2013年数学建模国赛普通论文
数学建模国赛范文

从博弈论角度看大学生竞赛的优胜劣汰与参赛策略摘 要本文给出了在大学扩招背景下,大学生竞赛纵向发展及横向胜汰的模型,并从博弈论角度建立大学生参赛策略模型——尤其讨论其他高校参赛策略可预测情形下哈工大(威海)的最佳参赛对策。
同时,从各大院校科技创新水平给出科技类大学生竞赛对创新性培养的相关数学模型。
本文从搜集有关各大高校历年各种竞赛参加及获奖人数的数据开始,从竞赛规模的发展趋势和学生对竞赛的参加策略两个主要方面出发,分别通过对这两个方面的深入研究从而制定出各自有关大学生竞赛的前景的数学期望,最后再利用纳什均衡的伯川德模型综合考虑这两个主要因素,进一步深入并细化,从而求得最优策略。
模块Ⅰ中,我们将焦点锁定在从竞赛规模的逐年发展趋势预测其前景。
我们从选取的数据和相关资料出发,利用动态模型分析的动力系统综合考虑参赛院校、参赛队伍数量特征和变化趋势,并结合遗传算法推测各个竞赛的竞争态势和发展前景。
然后,我们随机选取了同一年份不同竞赛,并根据表达式计算这些竞赛的规模比重,结果发现跨专业程度相对较高,获奖几率相对高,保研加分比重大的竞赛,如全国大学生数学建模大赛,参赛人数占所有竞赛比例范围常年较高,且维持稳定年均增长率:专业性特征明显,获奖比例相对低,保研加分比重小的竞赛,如机械创新设计大赛,参赛人数占所有竞赛比例相当为低,且呈增长凝滞乃至下降状态。
在模块II 中,我们从学生对竞赛的参加策略出发,利用回归分析,权衡跨专业程度、竞赛规模、题目难度、获奖情况、保研加分政策与学生参赛策略的关系,发现下年参赛人数与前期竞赛规模、获奖比重、保研加分偏重成正相关,与上年题目难度、专业特殊性成负相关。
对此产生的数据验证分析符合标准。
然后,再根据专业相关系数来确定参赛策略的标准。
从而,得到了学生参赛策略的收益预期。
在模块III 中,为了获取哈工大(威海)在其他高校采取可预期的参赛策略的情形下有选择投入竞赛的最优策略,我们综合了前面两个模块所制定的收益指标,并分别给予不同权系数,得到最终策略收益的纳什均衡表达式12i i C ay by =+。
国赛建模论文模板精编版

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):论文总标题(标题1,三号黑体字,段前后可空18磅)*摘要(标题1,四号黑体字,段前后可空12磅)本文针对×××××问题,对相关数据进行如何的处理,使×××、×××、×××、×××等方法,分别建立了×××、×××、×××、×××等模型,使用×××、×××、×××、×××等软件编程计算方法,得到关于什么问题的哪几个具体方面×××、×××、×××、×××结果,最后本文还做了误差分析及灵敏度分析。
全国大学生数学建模竞赛论文模板

在工程中经常会遇到将一种固定形状的材料铺设到某种物体表面的 问题.房屋地板砖的铺设就是其中的一种典型实例……
二、问题分析
针对问题一,我们先分析影响地板砖铺设成本的因素,并由相关资
料发现铺设成本与铺设总面积成正比…… 针对问题二,仅使用一种地板砖铺设的自动铺设方案…… 针对问题三,允许使用多种地板砖混合铺设,根据房屋地板的数值
五、模型的建立与求解
5.1 问题一的模型建立与求解 针对问题一,综合考虑影响地板砖铺设成本的因素.地板砖的铺设成
本包括了地板……
5.2 问题二的模型建立与求解 针对问题二,题目要求我们仅使用一种尺寸的地板砖进行铺设,并
设计地板砖自动……
5.3 问题三的模型建立与求解 针对问题三,允许使用多种地板砖进行混合铺设.我们对地板砖进行
分析,发现如果我们……
5.4 问题四的模型建立与求解
我们根据问题二与问题三得到结论.当优先考虑成本时,应尽可 能……
六、优缺点分析
……
七、模型的改进与推广
……
八、参考文献
[1]杨启航,数学建模,北京:高等教育出版社,2003. [2]…….
附录1 附录2
九、附录
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
基于余料利用的地板砖铺设策略
摘要
在工程中经常会遇到将一种固定形状的材料铺设到某种物体表面的 问题.房屋地板砖的铺设就是其中的一种典型实例.我们需要设计铺设方 案使成本最小,并且切割地板砖数尽ห้องสมุดไป่ตู้能少,以达到美观效果.
