用前
2021年普通高等学校招生全国统一考试(新高考I卷)
数 学
(适用地区:山东、河北、湖北、湖南、江苏、广东、福建)
本试卷共4页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
14.已知 为坐标原点,抛物线 : ( )的焦点为 , 为 上一点, 与 轴垂直, 为 轴上一点,且 ,若 ,则 的准线方程为______.
15.函数 的最小值为______.
16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 的长方形纸,对折1次共可以得到 , 两种规格的图形,它们的面积之和 ,对折2次共可以得到 , , 三种规格的图形,它们的面积之和 ,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折 次,那么 ______ .
(1)讨论 的单调性;
(2)设 , 为两个不相等的正数,且 ,证明: .
机密★启用前
2021年普通高等学校招生全国统一考试(新高考I卷)
数 学
(适用地区:山东、河北、湖北、湖南、江苏、广东、福建)
本试卷共4页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
A. B. C. D.
4.下列区间中,函数 单调递增的区间是()
A. B. C. D.
5.已知 , 是椭圆 : 的两个焦点,点 在 上,则 的最大值为()
A.13B.12C.9D.6
6.若 ,则 ()
A B. C. D.
7.若过点 可以作曲线 的两条切线,则()
A. B.
C. D.
8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()
D.当 最大时,
12.在正三棱柱 中, ,点 满足 ,其中 , ,则()
A. 当 时, 的周长为定值
B. 当 时,三棱锥 的体积为定值
C. 当 时,有且仅有一个点 ,使得
D. 当 时,有且仅有一个点 ,使得 平面
三、填空题:本题共4小题,每小题5分,共20分.
13.已知函数 是偶函数,则 ______.
(1)若小明先回答A类问题,记 为小明的累计得分,求 的分布列;
(2)为使累计得分 期望最大,小明应选择先回答哪类问题?并说明理由.
19.记 是内角 , , 的对边分别为 , , .已知 ,点 在边 上, .
(1)证明: ;
(2)若 ,求 .
20.如图,在三棱锥 中,平面 平面 , , 为 的中点.
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 , ,则 ()
A. B. C. D.
2.已知 ,则 ()
A. B. C. D.
3.已知圆锥的底面半径为 ,其侧面展开图为一个半圆,则该圆锥的母线长为()
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知数列 满足 ,
(1)记 ,写出 , ,并求数列 的通项公式;
(2)求 的前20项和.
18.某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.