2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

合集下载

2023年新高考数学一轮复习5-4 三角恒等变换(知识点讲解)含详解

2023年新高考数学一轮复习5-4 三角恒等变换(知识点讲解)含详解

专题5.4 三角恒等变换(知识点讲解)【知识框架】【核心素养】1.结合拆角、配角方法,将两角和与差的正弦、余弦、正切公式及二倍角公式等相结合,考查三角函数式的化简求值或求角问题,凸显逻辑推理、数学运算的核心素养.2.与三角函数的性质相结合考查三角恒等变换的应用,凸显逻辑推理、数学运算的核心素养.【知识点展示】(一)两角和与差的正弦、余弦、正切公式 1.C (α-β):cos(α-β)=cos αcos β+sin αsin β; C (α+β):cos(α+β)=cos αcos_β-sin_αsin β; S (α+β):sin(α+β)=sin αcos β+cos αsin β; S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, 3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式 1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式 1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=⎝⎛⎭⎫sin α2+cos α22; 1-sin α=⎝⎛⎭⎫sin α2-cos α22. (3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2 1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2 (4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【常考题型剖析】题型一:两角和与差的三角函数公式例1.(2015·全国·高考真题(理))(2015新课标全国Ⅰ理科)o o o o sin 20cos10cos160sin10-=A .BC .12-D .12例2.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-例3.(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B .3C .23D .2例4.(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2 B .–1C .1D .2【规律方法】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系. (2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式. 题型二:利用“角的变换”求值例5. (2019·全国·高考真题(文))tan255°=( )A .-2B .-C .2D .例6.(2015·重庆·高考真题(文))若11tan ,tan()32ααβ=+=,则tan =β( )A .17B .16C .57D .56例7.(2018·浙江·高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【总结提升】1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等题型三:二倍(半)角公式例8.(2021·全国·高考真题(文))22π5πcoscos 1212-=( )A .12B C D 例9.(2021·全国·高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 10.(2021·全国·高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简. 题型四:三角恒等变换应用---求值 例11.(2015·四川·高考真题(理))_______.例12.(2018·全国·高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.例13.(2022·上海·高考真题)已知tan 3α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为_________.例14.(2023·全国·高三专题练习)已知角α为锐角,2πβαπ<-<,且满足1tan 23=α,()sin βα-=(1)证明:04πα<<;(2)求β. 【规律方法】三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正、余弦函数值,若角的范围是⎝⎛⎭⎫0,π2,选正、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是⎝⎛⎭⎫-π2,π2,选正弦函数. 题型五:三角恒等变换应用---化简例15.【多选题】(2020·营口市第二高级中学高一期末)化简下式,与tan α相等的是( )A B 1,(0,π)cos αα∈C .1cos2sin 2αα-D .sin 21cos 2αα-【规律方法】1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式. (2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”. (3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等. 2.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.题型六:三角恒等变换应用---研究三角函数的图像和性质例16.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( ) A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增例17. (2021·北京·高考真题)函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为98例18.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例19.【多选题】(2022·湖北·黄冈中学二模)设函数sin 22sin ()cos x xf x x-=,则( )A .()f x 在ππ,22⎛⎫- ⎪⎝⎭上有且仅有1个零点B .()f x 的最小正周期为πC .()f x 在ππ,22⎛⎫- ⎪⎝⎭上单调递减D .()f x 在π3π,22⎛⎫⎪⎝⎭上单调递减例20.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【规律方法】1.三角恒等变换在研究三角函数图象和性质中的应用先根据和角公式、辅助角公式、倍角公式等,把函数表达式变为正弦型函数y =A sin(ωx +φ)+b 的形式. 2.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 3.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).4.如何判断函数的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数的奇偶性,常见的结论如下:(1)若为偶函数,则有;若为奇函数则有;(2)若为偶函数,则有;若为奇函数则有;(3)若为奇函数则有. 5.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .()f x ωϕ+()f x ωϕ+sin()y A x ωϕ=+()2k k Z πϕπ=+∈()k k Z ϕπ=∈cos()y A x ωϕ=+()k k Z ϕπ=∈()2k k Z πϕπ=+∈tan()y A x ωϕ=+()k k Z ϕπ=∈专题5.4 三角恒等变换(知识点讲解)【知识框架】【核心素养】1.结合拆角、配角方法,将两角和与差的正弦、余弦、正切公式及二倍角公式等相结合,考查三角函数式的化简求值或求角问题,凸显逻辑推理、数学运算的核心素养.2.与三角函数的性质相结合考查三角恒等变换的应用,凸显逻辑推理、数学运算的核心素养.【知识点展示】(一)两角和与差的正弦、余弦、正切公式 1.C (α-β):cos(α-β)=cos αcos β+sin αsin β; C (α+β):cos(α+β)=cos αcos_β-sin_αsin β; S (α+β):sin(α+β)=sin αcos β+cos αsin β; S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, 3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式 1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式 1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=⎝⎛⎭⎫sin α2+cos α22; 1-sin α=⎝⎛⎭⎫sin α2-cos α22. (3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2 1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2 (4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【常考题型剖析】题型一:两角和与差的三角函数公式例1.(2015·全国·高考真题(理))(2015新课标全国Ⅰ理科)o o o o sin 20cos10cos160sin10-=A .BC .12-D .12【答案】D 【解析】 【详解】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D.例2.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-【答案】C 【解析】 【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=, 所以()tan 1αβ-=-, 故选:C例3.(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B .3C .23D .2【答案】B 【解析】由题意可得:1sin sin cos 122θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:sin coscos sin66ππθθ+=,即sin 63πθ⎛⎫+= ⎪⎝⎭. 故选:B.例4.(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2 B .–1C .1D .2【答案】D 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D. 【规律方法】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式. 题型二:利用“角的变换”求值例5. (2019·全国·高考真题(文))tan255°=( ) A .-2B .-C .2D .【答案】D 【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查. 【详解】详解:000000tan 255tan(18075)tan 75tan(4530)=+==+=0001tan 45tan 3021tan 45tan 30++==- 例6.(2015·重庆·高考真题(文))若11tan ,tan()32ααβ=+=,则tan =β( )A .17B .16C .57D .56【答案】A 【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A. 例7.(2018·浙江·高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】 【分析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果. 【详解】详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-,所以()4sin πsin 5αα+=-=.(Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±.由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 【总结提升】1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等 题型三:二倍(半)角公式例8.(2021·全国·高考真题(文))22π5πcos cos 1212-=( )A .12B C D 【答案】D 【解析】 【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解. 【详解】 由题意,2222225cos cos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D.例9.(2021·全国·高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 【答案】A 【解析】 【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】 cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==. 故选:A.例10.(2021·全国·高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】 【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C . 【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简. 题型四:三角恒等变换应用---求值 例11.(2015·四川·高考真题(理))_______.【解析】 【详解】法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=. 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==.法三、6sin15sin 754-+==例12.(2018·全国·高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 【答案】12-【解析】【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为例13.(2022·上海·高考真题)已知tan 3α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为_________.【答案】2- 【解析】 【分析】利用两角和的正切公式可求出tan 4πα⎛⎫+ ⎪⎝⎭的值.【详解】由两角和的正切公式得tan tan314tan 241311tan tan 4παπαπα++⎛⎫+===- ⎪-⨯⎝⎭-. 故答案为2-.例14.(2023·全国·高三专题练习)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.【答案】(1)证明见解析 (2)3.4πβ=【解析】 【分析】(1)根据二倍角的正切公式计算可得tan tan 4πα<即可证明;(2)根据同角三角函数的关系可得3sin 5α=,4cos 5α=,再根据两角和差的正弦公式,结合()sin sin βαβα⎡⎤=+-⎣⎦求解即可 (1)证明:因为1tan23α=, 所以2122tan332tan 1tan 1441tan 129απαα⨯===<=--, 因为α为锐角且函数tan y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1ααααα⎧==⎪⎨⎪+=⎩,结合角α为锐角,解得3sin 5α=,4cos 5α=, 因为2πβαπ<-<,且()sin βα-=所以()cos 10βα-==-. ()()()sin sin sin cos cos sin βαβααβααβα⎡⎤=+-=-+-⎣⎦345105102⎛=⨯-+⨯= ⎝⎭5224πππαβπα<+<<+<, 所以3.4πβ=【规律方法】三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正、余弦函数值,若角的范围是⎝⎛⎭⎫0,π2,选正、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是⎝⎛⎭⎫-π2,π2,选正弦函数. 题型五:三角恒等变换应用---化简例15.【多选题】(2020·营口市第二高级中学高一期末)化简下式,与tan α相等的是( ) AB1,(0,π)cos αα∈C .1cos2sin 2αα-D .sin 21cos 2αα-【答案】BC 【解析】对于Atan α====,由1cos 201cos 2αα-≥+解得1cos21α-<≤,即()22k k Z αππ≠+∈,解得()2k k Z παπ≠+∈,故A 错误;对于B :因为(0,π)α∈所以111tan cos cos cos n s si sin cos co αααααααα=====, 故B 正确;对于C :21cos 22sin sin tan sin 22sin cos cos αααααααα-===对于D :2sin 22sin cos cos tan 1cos 22sin sin αααααααα==≠-故选:BC 【规律方法】1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式. (2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”. (3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.2.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.题型六:三角恒等变换应用---研究三角函数的图像和性质例16.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( ) A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增【答案】C 【解析】 【分析】化简得出()cos2f x x =,利用余弦型函数的单调性逐项判断可得出合适的选项. 【详解】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错; 对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错. 故选:C.例17. (2021·北京·高考真题)函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为98【答案】D 【解析】 【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D.例18.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 解:y =cos (2x 2π+)=﹣sin2x ,是奇函数,函数的周期为:π,满足题意,所以A 正确y =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y=sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cos x =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例19.【多选题】(2022·湖北·黄冈中学二模)设函数sin 22sin ()cos x xf x x-=,则( )A .()f x 在ππ,22⎛⎫- ⎪⎝⎭上有且仅有1个零点B .()f x 的最小正周期为πC .()f x 在ππ,22⎛⎫- ⎪⎝⎭上单调递减D .()f x 在π3π,22⎛⎫⎪⎝⎭上单调递减【答案】ACD 【解析】 【分析】由正弦二倍角公式可得2sin (cos 1)()cos x x f x x -=,令2sin (cos 1)()0cos x x f x x-==,可知x k π=或2x k =π,k ∈Z ,由此即可判断A 是否正确;根据正弦函数和正切函数的最小正周期即可判断B 是否正确;对函数()f x 求导,可得()()322cos 1cos x f x x-'=,易知'()0f x ≤,由此即可判断C 、D 是否正确.【详解】由正弦二倍角公式可得,sin 22sin cos x x x =, ∵sin 22sin 2sin (cos 1)()0cos cos x x x x f x x x--===,∴sin 0x =或cos 1x =, ∴πx k =或2x k =π,k ∈Z ,∵ππ,22x ⎛⎫∈- ⎪⎝⎭,∴当且仅当0k =时,即0x =时,满足()0f x =,∴()f x 在2π,2π⎛⎫- ⎪⎝⎭上有且只有一个零点,满足题意,则A 正确;由于()2sin 2tan f x x x =-,且sin x 的最小正周期为2π,tan x 的最小正周期为π, ∴()f x 的最小正周期为2π,故B 错误,()2sin 2tan f x x x =-,则()()32222cos 12cos (sin )sin 2cos (cos )cos x x x x f x x x x⎡⎤---⋅⎣⎦'=-=,∵3cos 10x -≤,∴()0f x '≤,∴()f x 在每个连续区间上都单调递减,则C 、D 正确,故选:ACD.例20.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y f x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期; (2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)1 【解析】【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 24y x π⎛⎫=- ⎪⎝⎭,再由三角函数的图象与性质即可得解.【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,则2223332sin 1cos 21sin 22442y f x x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos cos 22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 224x x x x x π-⎛⎫=- ⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值1. 【规律方法】1.三角恒等变换在研究三角函数图象和性质中的应用先根据和角公式、辅助角公式、倍角公式等,把函数表达式变为正弦型函数y =A sin(ωx +φ)+b 的形式.2.求三角函数周期的常用方法(1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|; ②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|. (2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2; ②对称中心到对称轴距离的最小值等于T 4; ③两个最大(小)值点之差的最小值等于T .3.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z ); (2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ). 4.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈.5.求对称轴方程(对称中心坐标)的方法 (1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx +φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k ∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .。

