调洪演算报告

合集下载

调洪演算

调洪演算

第1章 调洪演算1.1 调洪演算已知正常高水位▽正=128m ,查水库水位库容曲线,可得361044.296m V ⨯=。

010020030040050060070060708090100110120130140150160水位(m)容积(106m 3)图 1 - 1 枋洋水库水位库容曲线1.1.1 确定防洪库容用枋洋水库入库断面20年一遇洪水流量同倍比法推求“6·9”洪水过程线,以洪峰控制,其放大倍比为095.121192320===mdmp Q Q K 表1-1 计算表格如下所示:)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q1 23 25 19 318 348 37 530 5802 51 56 20 454 497 38 417 4563 132 144 21 623 682 39 296 324 4 267 292 22 649 710 40 194 2125 366 400 23 721 789 41 137 150 6 412 451 24 694 759 42 99 108 7 519 568 25 802 877 43 75 82 868474826851931445863)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q9 953 1043 27 1150 1258 45 45 49 10 1053 1152 28 1711 1872 46 35 38 11 1154 1262 29 2119 2318 47 27 30 12 961 1051 30 1903 2082 48 21 23 13 814 891 31 1673 1830 49 15 16 14 629 688 32 1297 1419 50 9 10 15 475 520 33 1055 1154 51 6 7 16 375 410 34 846 926 52 2 2 17 314 344 35 719 787 53 1 1 182712963663669654根据表格数据,绘制6.9洪水过程线:51015202530354045505001000150020002500时间t (h)流量q(m3/s)图1-2 6.9洪水过程线1.1.2 求防洪库容和防洪高水位由正常高水位起调,下游最大安全泄量为500s m /3,调洪计算得防洪库容361044.296m V ⨯=正常。

