自控原理

合集下载

自控原理

自控原理

自动控制理论是研究自动控制一般原理的一门技术科学。

《自动控制原理》也是高校自动化专业的一门专业课。

它是学习后续专业课程的重要基础,也是硕士研究生自动化专业的一门专业课程。

自动控制是指利用附加的设备或装置(称为控制装置或控制器),使机器、设备或生产过程(统称为受控对象)在一定的工作条件或参数(即受控量)下,按照预定的规律自动运行,没有人能直接参与。

自动控制理论是研究自动控制一般原理的一门技术科学。

在其发展初期,它是一种基于反馈理论的自动调节原理,主要用于工业控制。

第二次世界大战期间,为了设计和制造基于反馈理论的飞机和海上自动驾驶仪、火炮定位系统、雷达跟踪系统等军事装备,进一步促进和完善了自动控制理论的发展。

战后,以经典控制理论的传递函数为基础,形成了一套完整的自动控制理论体系,主要研究单输入单输出、线性常数系统的分析与设计问题。

20世纪60年代初,随着现代应用数学和计算机应用的新成果,为了适应航天技术的发展,自动控制理论进入了现代控制理论的新阶段。

主要研究高性能、高精度的多变量参数最优控制问题。

采用的主要方法是基于状态的状态空间方法。

目前,自动控制理论仍处于发展阶段,正在深入到基于控制论、信息论和仿生学的智能控制理论。

为了完成各种复杂的控制任务,被控对象和控制装置之间应以某种方式连接起来,形成一个有机的整体,即自动控制系统。

在自动控制系统中,被控对象的输出即受控量是需要严格控制的物理量。

可能需要保持某些恒定值,如温度、压力或飞行轨迹。

控制装置是控制被控制对象的整个机构。

它可以采用不同的原理和方法来控制被控对象,但它是基于反馈控制原理的最基本的反馈控制系统。

在反馈控制系统中,控制装置对被控制装置的控制功能是来自被控制量的反馈信息,用来不断修正被控制量与被控制量之间的偏差,从而实现对任务控制量的控制。

这就是反馈控制的原理。

同时,《自动控制原理》也是高校自动化专业的主干课程。

它是后续专业课程的重要基础,也是自动化专业的一门专业课程。

自控原理知识点整理

自控原理知识点整理

自控原理知识点整理自控原理是一种用于管理个人行为的方法,旨在帮助人们通过自我约束和自我管理来实现目标和改变自己。

本文将介绍自控原理的一些关键概念、技巧和工具,以帮助你更好地应用自控原理来管理自己的行为。

1. 自控原理的概念自控原理是通过自我约束,运用意志力自我管理的一种方法。

这种方法可以帮助你克服心理和物质上的挑战,实现个人目标和改变自己的行为。

自控原理认为,人们能够通过自我控制和管理抵制短期诱惑,实现自己的长期目标和愿望。

这一方法可以帮助你在诸多方面做出艰难的决定、改变长期不良习惯,并改善个人生活品质。

2. 自控原理的技巧和工具(1)设定目标要明确目标的明确程度影响着你是否能够坚持下去。

应设立一个具体、可量化的目标,尽可能规定大、小目标之间的时间限制。