2023版高考数学一轮总复习第三章三角函数解三角形第四讲简单的三角恒等变换课件

2023版高考数学一轮总复习第三章三角函数解三角形第四讲简单的三角恒等变换课件
答案:21cos 2x
2.当
π
<α<2π
1+sin 时,化简:
α+cos αsin α2-cos 2+2cos α
α 2
=________.
解析:原式=2cos2α2+2sin
α 2cos
α2sin
α2-cos
α 2=
4cos2α2
2cos
α2cos
α2+sin α2sin
2cos
α 2
α2-cos
β)=-1,∴sin(α+β)=-21.
答案:-12
3.(考向 3)若 sin 2α= 55,sin(β-α)= 1100,且 α∈π4,π,
β∈π,32π,则 α+β 的值是(
)


A. 4
B. 4
C.54π或74π
D.54π或94π
解析:因为 α∈π4,π,且 0<sin 2α= 55<12,所以 2α∈56π,π,所以 α∈51π2,π2,cos 2α=- 1-sin22α= -2 5 5.因为 β∈π,32π,所以 β-α∈π2,1132π,又 sin(β- α)= 1100>0,所以 β-α∈π2,π,所以 cos(β-α)= - 1-sin2β-α=-31010.所以 cos(α+β)=cos [2α+(β-
∵tan β=-17<0, ∴π2<β<π,-π<2α-β<0, ∴2α-β=-34π. 答案:-34π
【题后反思】三角函数式求值的三种题型 (1)给角求值:该类问题中给出的角一般都不是特殊 角,需要通过三角恒等变换将其变为特殊角,或者能够正 负相消,或者能够约分相消,最后得到具体的值. (2)给值求值:一般是给出某些角的三角函数值,求另 外一些角的三角函数值,解题的关键在于“变角”,使相 关角相同或具有某种关系.