2013全国数模竞赛A题优秀论文祥解

2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。
针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。
图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。
针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。
可见占用车流量大的车道使道路通行能力降低更多。
针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。
我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。
本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。
针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。
关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
2013数学建模国赛A题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文以建立评价交通事故中车道占用对道路通行能力的影响的模型为目标,讨论了四个相关问题,分别是事故发生前后事故所处横断面实际通行能力的变化过程、交通事故所占车道不同对该横断面实际通行能力影响的差异、车辆排队长度与其相关因子之间的关系及在事故持续不撤离的情况下车辆排队长度与时间的关系,并建立了相关的数学模型,借助于MATLAB、SPSS及Visio软件解决上述问题。
2013年美国大学生数学建模大赛B题获奖论文

For office use onlyT1________________ T2________________ T3________________ T4________________Team Control Number22599Problem ChosenAFor office use onlyF1________________F2________________F3________________F4________________ 2013Mathematical Contest in Modeling(MCM/ICM)Summary Sheet(Attach a copy of this page to your solution paper.)Heat Radiation in The OvenHeat distribution of pans in the oven is quite different from each other,which depends on their shapes.Thus,our model aims at two goals.One is to analyze the heat distri-bution in different ovens based on the locations of electrical heating cubes.Further-more,a series of heat distribution which varies from circular pans to rectangular pans could be got easily.The other is to optimize the pans placing,in order to choose a best way to maximize the even heat and the number of pans at the same time.Mathematically speaking,our solution consists of two models,analyzing and optimi-zing.In part one,our whole-local approach shows the heat distribution of every pan.Firstly,we use the Stefan-Boltzmann law and Fourier theorem to describe the heat distribution in the air around the electrical heating tube.And then, based on plane in-tercept method and simplified Monte Carlo method,the heat distribution of different shapes of pans is obtained.Finally,we explain the phenomenon that the corners of a pan always get over heated with water waves stirring by analogy.In part two,our discretize-convert approach optimizes the shape and number of the pans.Above all,we discre-tize the side length of the oven, so that the number and the average heat of the pans vary linearly.In the end,the abstract weight P is converted into a specific length,in order to reach a compromise between the two factors.Specially,we create a unique method to convert the variables from the whole space to the local section.The special method allows us to draw the heat distribution of every single section in the oven.The algorithm we create does a great job in flexibility,which can be applied to all shapes of pans.Type a summary of your results on this page.Do not includethe name of your school,advisor,or team members on this page.Heat Radiation in The OvenSummaryHeat distribution of pans in the oven is quite different from each other,which depends on their shapes.Thus,our model aims at two goals.One is to analyze the heat distri-bution in different ovens based on the locations of electrical heating cubes.Further-more,a series of heat distribution which varies from circular pans to rectangular pans could be got easily.The other is to optimize the pans placing,in order to choose a best way to maximize the even heat and the number of pans at the same time.Mathematically speaking,our solution consists of two models,analyzing and optimi-zing.In part one,our whole-local approach shows the heat distribution of every pan. Firstly,we use the Stefan-Boltzmann law and Fourier theorem to describe the heat distribution in the air around the electrical heating tube.And then,based on plane in-tercept method and simplified Monte Carlo method,the heat distribution of different shapes of pans is obtained.Finally,we explain the phenomenon that the corners of a pan always get over heated with water waves stirring by analogy.In part two,our discretize-convert approach optimizes the shape and number of the pans.Above all, we discre-tize the side length of the oven,so that the number and the average heat of the pans vary linearly.In the end,the abstract weight P is converted into a specific length,in order to reach a compromise between the two factors.Specially,we create a unique method to convert the variables from the whole space to the local section.The special method allows us to draw the heat distribution of every single section in the oven.The algorithm we create does a great job in flexibility, which can be applied to all shapes of pans.Keywords:Monte Carlo thermal radiation section heat distribution discretizationIntroductionMany studies on heat conduction wasted plenty of time in solving the partial differential equations,since it’s difficult to solve even for computers.We turn to another way to work it out.Firstly,we study the heat radiation instead of heat conduction to keep away from the sophisticated partial differential equations.Then, we create a unique method to convert every variable from the whole space to section. In other words,we work everything out in heat radiation and convert them into heat contradiction.AssumptionsWe make the following assumptions about the distribution of heat in this paper.