(2)掉头思考在决定做某事之前,要考虑一下后果和利益。

这种掉头思考可以帮助你远离即时的欢愉,保持心智清醒,更好地抵制诱惑。

(3)监控自己的行动和反思要时刻注意自己的行为,以确保你始终沿着目标方向前进。

抽出一些时间反思自己的表现,找出行为上的一些问题和欠缺,并设法解决。

(4) 建立压力差机制为让自己更好地控制诱惑,你需要在心理上建立一种压力差机制。

例如,你可以告诉朋友你的目标,这样如果你失败了就会让他们失望。

通过建立压力差机制,你可以在某种程度上让自己需要遵循自己的目标。

(5)给自己一个奖励当你完成了一个艰巨的任务时,一件神秘的特殊待遇将会激励你坚持下去。

给自己一个小小的奖励,可以帮助你保持积极的态度,推动自己迎接下一个挑战。

3. 自控原理的重要性自控原理在个人成长和发展中扮演着至关重要的角色。

成功的个人应该具备自主思考的能力、自我管理的技能、以及控制自己的情绪和行为的能力。

自控原理不仅可以帮助我们解决生活中的日常问题,还可以帮助我们实现长远的个人生涯和人生目标。

总体说来,自控原理可以使人们更好地应对生活中的困难和挑战。

希望本文介绍的相关概念、技巧和工具能够帮助您更好地应用自控原理来管理自己的行为,并取得成功。

自动控制原理概述

自动控制原理概述

自自自动动动控控制制原给得理定特值得征主:要任务:
被控量
控制分通析过和对设各计类自机控动器制器控、制各系种受统物控对得理象性参能量。、工
自业动示生图控下意产制面过系通程统过等得一得基些控本实制概例直念来接检说造测明福元自于件 动社控会制。和
第一节 自动控制与自动控制系统
例 水温人工控制系统 系工统作得过构程成: : 受控手蒸对动汽象调通:水箱 节被过阀控热门制传得导量开器:水温 度件,把从热而阀量调门传节 蒸递热汽给传得水导流,水器量得件, 来温控度显制与示水蒸仪得汽表 温得蒸度流汽、量成排正水 比冷、水但人工热难水以实现稳定得高质量控制、
第二节 自动控制系统得分类
三、连续系统和离散系统
连续系统:
系统中各部分得信号都就是时间得连 续函数即模拟量。
离散系统: 系统中有一处或多处信号为时间得离 散函数,如脉冲或数码信号。 若系统中既有模拟量也有离散信号, 则又可称之为采样系统。
第二节 自动控制系统得分类
四、恒值系统、随动系统和 程序控制系统
前馈补偿控制
前馈通道
主通道
给定值 _ 控制器
被控 制量
受控对象
检测元件
反馈控制
第一节 自动控制与自动控制系统
(b) 按扰动前馈补偿得复合控制
前馈补偿控制
扰动
主通道
前馈通道
被控
制量
给定值 _ 控制器
受控对象
检测元件
反馈控制
第一章 概 述
第二节 自动控制系统得分类
自动控制系统得分类方法较多,常见 得有以下几种
自动控制原理概述
第一章 概述
第一节 自动控制与自动控制系统
一、自动控制得基本概念 二、控制系统得基本构成