旧教材适用2023高考数学一轮总复习第四章三角函数解三角形第7讲解三角形的应用举例课件

旧教材适用2023高考数学一轮总复习第四章三角函数解三角形第7讲解三角形的应用举例课件

距离问题的解题思路 这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余 弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化 为三角形问题去求解. 注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰 当.
5.甲船在 A 处发现乙船在北偏东 60°的 B 处,乙船正以 a n mile/h 的 速度向北行驶.已知甲船的速度是 3a n mile/h,则甲船应沿着 北偏东 30°方 向前进,才能最快与乙船相遇.
解析 如图,设经过 t h 两船在 C 点相遇,则在△ABC 中,BC=at,AC

3 at , B = 180 ° - 60°= 120°, 由 sin
() A.北偏东 10°方向上
B.北偏西 10°方向上
C.南偏东 10°方向上 D.南偏西 10°方向上
答案 B
解析 A,B,C 的位置如图所示.由题可知∠ACB=180°-40°-60
180°-80°
°=80°,∵AC=BC,∴∠ABC=
2
=50°,∴∠ABD=60°-
50°=10°.∴灯塔 A 在灯塔 B 的北偏西 10°方向上.故选 B.
2.如图所示,在山底 A 处测得山顶 B 的仰角∠CAB=45°,沿倾斜角为 30°的山坡向山顶走 1000 m 到达 S 点,又测得山顶的仰角∠DSB=75°, 则山高 BC 为( )
A.500 2 m C.1000 2 m 答案 D
B.200 m D.1000 m
解析 ∵∠SAB=45°-30°=15°,∠SBA=∠ABC-∠SBC=45°-
C 分别位于一个三角形的三个顶点处,其中门店 A,B 与门店 C 都相距 a km,
而门店 A 位于门店 C 的北偏东 50°方向上,门店 B 位于门店 C 的北偏西 70