调洪演算报告

调洪演算报告

调洪演算报告一、引言调洪演算是指利用数学模型和计算机技术对洪水进行模拟和预测的过程。

它是现代水利工程中非常重要的一项技术,能够帮助水利部门预测洪水的发生及其对河流、湖泊等水域的影响,为防洪工作提供科学依据。

本报告将介绍调洪演算的基本原理、方法和应用,并对其在实际工程中的应用进行案例分析。

二、调洪演算的原理和方法1. 数学模型调洪演算主要依靠数学模型来描述洪水的传播过程。

常用的数学模型有水动力模型、水质模型和沉积模型等。

水动力模型用于模拟洪水的传播过程,水质模型用于模拟洪水对水质的影响,沉积模型用于模拟洪水沿河道的泥沙运动过程。

这些数学模型基于流体力学原理和质量守恒原理,通过求解偏微分方程组得到洪水的水位、流速和泥沙浓度等参数。

2. 数据采集和处理调洪演算需要大量的实测数据来进行模拟和预测。

这些数据包括雨量、水位、流量、泥沙浓度等。

数据采集可以通过自动气象站、水文站和水质监测站等设备来实现。

采集到的数据需要经过处理和校正,以保证数据的准确性和可靠性。

3. 模型参数的确定数学模型中有许多参数需要通过实测或估计来确定。

这些参数包括水动力模型中的水力半径、河床粗糙度系数等,水质模型中的污染物扩散系数、沉积模型中的沉积速率等。

确定这些参数的方法有试验室实测、现场观测、文献资料归纳等。

4. 模拟和预测在确定了数学模型和模型参数后,可以利用计算机进行模拟和预测。

模拟过程是根据已有的数据和模型参数,对洪水的传播过程进行数值计算,得到洪水的水位、流速和泥沙浓度等参数。

预测过程是在模拟的基础上,预测未来一段时间内的洪水情况,以便采取相应的防洪措施。

三、调洪演算的应用案例1. 洪水预警调洪演算可以提供洪水的预测结果,帮助水利部门及时发布洪水预警信息,提醒周边居民采取防洪措施,减少人员和财产损失。

2. 洪水调度调洪演算可以模拟不同调度方案对洪水传播的影响,帮助水利部门制定合理的调度方案,最大限度地减少洪水对下游地区的影响。

调洪演算计算过程

调洪演算计算过程

0123455.6200640156926052061475477479481483485330039204640536062007400015546482712701780洪水过程曲线如下图V(104m 3q(m 3/s)Z(m)铁山水库校核校核洪水时段﹙△t=1h﹚Q(m3/s)q-V曲线图Z-q曲线图因为q-v曲线接近直线可以添加趋势线并模拟出公式01234565.620064015692605206116715.62005748001000118012905000500050005147.45593.36050.36277.5由上式得出的结果再进行试算代入图表验证就比较简单了Z-q曲线图由上图可以得到正常蓄水位480Z-V曲线图用试算法进行调洪计算如下下泄q 水库存水量V成果整理如下 计算获得的泄洪过程q如表△t入库流量Q V 2=V 1+1/2【(Q 1+Q 2)-(q 1+q 2)】*3600q=f(v) (可以先用模拟公式V=2.2511q+3461.7计算)480480480480.3481.44482.68483.08结论 由图可得最大下泄流量q=1320 校核洪水位Z=483.2水库水位Z库校核洪水调洪计算成果67891011121314 16711368113294981772063957651348788002340位480m时对应的库容 V=500 泄流量q=6407891011121314 13681132949817720639576513 1320131012801260117611001000865 6354.76331.36239.761005948.35802.285651.985502.4483.2483.16483.08482.76482.4482.1481.76481.6调洪库容V=1354.7。

某尾矿库调洪演算

某尾矿库调洪演算

**铁矿尾矿库调洪演算
一、排洪设施
尾矿库采用塔—管式排洪系统,现使用?#溢流塔,塔底与排水管相连接,溢流塔采用了框架式结构,塔内直径2.5m,每块叠梁高300mm,厚100mm,排水管直墙断面尺寸为0.8×1.0m。

目前?#溢流塔和排水管质量较好,排水管出水清澈,运行效
二、
*
(1
(2
(3
(1
(2
(3)2
查尾矿库库容曲线,可知调洪幅度ΔH对应调洪库容V0=38.88万m3,而200年一遇24小时洪水流量为10.58万m3,即在目前情况下,该库调洪库容均大于24小时一次洪水流量。

因此,目前尾矿库的调洪库容满足要求。

三、泄洪能力复核
按照规范要求,只要24小时一次洪水量能在72小时内排空,该库就能满足200年一遇洪水的调洪高度要求。

下面即对一次洪水的排空时间进行计算。

根据冶金设计研究院计算压力流泄流计算:Q=u×Fx×(2gH)1/2式中:Fx-----隧洞出口断面积,Fx=0.8 m2
u-----压力泄流的流量系数,u=0.6
g------重力g=9.8m/s2
H----库水位与隧洞出口断面中心之间高差,单位米,H=45.0m。

1/23。

xx调洪演算(包含公式、连接、成果)

xx调洪演算(包含公式、连接、成果)
调洪演算是一种重要的水文计算方法,用于预测和调控洪水过程。本文档详细展示了调洪演算的具体实施步骤和成果。通过记录不同时间点的流量和水位数据,利用特定的计算公式,如Q V/△t+q/2,逐步推导出洪水演进的过程。文档中的数据表格清晰地呈现了各个时间点的流量(Q)、入流(q)和水位(H)等关键参数,以及它们随时间的变化趋势。这些数据不仅反映了洪水的实时动态,也是评估防洪措到达时间、峰值流量和持续时间等关键信息,为防洪减灾提供科学决策支持。此外,文档还展示了调洪演算的应用成果,包括成功预测和调控洪水的实例,体现了该方法在实际应用中的有效性和价值。

调洪演算

调洪演算

参莴工程3.1 设计洪水与校核洪水A河洪水由于暴雨集中,强度大,加之两岸地形较陡。

因而水情变化具有山区特性。

洪水历时短,涨落急剧,来势凶猛,洪峰、洪量相对较小,经常泛滥成灾。

从历史洪水调查及实测资料统计分析,A河较大洪水发生时间均在7~8月份,有时9月上旬也有发生,因此汛期定为每年7月1日~9月10日。

对可利用的水文系列年限经过综合考虑分析,根据SL252—2000《水利水电枢纽工程等级划分及设计标准》的规定,选取设计洪峰流量Q设=24800m3/s(p=0.1%),校核洪峰流量Q较=34500m3/s(p=0.01%)。

表3-1 山区、丘陵区水利水电工程永久性水工建筑物洪水标准表3-2 A河S水库最近的实测洪峰分析成果表3-3 典型洪水过程表(单位:m3/s)由资料知P=0.01%时,最大洪峰为34500m3/s.将资料中典型洪水过程线按同倍比放大法推求校核洪水过程线如下:表3-4 校核情况下的洪水过程线由P=0.1%时,最大洪峰为24800m3/s,将典型洪水过程线按同倍比放大法推求设计洪水过程线如下:表3-5 设计情况下的洪水过程线3.3 调洪演算3.3.1 基本资料根据工程的泥沙和水位资料:多年平均含沙量:201万吨,实测最大含沙量:151万吨;正常蓄水位:▽96.6m ,防洪限制水位:▽77.8m ,死水位:▽70m ,工程开发的主要目的和任务、现状,拟定泄水建筑物型式为坝顶表孔和泄洪底孔。