·Initially two racks in the oven,evenly spaced.·When heating the electrical heating tubes,the temperature of which changes from room temperature to the desired temperature.It takes such a short time that we can ignore it.·Different pans are made in same material,so they have the same rate of heat conduction.·The inner walls of the oven are blackbodies.The pan is a gray body.The inner walls of the oven absorb heat only and reflect no heat.·The heat can only be reflected once when rebounded from the pan.Heat Distribution ModelOur approach involves four steps:·Use the Fourier theorem to calculate the loss energy when energy beams are spread in the medium.So we can get the heat distribution around each electrical heating tube.The heat distribution of the entire space could be go where the heat of two electrical heating tubes cross together.·When different shapes of the pans are inserted into the oven,the heat map of the entire space is crossed by the section of the pan.Thus,the heat map of every single pan is obtained.·Establish a suitable model to get the reflectivity of every single point on the pan with the simplified Monte Carlo method.And then,a final heat distribution map of the pan without reflection loss is obtained.·A realistic conclusion is drawn due to the results of our model compared with water wave propagation phenomena.First of all,the paper will give a description of the initial energy of the electrical hea-ting tube.We see it as a blackbody who reflects no heat at all.Electromagnetic know-ledge shows that wavelength of the heat rays ranges from um 110−to um 210as shown below[1]:Figure 1.Figure 2.We apply the Stefan-Boltzmann’s law[2]whose solution is ()1/512−=−T c b e c E λλλ(1)()λλλλλd e c d E E T c b b ∫∫∞−∞−==0/51012(2)Where b E means the ability of blackbody to radiate. 1c and 2c are constants.Obviously,,the initial energy of a black body is )(0122398.320m w e E b ×+=.Combine Figure 1with Figure 2,we integrate (1)from 1λto 2λto get the equation as follow:λλλλλλd E E b b ∫=−2121)((3)Figure 3.From Figure 3,it can be seen how the power of radiation varies with wavelength.Secondly,based on the Fourier theorem,the relation between heat and the distance from the electrical heating tubes is:dxdt S Q λ−=(4)Where Q is the power of heat (W s J =/),S is the area where the energy beamradiates (2m ),dxdt represents the temperature gradient along the direction of energy beam.[3]It is known that the energy becomes weaker as the distance becomes larger.According to the fact we know:dxdQ =ρ(5)Where ρis the rate of energy changing.We assume that the desired temperature of electrical heating tube is 500k.With the two equations,the distribution of heat is shown as follow:Figure 4.(a)Figure 4.(b)In order to draw the map of heat distribution in the oven,we use MATLAB to work on the complicated algorithm.The relation between the power of heat and the distance is shown in Figure4(a).The relation between temperature and distance is presented in Figure4(b).The spreading direction of energy beam is presented in Figure5.Figure5.The shape of electrical heating tube is irregular.The heat distribution of a single electrical heating tube can be draw in3D space with MATLAB.The picture is shown in Figure6.After superimposing,the total heat distribution of two tubes is shown below in Figure7and Figure8.Figure6.Figure7.Figure8.The pictures above show the energy in an oven with no pan.We put in a rectangular pan whose area is A,and intercept the maps with MATLAB.The result is show in Figure9.Figure9.Figure10.Put in a circular pan to intercept the maps,whose area is A,also.The distribution of heat is shown in Figure11.Figure11.When put in a pan in transition shape,which is neither rectangular nor circular.The area of it is A,also.The heat distribution on such a pan is shown as follow:Figure12(a)Figure12(b).Figure13.Next,learning from the Monte Carlo simulation[4],a model is established to get obtain the reflectivity.We generate a random number between0and1to determine if the energy beam on certain point is reflected.•Firstly,to demonstrate the question better,we construct a simple model:Figure 14.Where θis the viewing angle from electrical heating tube to the pan.360θ=R is the proportion of the beams radiated to the pan.•What is more,we assume the total beam is 1M .Ideally,the number of absorption is3601θ×M .Then,each element of the pan is seen as a grid point.Each grid point can generate a-3601θ×M -random-number vector between 0and 1in MATLAB.•After MATLAB simulating,the number of beams decreased by 2M ,due to thereflection.So we define a probability θρ12360M M ×=to describe the number of beams reflected.The conclusion is :•If R ≤ρ,the energy beam is absorbed.