2023届高考数学一轮复习讲义:第29讲 解三角形应用举例及综合问题

2023届高考数学一轮复习讲义:第29讲 解三角形应用举例及综合问题

第29讲解三角形应用举例及综合问题1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.➢考点1 解三角形应用举例[名师点睛]1.距离问题的类型及解法(1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.2.高度问题的类型及解法(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.3.角度问题的类型及解法(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.[典例]1.(2022·湖北·华中师大一附中模拟预测)为了测量一个不规则公园,C D两点之间的距离,如图,在东西方向上选取相距1km的,A B两点,点B在点A的正东方向上,A B C D四点在同一水平面上.从点A处观测得点C在它的东北方向上,点D在且,,,它的西北方向上;从点B处观测得点C在它的北偏东15 方向上,点D在它的北偏西75方向上,则,C D之间的距离为______km.2.(2021·全国甲卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m).三角高程测量法是珠峰高程测量方法之一,如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A′,B′,C′满足∠A′C′B′=45°,∠A′B′C′=60°.由C点测得B点的仰角为15°,BB′与CC′的差为100;由B点测得A点的仰角为45°,则A,C两点到水平面A′B′C′的高度差AA′-CC′约为(3≈1.732)() A.346 B.373 C.446 D.4733.(2022·全国·高三专题练习)公路北侧有一幢楼,高为60米,公路与楼脚底面在同一平面上.一人在公路上向东行走,在点A处测得楼顶的仰角为45°,行走80米到点B处,测得仰角为30°,再行走80米到点C处,测得仰角为θ.则tanθ=______________.[举一反三]1.(2022·山东师范大学附中模拟预测)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.一个数学学习兴趣小组研究发现,书中提供的测量方法甚是巧妙,可以回避现代测量器械的应用.现该兴趣小组沿用古法测量一山体高度,如图点E、H、G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,记为h,EG为测量标杆问的距离,记为d,GC、EH分别记为,a b,则该山体的高AB=()A.hdha b+-B.hdha b--C.hdda b+-D.hdda b--2.(2022·江苏南通·高三期末)某校数学建模社团学生为了测量该校操场旗杆的高AB,先在旗杆底端的正西方点C处测得杆顶的仰角为45°,然后从点C处沿南偏东30°方向前进20m 到达点D处,在D处测得杆顶的仰角为30°,则旗杆的高为()A.20m B.10m C.103D 103m3.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A和临秀亭()B两个标志性景点,如图.若为测量隔湖相望的A、B两地之间的距离,某同学任意选定了与A、B不共线的C处,构成ABC,以下是测量数据的不同方案:①测量A∠、AC、BC;②测量A∠、B、BC;③测量C∠、AC、BC;④测量A∠、C∠、B.其中一定能唯一确定A、B两地之间的距离的所有方案的序号是_____________.4.(2022·辽宁·大连市一0三中学模拟预测)如图所示,遥感卫星发现海面上有三个小岛,小岛 B 位于小岛A 北偏东75距离60海里处,小岛B 北偏东15距离30330-海里处有一个小岛 C .(1)求小岛A 到小岛C 的距离;(2)如果有游客想直接从小岛A 出发到小岛 C ,求游船航行的方向.5.(2022·广东·高三开学考试)如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得30BCD ∠=︒,135BDC ∠=︒,50CD =米,在点C 测得塔顶A 的仰角为45°,求塔高AB .➢考点2 求解平面几何问题1. (2021·新高考八省联考)在四边形ABCD 中,AB ∥CD ,AD =BD =CD =1. (1)若AB =32,求BC ;(2)若AB =2BC ,求cos ∠BDC .2.(2022·湖北·襄阳四中模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D . (1)证明:AB DBAC DC=,2AD AB AC DB DC =⋅-⋅; (2)若1AD =,23A π=,求DB DC ⋅的最小值.[举一反三]1.(2022·山东·济南市历城第二中学模拟预测)如图,已知在ABC 中,M 为BC 上一点,2AB AC BC =≤,π0,2B ⎛⎫∈ ⎪⎝⎭且15sin 8B =.(1)若AM BM =,求ACAM的值; (2)若AM 为BAC ∠的平分线,且1AC =,求ACM △的面积.2.(2022·福建省福州第一中学三模)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,sinsin 2A Bb c B +=. (1)求角C ;(2)若AB 边上的高线长为23ABC 面积的最小值.3.(2022·山东师范大学附中模拟预测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________. (1)求角B ;(2)若a c +=D 是AC 的中点,求线段BD 的取值范围.➢考点3 三角函数与解三角形的交汇问题(2022·浙江省新昌中学模拟预测)已知函数21()cos sin 2f x x x x ωωω=-+,其中0>ω,若实数12,x x 满足()()122f x f x -=时,12x x -的最小值为2π.(1)求ω的值及()f x 的对称中心;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=ABC 周长的取值范围.[举一反三]1.(2022·浙江湖州·模拟预测)已知函数()sin(),0,0,02f x A x x R A πωϕωϕ⎛⎫=+∈>><< ⎪⎝⎭的部分图像如图所示.(1)求()f x 的解析式;(2)在锐角ABC 中,若边1BC =,且3212A f π⎛⎫-= ⎪⎝⎭ABC 周长的最大值.2.(2022·山东淄博·三模)已知函数21()3cos cos (0)2f x x x x ωωωω=-+>,其图像上相2π44+(1)求函数()f x 的解析式;(2)记ABC 的内角,,A B C 的对边分别为,,a b c ,4a =,12bc =,()1f A =.若角A 的平分线AD 交BC 于D ,求AD 的长第29讲解三角形应用举例及综合问题1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.➢考点1 解三角形应用举例[名师点睛]1.距离问题的类型及解法(1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.2.高度问题的类型及解法(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.3.角度问题的类型及解法(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.1.(2022·湖北·华中师大一附中模拟预测)为了测量一个不规则公园,C D两点之间的距离,A B C D四点如图,在东西方向上选取相距1km的,A B两点,点B在点A的正东方向上,且,,,在同一水平面上.从点A处观测得点C在它的东北方向上,点D在它的西北方向上;从点B处观测得点C在它的北偏东15 方向上,点D在它的北偏西75方向上,则,C D之间的距离为______km.【答案】2【分析】由题意确定相应的各角的度数,在ABC中,由正弦定理求得BC,△,求得答案.同理再求出DB,解DBC【详解】由题意可知,904545,9045135,9015105CAB DAB CBA ∠=-=∠=+=∠=+=,157590,15CDB DBA ∠=+=∠= ,故在ABC 中,1804510530ACB ∠=--=, 故sin sin BD AB DAB ADB =∠∠ ,1sin 452sin 30BC ⨯==,在ABD △中,1801513530ADB ∠=--=, 故sin sin BC AB CAB ACB =∠∠ ,1sin1352sin 30BD ⨯==,所以在DBC △中,90CBD ∠=,则22222CD BC DB =+=+= ,故答案为:2 2. (2021·全国甲卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m).三角高程测量法是珠峰高程测量方法之一,如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ′,B ′,C ′满足∠A ′C ′B ′=45°,∠A ′B ′C ′=60°.由C 点测得B 点的仰角为15°,BB ′与CC ′的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A ′B ′C ′的高度差AA ′-CC ′约为(3≈1.732)( ) A.346 B.373C.446D.473答案 B解析 如图所示,根据题意过C 作CE ∥C ′B ′,交BB ′于E ,过B 作BD ∥A ′B ′,交AA ′于D ,则BE =100,C ′B ′=CE =100tan 15°.