水库Z ~V 如表5所示:表3-6 坝址水位-库容关系曲线表P=0.01%时,最大洪峰为34500m 3/s. P=0.1%时,最大洪峰为24800万m 3/s 。

3.3.2 演算原理依据《水能规划》所给的水库洪水调节计算原理,采用水量平衡方程式:tV tV V q q Q Q q Q ∆∆=∆-=+-+=-122121)(21)(21,式中:21,Q Q ——分别为计算时段初,末的入库流量(s m /3);Q——计算时段中的平均入库流量(s m /3),它等于12()/2Q Q +;21,q q ——分别为计算时段初、末的下泄流量(s m /3); q——计算时段中的平均下泄量(s m /3),即q =12()/2q q +;21,V V ——分别为计算时段初、末水库的蓄水量(3m ); V ∆——为12V V 和的之差;t∆——计算时段,一般取1~6小时,需化为秒数。

调洪演算

调洪演算

2.1.1 调洪计算的原理洪水在水库中行进时,水库沿程的水位、流量、过水断面、流速等均随时间而变化,其流态属于明渠非恒定流。

根据水力学明渠非恒定流的基本方程,即圣维南方程组为连续性方程 0Q t sω∂∂+=∂∂ (2-1) 运动方程 221Z v v v Q s g t g s K∂∂∂-=++∂∂∂ (2-2) 式中 ω——过水断面面积(㎡);t ——时间(s );Q ——流量(m 3/s );s ——沿水流方向的距离(m );Z ——水位(m );v ——断面流速(m/s );K ——流量模数(m 3/s )。

为了简化计算,通常采用瞬态法来求近似解。

瞬态法实际上是采用有限差值来代替微分值并加以简化,以近似的求解一系列瞬时的流态。

瞬态法将式2-1和2-1简化得出专用于水库调洪计算的实用公式如下:21121211()()22V V V Q q Q Q q q t t-∆-=+-+==∆∆ (2-3) 式中 1Q 和2Q ——分别为计算时段初、末的入库流量; Q ——计算时段内平均入库流量,为1Q 和2Q 的平均值;1q 和2q ——分别为计算时段初、末的下泄流量; q ——计算时段的平均下泄流量;1V 和2V ——分别为计算时段初、末水库的蓄水量;V ∆——1V 和2V 之差;t ∆——计算时段。

这个公式实际上是一个水量平衡方程,它表明:在一个计算时段内,水库水量与下泄水量之间的差值即为该时段中水库蓄水量的变化。

当水库入库洪水过程线已知时,1Q 和2Q 均为已知,而1q 和1V 是计算时段开始时的初始条件,则必须有一个方程22()q f V =与式2-3相联立才能解出2q 和2V 的值。

由于下泄流量是泄流建筑物水头的函数,当泄流建筑物型式和尺寸已知时,则可求出2q 关于水头H 的方程为2()B q f H AH == (2-4)同时可借助水库容积特性曲线()V f Z =得出方程22()q f V =的具体形式。