自控原理在实际中的应用

自控原理在实际中的应用

自控原理在实际中的应用1. 简介自控原理是工程领域中的一门学科,它研究如何通过各种反馈机制来实现对某个系统或过程的控制。

在实际中,自控原理被广泛应用于各个领域,包括工业生产、能源管理、环境监测、交通控制等等。

2. 工业生产在工业生产中,自控原理的应用尤为重要。

通过自控原理,可以实现对工业生产过程中的参数、质量等进行精确控制,提高生产效率和产品质量。

具体应用包括:•温度控制:自控原理中的温度控制系统可以通过传感器感知环境温度,并通过控制器对加热元件进行控制,使温度保持在设定范围内。

•压力控制:自控原理中的压力控制系统可以实时监测管道或容器中的压力,并通过执行器对阀门或泵进行控制,以保持压力稳定。

•流量控制:自控原理中的流量控制系统可以通过传感器感知流体的流量,并通过执行器对阀门或泵进行控制,以保持流量在设定范围内。

3. 能源管理自控原理在能源管理中也发挥着关键的作用。

通过自控原理,可以实现对能源的有效利用和节约。

具体应用包括:•照明系统:自控原理中的照明控制系统可以根据光线感应或时间设定,自动调节照明灯的亮度和开关,以达到节能的目的。

•空调系统:自控原理中的空调控制系统可以通过感应室内外温度和湿度,并通过执行器对空调设备进行控制,以使室内温度和湿度保持在设定值。

•电力系统:自控原理可以在电力系统中实现对电能的分配和调节,以确保电力供应的稳定和高效。

4. 环境监测自控原理在环境监测中也起到重要的作用。

通过自控原理,可以实时监测环境参数,并采取相应的控制措施。

具体应用包括:•气体监测:自控原理中的气体监测系统可以通过传感器感知环境中的气体浓度,并通过控制器对空气净化设备进行控制,以维护良好的气体环境质量。

•声音监测:自控原理中的声音监测系统可以通过传感器感知环境中的声音强度,并通过控制器对声音发生器进行控制,以实现噪声控制和隔音效果。

•水质监测:自控原理中的水质监测系统可以通过传感器感知水中的各项指标,并通过控制器对水处理设备进行控制,以保证水质的安全和清洁。

第11章 自动控制原理

第11章 自动控制原理

一般规定为响应曲线进入静差的±2%(或±5%) 范围而不再越出时所需要的时间。
振荡周期 过渡过程从第一个波峰到第二个波峰之间的时间, 反映系统的快速性。
第11章自动控制原理
热工测量与自动控制
第1节复习 难点: 自控系统的品质指标 重点: 1.自控系统组成与框图含义。 2.自控系统的分类、。 3.过渡响应的基本形式与过渡过程的品质指标。 4.各基本概念。
第11章自动控制原理
热工测量与自动控制
第1节概述
第2节构成环节的特性 第3节环节的综合和特性分析
第11章自动控制原理
热工测量与自动控制
第1节概述
一、自动控制系统及其组成 二、控制系统的分类 三、自动控制系统的过渡响应
第11章自动控制原理
热工测量与自动控制
一、自动控制系统及其组成 (一)自动控制与人工控制过程的对比
第11章自动控制原理
热工测量与自动控制
思考题: 6.在阶跃干扰下,调节系统的过渡过程有哪几种形式, 用什么性能指标来衡量。 7.什么是系统的静态特性与动态特性。
第11章自动控制原理
热工测量与自动控制
第2节构成环节的特性
一、环节信号的传递和特性 二、拉普拉斯变换与传递函数
三、对象的过渡响应和数学描述
X c (s) b0 S m b1S m1 bm1S bm W ( s) n n 1 X r (s) a0 S a1S an1S an
第11章自动控制原理
热工测量与自动控制
意义: ①系统或环节的一种形式,表达系统将输入量转换成 输出量的传递关系 ②仅与系统或环节特性有关,与输入量怎样变化无关 ③简化系统动态性能的分析过程
第11章自动控制原理

自控原理教学大纲

自控原理教学大纲

自控原理教学大纲
自控原理是控制工程中的基础课程之一,教学大纲通常包含以下内容:
1. 课程简介和基本概念:介绍自控原理的基本概念、发展历史、应用范围和重要性,概述控制系统的基本原理和组成部分。

2. 数学工具:包括微积分、微分方程、线性代数等数学工具的基本概念和应用,为后续控制系统建模和分析提供数学基础。

3. 控制系统的基本组成:介绍控制系统的基本组成部分,包括传感器、执行器、控制器、反馈回路等,以及它们在控制系统中的作用和相互关系。

4. 控制系统建模与传递函数:介绍控制系统的建模方法,包括拉普拉斯变换、传递函数表示等,用于描述系统的动态特性和稳定性。

5. 时域分析:介绍控制系统在时域中的分析方法,包括单位脉冲响应、步跃响应、稳态误差分析等,用于评估系统的动态性能和稳定性。

6. 频域分析:介绍控制系统在频域中的分析方法,包括频率响应、波特图、根轨迹等,用于评估系统的频率特性和稳定性。

7. 经典控制器设计:介绍PID控制器和经典控制器设计的基本原理、参数整定方法和应用,以及控制器在系统中的作用。

8. 稳定性分析:讲解控制系统的稳定性分析方法,包括Routh-Hurwitz准则、Nyquist准则、极点位置和稳定性等概念。

9. 根轨迹法和频率响应设计:详细讲解根轨迹法和频率响应法用于控制系统设计的原理和应用。

10. 现代控制理论概述:简要介绍现代控制理论的基本概念,包括状态空间分析、最优控制、鲁棒控制等。

这些内容构成了自控原理教学大纲的核心部分,目的是使学生掌握控制系统的基本原理、分析方法和设计技术,为他们进一步深入学习和实践提供基础。

具体的教学大纲可能会根据不同学校或教师的教学理念和教学目标有所不同。

自动控制原理公式

自动控制原理公式

自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。

对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。

2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。

3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。

对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。

4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。

例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。

5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。

零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。

6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。

PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。

这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。

自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。

自控原理

自控原理

1、自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备、或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。