在△A ′C ′B ′中,∠C ′A ′B ′=180°-∠A ′C ′B ′-∠A ′B ′C ′=75°, 则BD =A ′B ′=C ′B ′·sin 45°sin 75°,又在B 点处测得A 点的仰角为45°,所以AD =BD =C ′B ′·sin 45°sin 75°,所以高度差AA ′-CC ′=AD +BE=C ′B ′·sin 45°sin 75°+100=100tan 15°·sin 45°sin 75°+100=100sin 45°sin 15°+100=100×2222×⎝⎛⎭⎫32-12+100=100(3+1)+100≈373.3.(2022·全国·高三专题练习)公路北侧有一幢楼,高为60米,公路与楼脚底面在同一平面上.一人在公路上向东行走,在点A 处测得楼顶的仰角为45°,行走80米到点B 处,测得仰角为30°,再行走80米到点C 处,测得仰角为θ.则tan θ=______________. 【答案】37777【解析】首先得到60,603OA OB ==,然后由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠,2222cos OC BC OB BC OB OBC =+-⋅∠,然后求出OC 即可【详解】如图,O 为楼脚,OP 为楼高,则60OP =,易得:60,603OA OB ==. 由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠, 2222cos OC BC OB BC OB OBC =+-⋅∠,两式相加得:()22222230800OA OC AB OB OC +=+⇒=,则2077OC =,故60377tan 772077θ==.故答案为:37777 [举一反三]1.(2022·山东师范大学附中模拟预测)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.一个数学学习兴趣小组研究发现,书中提供的测量方法甚是巧妙,可以回避现代测量器械的应用.现该兴趣小组沿用古法测量一山体高度,如图点E 、H 、G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,记为h ,EG 为测量标杆问的距离,记为d ,GC 、EH 分别记为,a b ,则该山体的高AB =( )A .hdh a b+- B .hdh a b-- C .hdd a b+- D .hdd a b-- 【答案】A 【分析】根据所给数据,利用解直角三角形先求出BM ,即可得解. 【详解】连接FD ,并延长交AB 于M 点,如图,因为在Rt BMD △中tan h BDM b∠=, 所以||||||tan BM BM b MD BDM h ==∠;又因为在Rt BMF △中tan hBFM a ∠=,所以||||||tan BM BM a MF BFM h ==∠,所以||||||||BM a BM bMF MD d h h-=-=, 所以||hd BM a b =-,即||hdAB BM h h a b=+=+-,故选:A . 2.(2022·江苏南通·高三期末)某校数学建模社团学生为了测量该校操场旗杆的高AB ,先在旗杆底端的正西方点C 处测得杆顶的仰角为45°,然后从点C 处沿南偏东30°方向前进20m 到达点D 处,在D 处测得杆顶的仰角为30°,则旗杆的高为( ) A .20m B .10m C .103D 103【答案】B 【分析】根据条件确定相关各角的度数,表示出AB ,,AD AC 等边的长度,然后在ACD △中用余弦定理即可解得答案. 【详解】如图示,AB 表示旗杆,由题意可知:45,0,630ACB ACD ADB ∠=∠=∠=︒︒︒, 所以设AB x = ,则3,AD x AC x ==,在ACD △ 中,2222cos AD AC CD AC CD ACD =+-⨯⨯⨯∠ ,即2221(3)()(20)2202x x x =+-⨯⨯⨯ ,解得10x = ,(20x =-舍去),故选:B.3.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案:①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ;④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________. 【答案】②③【分析】利用正弦定理可判断①②,利用余弦定理可判断③,根据已知条件可判断④不满足条件.【详解】对于①,由正弦定理可得sin sin AC BCB A=,则sin sin AC A B BC =,若AC BC >且A ∠为锐角,则sin sin sin AC AB A AB=>,此时B 有两解, 则C ∠也有两解,此时AB 也有两解;对于②,若已知A ∠、B ,则C ∠确定,由正弦定理sin sin BC ABA C=可知AB 唯一确定; 对于③,若已知C ∠、AC 、BC ,由余弦定理可得222cos AB AC BC AC BC C +-⋅, 则AB 唯一确定;对于④,若已知A ∠、C ∠、B ,则AB 不确定.故答案为:②③.4.(2022·辽宁·大连市一0三中学模拟预测)如图所示,遥感卫星发现海面上有三个小岛,小岛 B 位于小岛A 北偏东75距离60海里处,小岛B 北偏东15距离30330海里处有一个小岛 C .(1)求小岛A 到小岛C 的距离;(2)如果有游客想直接从小岛A 出发到小岛 C ,求游船航行的方向. 解:(1)在ABC 中,6030330,==AB BC 1807515120ABC ∠=-+=,根据余弦定理得:. 2222cos AC AB BC AB BC ABC =+-⋅⋅∠2260(30330)260(30330)cos1205400=+-⨯⨯⋅=6=AC 所以小岛A 到小岛 C 的最短距离是6.(2)根据正弦定理得:sin sin AC ABABC ACB=∠∠30660120sin ACB=∠ 解得2sin ACB ∠=在ABC ∆中,,<BC AC ACB ∴∠为锐角45ACB ∴∠=1801204515CAB ∴∠=--=.由751560-=得游船应该沿北偏东60的方向航行答:小岛A 到小岛 C 的最短距离是6;游船应该沿北偏东60的方向航行.5.(2022·广东·高三开学考试)如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得30BCD ∠=︒,135BDC ∠=︒,50CD =米,在点C 测得塔顶A 的仰角为45°,求塔高AB .【解】在BCD △中,1801803013515CBD BCD BDC ∠=︒-∠-∠=︒-︒-︒=︒, ∵()sin sin15sin 4530CBD ∠=︒=︒-︒sin 45cos30cos45sin30=︒︒-︒︒624-=, 由正弦定理sin sin BC CDBDC CBD=∠∠得()sin 50sin1355031sin 624CD BDC BC CBD ⋅∠︒===+∠-.在Rt ABC △中45ACB ∠=︒.∴()5031AB BC ==+.所以塔高AB 为()5031+米.➢考点2 求解平面几何问题[名师点睛]平面几何中解三角形问题的求解思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果. [典例]1. (2021·新高考八省联考)在四边形ABCD 中,AB ∥CD ,AD =BD =CD =1. (1)若AB =32,求BC ;(2)若AB =2BC ,求cos ∠BDC .解 (1)如图所示,在△ABD 中,由余弦定理可知,cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =⎝⎛⎭⎫322+12-122×32×1=34.∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD =34.在△BCD 中,由余弦定理可得,BC 2=BD 2+CD 2-2BD ·CD cos ∠BDC =12+12-2×1×1×34,∴BC =22.(2)设BC =x ,则AB =2BC =2x .由余弦定理可知, cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =(2x )2+12-122×2x ×1=x ,①cos ∠BDC =CD 2+BD 2-BC 22CD ·BD =12+12-x 22×1×1=2-x 22.②∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD .联立①②,可得2-x 22=x ,整理得x 2+2x -2=0,解得x 1=3-1,x 2=-3-1(舍去).将x 1=3-1代入②,解得cos ∠BDC =3-1.2.(2022·湖北·襄阳四中模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D . (1)证明:AB DBAC DC=,2AD AB AC DB DC =⋅-⋅; (2)若1AD =,23A π=,求DB DC ⋅的最小值. 