调洪演算

调洪演算

A、4、调洪演算1、调洪演算的基本资料(1)起调水位:由于渭北地区水资源缺乏,尚书水库属于蓄洪运用水库,不能使用降低汛期限制水位的办法来保证水库安全。

水库的起调水位取正常蓄水位582.50m。

(2)库容曲线:2001年3月水库管理局委托陕西省水利电力设计院测量队,对尚书水库淤积和库容曲线进行了测量。

目前,坝前淤积面高程为570.00m,死库容已淤满,兴利库容为170万m3,总淤积量44万m3。

参见表4-1。

尚书水库水位与库容曲线表表4-1(3)溢洪道泄流曲线:溢洪道位于大坝右岸,涵洞泄流按宽顶堰计算,最大流量14m3/s,没有考虑涵洞淹没时的出流情况。

本次调洪演算对涵洞出流进行了复核,并考虑了淹没状态,当堰上水头小于2.0m时按宽顶堰计算,当堰上水头大于2.0m时涵洞淹没按管口出流计算流量。

经复核涵洞最大泄流量为42 m3/s,水位与泄流关系曲线表参见表4-2。

2、调洪计算的方法放水洞流量小(1.5m3/s)不参与调洪。

调洪计算的方法为蓄率中线法,三条工作曲线的计算表参见表4-3,将三条工作曲线绘制在同一图上,就可以进行调洪演算了。

蓄率中线法工作曲线计算表3、水库调洪运用方式在正常蓄水位582.50m时洪水入库,水库调洪运用方式是:入库流量小于闸门全开正常蓄水位下的出库流量(88m3/s)时,由闸门控制来多大流量泄多大流量;入库流量大于闸门全开正常蓄水位下的出库流量(88m3/s)时,闸门全开溢洪道畅泄,库水位回落到582.50m时由闸门控制来多大流量泄多大流量。

4、调洪计算结果将各频率设计洪水利用蓄率中线法进行调洪演算,其结果参见表4-4和表4-5。

从中可以看出, 30年一遇设计洪水调洪演算,水库最高洪水位为582.98m,最大下泄流量为113m3/s. 300年一遇校核洪水调洪演算,水库最高洪水位为584.44m,最大下泄流量为180m3/s.水库调洪计算表(P=0.33%)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调洪演算报告
调洪演算报告
引言
•调洪演算是指通过数学模型和算法分析,对河流流量进行优化分配的过程。

•本报告旨在对调洪演算进行全面的介绍和分析,以便更好地了解其原理和应用。

调洪演算原理
1.调洪演算依赖于河流流量和水位的监测数据。

2.利用数学模型和算法,对不同流量条件下的水位变化进行模拟。

3.通过分析模拟结果,确定合理的水流分配方案,以实现最佳的调
洪效果。

调洪演算过程
1.收集河流监测数据,包括流量和水位等信息。

2.建立数学模型,以描述河流水文过程。

3.基于已有数据和模型,编制调洪演算程序。

4.运行程序,进行模拟计算,得出不同水位下的流量分布。

5.分析模拟结果,评估调洪效果,并对结果进行优化调整。

6.输出调洪方案,以供实际操作和决策参考。

调洪演算应用
•调洪演算多用于水库调度、防洪管理和水资源规划等领域。

•可通过调洪演算,优化水库蓄水、泄洪和供水计划,以最大程度减少洪水的危害。

•调洪演算也可用于设计洪水防护工程,提高防洪能力。

调洪演算技术挑战
1.数据不确定性:准确的监测数据对调洪演算至关重要,但由于数
据获取限制和不确定性,可能影响模拟结果的可靠性。

2.模型精度:构建准确的数学模型需要考虑多种因素,如河道特性、
地形地貌等,提高模型精度是调洪演算的一个挑战。

3.运算效率:调洪演算涉及大量的数学计算,需要高效的算法和计
算工具,以满足实时计算和决策的需求。

结论
•调洪演算作为一种重要的水文调控方法,可以通过数学模型和算法,对河流流量进行优化分配,以实现最佳的调洪效果。

•但在应用过程中,需要解决数据不确定性、模型精度和运算效率等技术挑战。

•通过不断改进和创新,调洪演算技术的发展将为水文调控和防洪管理提供更有效的支持。

调洪演算未来发展趋势
•数据采集技术的进步:随着监测设备和传感器技术的不断创新,数据采集的准确性和实时性将得到大幅提升,为调洪演算提供更
可靠的数据支持。

•模型建立与优化:通过集成不同类型的数据和考虑更多的参数,将模型的精度逐步提高,更准确地模拟河流的水文过程,改进调
洪方案。

•强大的计算能力:云计算和分布式计算技术的发展,将大大提高调洪演算过程中的计算效率,实现更快速、高效的结果输出。

•自动化和智能化应用:通过人工智能、机器学习等技术,将调洪演算过程做到自动化和智能化,提高决策的效率和准确性。

调洪演算的应用价值
•通过调洪演算,合理分配河流的流量,能够最大化减少洪灾造成的损失,保护人民的生命财产安全。

•调洪演算可提高水资源的利用效率,合理规划和调度水库的蓄洪泄洪,实现洪水防控和水资源保护的双重目标。

•调洪演算也为城市规划和水资源管理提供科学依据,帮助决策者制定有效的政策和措施,应对日益严峻的洪水灾害和水资源压力。

参考文献
•XXXXXXXX
•XXXXXXXX
致谢
•感谢所有参与本报告编写的人员。

注:本报告仅为虚拟创作,不属实。

如需真实的调洪演算报告,请提供相关资料进行编写。

相关文档
最新文档