2、扰动破坏系统输入量和输出量的规律和信号。

3、自动控制系统为了实现各种复杂的控制任务,首先要将被控对象和控制装置按照一定的方式连接起来,组成一个有机总体,这就是自动控制系统。

4、反馈及负反馈通常我们把取出输出量送回到输入端,并与输入信号相比较产生偏差信号的过程,成为反馈。

若反馈的信号是与输入信号相减,使产生的偏差越来越小,则称为负反馈。

5、自动控制系统基本控制方式反馈控制方式、开环控制方式、复合控制方式。

6、反馈控制是自动控制系统最基本的控制方式,也是应用最广泛的一种控制方式。

除此之外,还有开环控制方式和复合控制方式,他们都有各自的特点和不同的使用场合,近几十年来,以现代数学为基础,引入电子计算机的新的控制方式也有了很大发展,如最优控制、自适应控制、模糊控制等。

7、开环控制方式是指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统。

9、按扰动控制方式在技术上较按偏差控制方式简单,但它只适用于扰动是可测量的场合,而且一个补偿装置只能补偿一种扰动因素,对其余扰动均不起补偿作用。

10、自动控制系统有多种分类方法按控制方式可分为开环控制、反馈控制、复合控制等;按元件类型可分为机械系统、电器系统、机电系统、液压系统、气动系统、生物系统等;按系统功用可分为温度控制系统、压力控制系统、位置控制系统等;按系统特性可分为线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统、确定性系统和不确定性系统等;按输入量变化规律可分为恒值控制系统、随动系统和程序控制系统等。

为了全面反应自动控制系统的特点,常常将上述各种分类方法组合应用。

11、离散系统是指系统的某处或多处的信号为脉冲序列或数码形式,因而信号在时间上是离散的,连续信号经过采样开关的采样就可以转换成离散信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自控原理
自动控制理论是研究自动控制共同规律的技术科学,时自动控制原理也是现在高校自动化专业的一门主干课程,是学习后续专业课的重要基础,也是自动化专业硕士研究生入学必考的专业课。

自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。

自动控制理论是研究自动控制共同规律的技术科学。

它的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。

到战后,以形成完整的自动控制理论体系,这就是以传递函数为基础的经典控制理论,它主要研究单输入-单输出,线形定常数系统的分析和设计问题。

20世纪60年代初期,随着现代应用数学新成果的推出和电子计算机的应用,为适应宇航技术的发展,自动控制理论跨入了一个新阶段——现代控制理论。

他主要研究具有高性能,高精度的多变量变参数的最优控制问题,主要采用的方法是以状态为基础的状态空间法。

目前,自动控制理论还在继续发展,正向以控制论,信息论,仿生学为基础的智能控制理论深入。

为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。

在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,
它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。

在反馈控制系统中,控制装置对被控装置施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量和控制量之间的偏差从而实现对被控量进行控制的任务,这就是反馈控制的原理。

同时自动控制原理也是现在高校自动化专业的一门主干课程,是学习后续专业课的重要基础,也是自动化专业硕士研究生入学必考的专业课。

该课不仅是自动控制专业的基础理论课,也是其他专业的基础理论课,目前信息科学与工程学院开设本课程的专业有计算机、电子信息、检测技术。

该课程不仅跟踪国际一流大学有关课程内容与体系,而且根据科研与学术的发展不断更新课程内容,从而提高自动化及相关专业的整体学术水平。

相关文档
最新文档