解:(1)在ABD △和BCD △中,可得BAD CAD ∠=∠,ADB ADC π∠+∠=, 所以sin sin BAD CAD ∠=∠,sin sin ADB ADC ∠=∠, 由正弦定理,得sin sin AB BDADB BAD =∠∠,sin sin AC DC ADC CAD=∠∠,两式相除得AB DB AC DC =,可得ABBD BC AB AC=+,AC DC BC AB AC =+, 又由cos cos ABD ABC ∠=∠,根据余弦定理得22222222AB BD AD AB BC AC AB BD AB BC+-+-=⋅⋅ 所以()()22222222BD DC BDAD AB BD AB BC AC AB AC BD BC BD BC BC BC=+-+-=+-- 代入可得222AC ABAD AB AC BD DC AB AC AB AC=+-⋅++ABAC AB AC BD DC AB AC BD DC AB AC AB AC ⎛⎫=⋅+-⋅=⋅-⋅ ⎪++⎝⎭.(2)由1AD =,23A π=及ABD ACD ABC S S S +=△△△,可得b c bc += 根据基本不等式得bc b c =+≥,解得4bc ≥,当且仅当2b c ==时等号成立, 又由1AD =,2AD AB AC DB DC =⋅-⋅,可得13DB DC bc ⋅=-≥, 所以DB DC ⋅的最小值是3.[举一反三]1.(2022·山东·济南市历城第二中学模拟预测)如图,已知在ABC 中,M 为BC 上一点,2AB AC BC =≤,π0,2B ⎛⎫∈ ⎪⎝⎭且15sin 8B =.(1)若AM BM =,求ACAM的值; (2)若AM 为BAC ∠的平分线,且1AC =,求ACM △的面积. 解:(1)因为15sin B =,π0,2B ⎛⎫∈ ⎪⎝⎭,所以27cos 1sin 8B B =-=,因为2AB AC =,所以由正弦定理知sin 2sin C ABB AC==,即sin 2sin C B =,因为AM BM =,所以2AMC B ∠=∠,sin sin 22sin cos AMC B B B ∠==,在AMC 中,sin 2sin cos 7cos sin 2sin 8AC AMC B B B AM C B ∠====. (2)由题意知22AB AC ==,设BC x =,由余弦定理得222217cos 48x B x +-==,解得2BC =或32BC =.因为2AC BC ≤,所以2BC =,因为AM 为BAC ∠的平分线,BAM CAM ∠=∠所以11sin 2211sin 22ABM ACMAB AM BAM BM hS SAC AM CAM CM h⋅∠⨯==⋅∠⨯(h 为底边BC 的高)所以2BM AB CM AC ==,故1233CM BC ==,而由(1)知15sin 2sin C B ==1121515sin 1223ACM S AC CM C =⋅⋅=⨯⨯=△ 2.(2022·福建省福州第一中学三模)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,sinsin 2A Bb c B +=. (1)求角C ;(2)若AB 边上的高线长为23ABC 面积的最小值. 解:(1)由已知A B C π++=,所以sin sin cos 222A B C Cb b b π+-==, 所以cossin 2C b c B =,由正弦定理得sin cos sin sin 2CB C B =,因为B 、()0,C π∈,则sin 0B >,022C π<<,cos 02C>,所以,cos sin 2C C =,则cos 2sin cos 222C C C =,所以1sin 22C =,所以26C π=,则3C π=.(2)由11sin 22ABCSc ab C =⋅=,得4ab c =, 由余弦定理222222cos 2c a b ab C a b ab ab ab ab =+-=+-≥-=, 即24c c ≥,因为0c >,则4c ≥,当且仅当4a b c ===取等号,此时ABC 面积的最小值为3.(2022·山东师范大学附中模拟预测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________. (1)求角B ;(2)若a c +=D 是AC 的中点,求线段BD 的取值范围.解:(1)选①,由2sin cos sin b C B c B =+及正弦定理可得2sin sin cos sin sin B C C B C B +,所以,sin sin cos C B C B ,因为B 、()0,C π∈,所以,sin 0C >,则sin 0B B =>,所以,tan B =3B π∴=;选②,由cos cos 2B bC a c=-及正弦定理可得()sin cos 2sin sin cos B C A C B =-, 所以,()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=, A 、()0,B π∈,sin 0A ∴>,所以,1cos 2B =,则3B π=.(2)因为a c +=0a <<由已知AD DC =,即BD BA BC BD -=-,所以,2BD BA BC =+, 所以,()222242BD BA BCBA BC BA BC =+=++⋅,即())22222242cos33BD c a ac c a ac a c ac aa π=++=++=+-=-22993,344a a ⎛⎡⎫=+=+∈ ⎪⎢ ⎣⎭⎝⎭,所以,34BD ≤<➢考点3 三角函数与解三角形的交汇问题(2022·浙江省新昌中学模拟预测)已知函数21()cos sin 2f x x x x ωωω=-+,其中0>ω,若实数12,x x 满足()()122f x f x -=时,12x x -的最小值为2π.(1)求ω的值及()f x 的对称中心;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C的对边,若()1,f A a =-=ABC 周长的取值范围. 解:(1)211cos 21()cos sin 2222x f x x x x x ωωωωω-=-+=-+12cos 2sin 226x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 显然()f x 的最大值为1,最小值为1-,则()()122f x f x -=时,12x x -的最小值等于2T,则22T π=,则22ππω=,1ω=;令2,6x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,则()f x 的对称中心为,0,122k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)()sin(2)16f A A π=+=-,22,62A k k πππ+=-+∈Z ,又()0,A π∈,则23A π=,由正弦定理得2sin sin sina b cA B C====,则2sin ,2sin b B c C ==, 则周长为2sin2sin 2sin 2sin 3a b c B CB B π⎛⎫++=+=+- ⎪⎝⎭sin 2sin()3B B B π==+,又03B π<<,则2333B πππ<+<,2sin()23B π+≤,故周长的取值范围为(.[举一反三]1.(2022·浙江湖州·模拟预测)已知函数()sin(),0,0,02f x A x x R A πωϕωϕ⎛⎫=+∈>><< ⎪⎝⎭的部分图像如图所示.(1)求()f x 的解析式;(2)在锐角ABC 中,若边1BC =,且3212A f π⎛⎫-= ⎪⎝⎭ABC 周长的最大值. 解:(1)由图得2A =,32ππ3π43124T ⎛⎫=--= ⎪⎝⎭,又2πT ω=,所以2ω=, 将点π,012⎛⎫- ⎪⎝⎭代入()2sin(2)f x x ϕ=+,得πsin 06ϕ⎛⎫-+= ⎪⎝⎭,即π,6k k Z ϕπ=+∈, 考虑到π02ϕ<<,故π6ϕ=,即()f x 的解析式为π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭ (2)由π3212A f ⎛⎫-= ⎪⎝⎭3sin A =π0,2A ⎛⎫∈ ⎪⎝⎭,故π3A =, 因为ABC 为锐角三角形,且π3A =,故ππ,62B ⎛⎫∈ ⎪⎝⎭由正弦定理,得sin sin sin 3a b c A B C ==所以2π1sin )1sin sin 333a b c B C B B ⎤⎛⎫++=+=+- ⎪⎥⎝⎭⎦ 31π12sin cos 12sin 26B B B ⎛⎫⎛⎫=++⋅=++ ⎪ ⎪⎝⎭⎝⎭ 又ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,故π2sin (3,2]6B ⎛⎫+∈ ⎪⎝⎭,故ABC 周长的最大值为3. 2.(2022·山东淄博·三模)已知函数21()3cos cos (0)2f x x x x ωωωω=-+>,其图像上相2π44+ (1)求函数()f x 的解析式;(2)记ABC 的内角,,A B C 的对边分别为,,a b c ,4a =,12bc =,()1f A =.若角A 的平分线AD 交BC 于D ,求AD 的长.解:(1)因为()211cos cos 2cos 222f x x x x x x ωωωωω=-+=-πsin 26x ω⎛⎫=- ⎪⎝⎭, 设函数()f x 的周期为T ,由题意222444πT ⎛⎫+=⎪+ ⎝⎭,即2224ππω⎛⎫= ⎪⎝⎭,解得1ω=, 所以()πsin 26f x x ⎛⎫=- ⎪⎝⎭. (2)由()1f A =得:sin 216A π⎛⎫-= ⎪⎝⎭,即22,Z 62A k k πππ-=+∈,解得,Z 3A k k ππ=+∈, 因为[0,]A π∈,所以π3A =,因为A 的平分线AD 交BC 于D ,所以ABC ABD ACD S S S =+,即111sin sin sin 232626bc c AD b AD πππ=⋅⋅+⋅⋅,可得AD = 由余弦定理得:,()22222cos 3a b c bc A b c bc =+-=+-,而12bc =,得()252b c +=,因此AD =。

高三一轮复习-三角函数、三角恒等变换、解三角形讲义(带答案)

高三一轮复习-三角函数、三角恒等变换、解三角形讲义(带答案)

个性化辅导授课教案【重点知识梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a或f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b . 【高频考点突破】考点一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简: (1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=______.【答案】(1)cos α (2) 6 【规律方法】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【变式探究】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.【解析】(1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β=14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β=14+14=12.【答案】(1)C (2)12考点二 三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.(2)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,又α∈(0,π).∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.【规律方法】(1)解题中注意变角,如本题中α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【变式探究】 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,(1)求tan 2α的值; (2)求β.【解析】(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.考点三 三角变换的简单应用【例3】 (2014·广东卷)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值;(2)若f (θ)-f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.【规律方法】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【变式探究】 已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z .【随堂练习】考点一 已知三角函数值求值例1、已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求22cos 3sin 122sin()4AA A π--+ 的值.【解析】 (1)∵OM →·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15.∴sin A +cos A =-15,①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈(π2,π),∴sin A -cos A =1-2sin A cos A =75.②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴22cos 3sin 122sin()4AA A π--+=cos A -3sin A cos A +sin A =1-3tan A 1+tan A=3134314⎛⎫-⨯- ⎪⎝⎭⎛⎫+- ⎪⎝⎭=13. 【方法技巧】对于条件求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”即使“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,应注意公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.【变式探究】已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.考点二 已知三角函数值求角例2、如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α、β,它们的终边分别与单位圆相交于A、B两点,已知A、B两点的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.【方法技巧】(1)已知某些相关条件,求角的解题步骤:①求出该角的范围;②结合该角的范围求出该角的三角函数值.(2)根据角的函数值求角时,选取的函数在这个范围内应是单调的. 【变式探究】已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈(0,π2).(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求φ的值.三、三角函数的图像与性质【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x ≠⎭⎬⎫k π+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2k π-π2,2k π+π2[2k π-π,2k π]⎝⎛⎭⎫k π-π2,k π+π2递减 区间 ⎣⎡⎦⎤2k π+π2,2k π+3π2 [2k π,2k π+π]无对称中心 (k π,0)⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴 方程x =k π+π2x =k π无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3【答案】(1){x |x ≠π4+k π且x ≠π2+k π,k ∈Z } (2)A【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】(1)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .【答案】(1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)⎣⎡⎦⎤-12-2,1 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3 C.π2 D.3π4(2)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数【答案】(1)A (2)A 【规律方法】(1)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.(2)求最小正周期时可先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =A sin ωx 或y =A cos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2 (2)若函数f (x )=sinx +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3【答案】(1)A (2)C 考点三 三角函数的单调性【例3】 (1)已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2]【答案】(1)⎣⎡⎦⎤0,π4 (2)A 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32C .2D .3 (2)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.【答案】(1)B (2)⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )四、函数)sin(ϕ+=wx A y 的图像【考情解读】1. 了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【重点知识梳理】1.“五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x 轴相交的三个点,作图时的一般步骤为: (1)定点:如下表所示.X-φωπ2-φωπ-φω3π2-φω2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y =A sin(ωx +φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象.2.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径3.函数y =A sin(ωx +φ)的物理意义当函数y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时,A 叫做振幅,T =2πω叫做周期,f=1T叫做频率,ωx +φ叫做相位,φ叫做初相.【高频考点突破】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到. 【解析】(1)f (x )=sin ωx +3cos ωx =2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3, 又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(3)法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长到原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.【规律方法】作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【变式探究】 设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【解析】(1)∵T =2πω=π,ω=2,又f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝⎛⎭⎪⎫2x -π3,列表: 2x -π3-π30 π2 π 32π 53π x 0 π6 512π 23π 1112π π f (x )121-112图象如图.考点二 利用三角函数图象求其解析式【例2】 (1)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)=( )A .-23B .-12 C.23 D.12(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.【解析】(1)由三角函数图象得T 2=11π12-7π12=π3,即T =2π3,所以ω=2πT=3.又x =7π12是函数单调增区间中的一个零点,所以3×7π12+φ=3π2+2k π,解得φ=-π4+2k π,k ∈Z ,所以f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4. 由f ⎝ ⎛⎭⎪⎫π2=-23,得A =223,所以f (x )=223cos ⎝ ⎛⎭⎪⎫3x -π4,所以f (0)=223·cos ⎝ ⎛⎭⎪⎫-π4=23.【答案】(1)C (2)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 【规律方法】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【训练2】 (1)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32 B .-62C. 3 D .- 3 (2)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为______.(2)由三角函数图象可得A =2,34T =11π12-π6=34π,所以周期T =π=2πω,解得ω=2.又函数图象过点⎝ ⎛⎭⎪⎫π6,2所以f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6+φ=2,0<φ<π,解得φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.【答案】(1)D (2)1考点三 函数y =A sin(ωx +φ)的性质应用【例3】 (2014·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z . 【规律方法】解决三角函数图象与性质综合问题的方法:先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)+b 的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【变式探究】 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及对应的x 的值.五、解三角形(正弦定理和余弦定理)【考情解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;【重点知识梳理】1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c22bc cos__A;b2=c2+a22ca cos__B;c2=a2+b2-2ab cos__C常见变形(1)a=2R sin A,b=2R sin__B,c=2R sin_C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin__A∶sin__B∶sin__C;cos A=b2+c2-a22bc;cos B=c2+a2-b22ac;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .【高频考点突破】考点一 利用正、余弦定理解三角形例1、(1)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105C.31010D.55(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】(1)由余弦定理可得AC 2=9+2-2×3×2×22=5,所以AC = 5.再由正弦定理得AC sin B =BCsin A ,所以sin A =BC ·sin BAC =3×225=31010.【答案】 (1)C (2) 3【提分秘籍】利用正、余弦定理解三角形的关键是合理地选择正弦或余弦定理进行边角互化,解题过程中注意隐含条件的挖掘以确定解的个数.【变式探究】在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a sin ⎝⎛⎭⎫B +π4=c . (1)求角A 的大小;(2)若△ABC 为锐角三角形,求sin B sin C 的取值范围.考点二 三角形形状的判断例2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定【解析】依据题设条件的特点,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,∴A =π2,故选B.【答案】B 【提分秘籍】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.注意:在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 【变式探究】在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc . (1)求角A 的大小;(2)若sin B ·sin C =sin 2A ,试判断△ABC 的形状.考点三 三角形的面积问题例3、在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.【解析】(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A=25+16-20=21,故a = 21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.【方法技巧】三角形的面积求法最常用的是利用公式S =12ab sin C =12ac sin B =12bc sin A 去求.计算时注意整体运算及正、余弦定理的应用.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积.考点四 解三角形例4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35. (1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.【解析】(1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,2分即cos(A -B )cos B -sin(A -B )sin B =-35.4分则cos(A -B +B )=-35,即cos A =-35.6分【提分秘籍】正弦定理、余弦定理及其在现实生活中的应用是高考的热点,主要利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及几何计算的实际问题,常与三角变换、三角函数的性质交汇命题、多以解答题形式出现. 【随堂练习】考点三 正、余弦定理的应用例3、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .【解析】 (1)由正弦定理,设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π, 所以sin C =2sin A . 因此sin Csin A=2.【方法技巧】(1)利用正弦定理,实施角的正弦化为边时只能是用a 替换sin A ,用b 替换sin B ,用c 替换sin C . sin A ,sin B ,sin C 的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分;(2)以三角形为背景的题目,要注意三角形的内角和定理的使用.像本例中B +C =60°;(3)在求角的大小一定要有两个条件才能完成:①角的范围;②角的某一三角函数值.在由三角函数值来判断角的大小时,一定要注意角的范围及三角函数的单调性.【变式探究】在锐角△ABC 中,a 、b 、c 分别为A 、B 、C 所对的边,且3a =2c sin A .(1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值. 【解析】(1)由3a =2c sin A ,根据正弦定理,sin C =c sin A a =32, 又0<C <π2,则C =π3. (2)由已知条件⎩⎨⎧ 12ab sin C =332a 2+b 2-c 22ab =cos C ,即⎩⎪⎨⎪⎧ab =6a 2+b 2-7=ab , (a +b )2=a 2+b 2+2ab =3ab +7=25,∴a +b =5.。

2023届高考数学一轮复习——三角函数与解三角形 第二讲 同角三角函数的基本关系、诱导公式 课

2023届高考数学一轮复习——三角函数与解三角形  第二讲  同角三角函数的基本关系、诱导公式 课
解方程组
sin sin
AcosA= 60 169
A cos A 7
, 得

sin A cos A
12, 13 所以.
5,
tan
A
12 5
.
13
13
故选 D.
[变式训练]
1. 若 为第四象限角,则 1 cos 1 cos 可化简为( D ) 1 cos 1 cos
A. 2tan
2
k,
k
Z
.
[典型例题]
1.已知角 A 是 ABC 的一个内角,若 sin A cos A 7 13
则 tanA ( D )
A. 12 13
C. 5 12
B. 7 12
D. 12 5
[解析]
利用 sin2 A cos2 A 1, 可得 sin Acos A 60 可知 A 为钝角, 169
cos3 cos
(
C
)
A. 12 25
C. 37 25
B. 9 25
D. 52 25
[解析]

sin
π 2
3 5

(π,
2π)

cos
3 5
,所以
sin
4 5
,则
sin3 cos3 sin2 sin cos cos2 1 4 3 37 ,
sin cos
5 5 25
三角函数与解三角形 第二讲 同角三角函数的基本关系式
重点
理解同角三角函数的基本关系式, 并能熟练运用同角三角函数关系进行化简或求值.
难点
利用诱导公式进行化简或求值.
核心知识整合
考点1:同角三角函数的基本关系式

2023届高三数学一轮复习:解三角形

2023届高三数学一轮复习:解三角形

2
2
c sinB bsinC
即: b c
sin B 同理: a
sin A
sinC b
sin B
a sin A
b sin B
c sinC
(法三、向量法)
A
c
b
B a DC
引例例1、、在ABC中,角A, B,C所对的边为a, b,c。
已知A 60o , B 45o , b 2,求边a ,角C和边c.
变、在ABC中,已知A 60o,B 45o , c 1 3,解三角形。
C
b2
60o
45o
B
A c 1 3
例2、在ABC中,已知a 2 2, b 2 3, A 45o,解三角形。
变2、在ABC中,已知a 2 6, b 2 3, A 45o,解三角形。
课堂小结:
定理在问题中孕育

定理在特例中诞生
a
c 所对的边为a, b,c。 已知A 60o , B 45o , b 2,求边a.
b2
C
分析:CD 2sin60o 3
a?
a BC 6
60o
A
D
45o B
你能得到什 么启发?
正弦定理:
在一个三角形中,各边和它所对角的正 弦的比相等,即
abc sin A sinB sinC

定理在实验中成长


定理在证明中丰腴
定理在应用中成熟
大的 胆数 猜学 想精 ,神 勇 于 探 索
课后探究:
在任意三角形中,都有 a b c k,
sin A sinB sinC 那 么 这 个 比 值k是 不 是 一 个 常 量 ? 如 果 不 是 , 那 它 的 变 化与ABC有 什么关系呢?

2023版高考数学一轮总复习第四章解三角三角函数的基本概念同角三角函数的基本关系与诱导公式课件理

2023版高考数学一轮总复习第四章解三角三角函数的基本概念同角三角函数的基本关系与诱导公式课件理
cm
3
5
2 5
5
2 5
A.
B.
C.±
D.±
2
5
2
5
(
)
C
.
tan α>α>sin α
cm,则扇形的面积为
50π
cm2
3
,弧
• 考向扫描
• 考向 • 扇形的弧长与面积公式的应用
1
• 1.典例 [2019北京高考]如图,A,B是半径为2的圆周上的定点,P为圆周上
的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为 ( B
图形
第一象限
第二象限
第三象限
第四象限
• 考点 • 任意角的三角函数
•24.特殊角的三角函数值

角α

15°
30°
45°
角α的弧度数
0
sin α
0
1
cos α
1
0
____
tan α
____
0
1
60°
75°
90°
________
不存在
• 考点
3
• 同角三角函数的基本关系
1
1 + tan2
• 考点
制叫作弧度制.
角α的弧度数公式
角度与弧度的换算
弧长公式
l= |α|r .
扇形面积公式
1
l
2
·r
• 考点 • 任意角与弧度制
1
• 易错警示
• 1.把弧度作为单位表示角的大小时,“弧度”两字可以省略不写,但把度
(°)作为单位表示角时,度(°)一定不能省略.
• 2.正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元(或主题)教学设计模板
以下内容、形式均只供参考,参评者可自行设计。

教学过程既可以采用表格式描述,也可以采取叙事的方式。

如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。

表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。

问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。

重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形
难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。

3.单元(或主题)整体教学思路(教学结构图)
第一课时,正弦定理及可以解决的问题
第二课时,余弦定理及可以解决的问题
第三课时,三角形内角和定理、正弦定理、余弦定理的选择
第1课时教学设计
课题正弦定理
课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□
1.教学内容分析
本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。

再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。

3、你还有哪些收获?
活动意图说明
对于本节课的重点内容强化提问,既检测又强化重点。

“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。

环节六:课堂检测
教的活动6
1、 在中,已知 45,30,10A C c cm ︒︒
===,求a 边. 2、 在△ABC 中,
π3
2,6,2===B b c ,求∠A 。

3、 在△ABC 中,√3acosB =bsinA .求∠B
学的活动6
完成测验 活动意图说明
检测学生对本节内容知识的掌握情况
7.板书设计
正弦定理
——解三角形复习
一、 三角形 二、正弦定理
1. 在ABC ∆中,A+B+C=π,
sin(B+C)= ,
cos(B+C)=
2.大边对大角
3.两边之和大于第三边, 三、例题展示
两边之差小于第三边
8.作业与拓展学习设计
一、针对本节课重难点
1. 在△ABC 中,若a =6,A =60°,B =75°,则c =( )
∆ABC。

相关文档
最新文档