•If R >ρ,the energy beam is reflected.[5]Based on the analysis above,our model get a final result of heat-distribution on the pan as shown below:Figure 15(a)Figure15(b).The conclusion is known that the closer the shape of pans is to circle,the more evenly the heat is distributed.Moreover,the phenomenon that the corners always get over heated can be explained by water wave propagation in different containers.When there is a fluctuation in the center of the water,the ripples will fluctuate and spread in concentric circles,as shown in Figure16.The fluctuation stirs waves up when contacting the pared with the waves with one boundary,the waves in corner make a higher amplitude.The thermal conduction on the pan is exactly the inverse process of the waves propagation.The range of thermal motion is much smaller than it on the side.That’s why the corners is easy to get over heated.In order to make the heat evenly distributed on the pan,the sides of the pan should be as few as possible.Therefore,if nothing is considered about the utilization of space,a circle pan is the best choice.Figure16,the water waves propagation[6]According to the analysis above and Figure7,the phenomenon shows that the heat conduction is similar to water waves propagation.So it is proved that heatconcentrates in the four corners of the rectangular pan.The Super Pan ModelAssumptions•The width of the oven(W)is mm100,the length is L.•There are three pans at most in vertical direction.•Each pan’s area is A.The first part.Calculate the maximum number of pans in the oven.Different shapes of pan have different heat distribution which affects the number of pans,judging from the previous solution.According to the conclusion in the first model,the heat is distributed the most evenly on a circular pan rather than a rectangular one.However, the rectangular pans make fuller use of the space the space than circular ones.Both factors considered,a polygonal pan is chosen.A circle can be regard as a polygon whose number of boundaries tends to infinity. Except for rectangle,only regular hexagon and equilateral triangle can be closely placed.Because of the edges of equilateral triangle,heat dissipation is worse than rectangle.So,hexagonal pans are adopted after all the discussion.Considering the gaps near boundaries,we place the hexagonal pans closely attached each other on the long side L.There are two kinds of programs as shown below.Program1.Program2.Obviously,Program2is better than Program1when considering space utilization.So scheme 1is adopted.Then,design a size of each hexagonal pan to make the highest space utilization.With the aim of utilization,hexagonal pans has to be placed contact closely with each other on both sides.It is necessary to assume a aspect ratio of the oven to work out the number of pans(N ).Assume that the side length of a regular hexagon is a ,the length-width ratio of the oven is λand L ∆is the increment in discretization.Because the number of pans can not change continuously when ⋅⋅⋅=+∈3,2,1),1,(m m m n ,the equations would be as follows.⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅−====∆⋅+<⎥⎦⎤⎢⎣⎡∆⋅+−∆⋅+≤⋅=∆∆⋅+=<<=a W L n W L N Lk L W W L k L W L k L a L L k L L L W aW 23,810;23105000λ(6)Result:⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅==⋅+=⋅⋅⋅=−=+−⋅+=3,2,1,2233,2,1,1212130201k k n n N N k k n n N N Where 1N represents the number of pans when n is odd,2N represents the number of pans when n is even.The specific number of pans is depended on the width-length ratio of oven.The second part.Maximum the heat distribution of the pans.We define the average heat(H )as the ratio of total heat and total area of the pans.Aiming to get the most average heat,we set the width-length ratio of the oven λ.Space utilization is not considered here.A conclusion is easy to draw from Figure 8that a square area in the oven from 150mm to 350mm in length shares the most heat evenly.So the pans should beplaced mainly in this area.From model1we know that the corners of the oven are apt to gather heat.Besides,four more pans are added in the corners to absorb more heat. Because heat absorbing is the only aim,there is no need to consider space utilization. Circular pans can distribute heat more evenly than any other shape due to model1.So circular pans are used in Figure17.Figure8.Figure17.We set the heat of the pans in the most heated area(the middle row)as Q.Pans in the corners receive more heat but uneven theoretically.And the square of the four pans in the corners is so small compared with the total square that we set the heat of the four as Q too.When the length of oven(L)increases,the number of pans increases too. It makes the square of the gaps between pans bigger,meanwhile.If each pan has a same radius(r)and square(A),the equation about average heat,length-width ratio and number of pans would be(7).⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=+=⎥⎦⎤⎢⎣⎡⋅−====∆⋅+<⎦⎤⎢⎣⎡∆⋅+−∆⋅+≤⋅=∆∆⋅+=<<⋅=⋅⋅=...3,2,12;71021053410002k nN N r W L n W L N L k L W W L k L W L k L r L L k L L L W r A W r λπ(7)Here we get the most average heat (H ):29400WQ H ⋅=πThe third part.We discussed two different plans in the previous parts of the paper.One is aimed to get the most average heat,while the other aimed to place the most pans.The two plans are contradictory with each other,and can not be achieved together.Firstly,the weight of plan 1is P and the weight of plan 2is P −1.Obviously,this kind optimization has difficulty in solving and understanding.So we turn to another way to make it a easier and linear question.It has been set that the width of the oven is a constant W and there should be three pans at most in vertical direction.We make the weight P a proportion of the two plans.Thus the two plans could be achieved together due to proportion P and P −1,as shown in Figure18.Figure 18.As been told in model 1,the corners have a higher temperature than other parts of the oven.So plan 1is used in district 1(in Figure 10)and plan 2is used in district 2(in Figure 10).A better compromise could be reached in this way,as shown in Figure 19.Figure 19.Every pan has a square of A .Radius of circular ones is r .Side length of regular hexagon is a .1.1:23322=⇒⋅=⋅r a a r π(8)Based on the equation (8),if the pans are placed as shown in Figure 19,regular hexagons are placed full of district 1,the circular ones will be placed beyond the border line.If the circular ones are placed full of district 2,there will be more gaps in district 1,which will be wasted.So we change our plan of placing pans as Figure 20.Figure 20.The number of circular ones decreases by two,but the space in district 1is fully used,and no pan will be placed beyond the borderline.We assume that P is bigger than P −1,so that,the heat in district 1will be fully used.By simple calculating,we know that the ratio of the heat absorbed in circular pan (1H )and in regular hexagon (2H )is 1.2:1.Figure21.So,based on the pans placing plan,a equation on heat can be got as follow:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡−⋅−=⎥⎦⎤⎢⎣⎡−⋅====∆⋅+<⎥⎦⎤⎢⎣⎡∆⋅+−∆⋅+≤=∆∆⋅+=<<⋅=⋅==≈...3,2,1)1(,911233;23212kxWLPnxWLPnWLNLkLWWLkLWLkLxLLkLLLWraAxraλπ(9)Resolution:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=⋅⋅+⋅+⋅⋅+=⋅⋅+⋅+⋅⋅−+==⋅+⋅+=−=+−⋅+⋅+=...3,2,1)24(2.1)325()24(2.1)3215()2(232)12(12132221212111121211201k A N n Q Q n H A N n Q Q n H k n n n N N k n n n N N (10)1N and 1H means the number of pans and average heat absorbed when n is odd.2N and 2H means the number of pans and average heat absorbed when n is even.For example:(1)When 37.0=λ,6.0=P :16=N ,AQ H 075.1=.The best placing plan is:(2)When 37.0=λ,7.0=P :18=N ,AQ H ⋅=044.1.The best placing planis:(3)When 58.0=λ,6.0=P :12=N ,AQ H ⋅=067.1.The best placing plan is:A conclusion is easy to draw that when the ratio of width and length of the oven (λ)is a constant,the number of pans increases with an increasing P,but the average heat decreases (example (1)and (2)).When the weight P is a constant,the number of pans decreases with an increasing λ,and the average heat decreases also.So,the actual plan should be base on your specific needs.ConclusionIn conclusion,our team is very certain that the method we came up with is effective in heat distribution analysis.Based on our model,the more edges the pan has,the more evenly the heat distribute on.With the discretize-convert approach,we know that when the ratio of width and length of the oven (γ)is a constant,the number of pans increases with an increasing P ,but the average heat decreases.When the weight P is a constant,the number of pans decreases with an increasing γ,and the average heat decreases also.So,the actual plan should be base on your specific needs.Strengths &WeaknessesStrengths•Difficulties Avoided Avoided..In model 1,we turn to another way to work simulate the heat distribution instead of work on heat conduction directly.Firstly,we simulate heat radiation not heat conduction to keep away from the sophisticated partial differential equations.Then,we create a unique method to convert every variable from the whole space to section.In other words,we work everything out in heat radiation and convert them into heat contradiction.•Close to Reality.Our model considers both the thermal radiation and surface reflection,which is relatively close to the actual situation.•Flexibility Provided.Our algorithm does a great job in flexibility.The heat distribution map on sections are intercepted from the heat distribution maps of the entire space.All shapes of sections can be used in the algorithm.The heat distribution in the whole space is generated based on the location of the electrical heating tubes and the decay curve of the heat, which can be modified at any time.•Innovation.Based on our model,the space of an oven can be divided into six parts with different hear distribution.In order to make full use of the inner space,we invent a new pan which allows users to cook six different kinds of food at same time.An advertisement is published in the end of the paper.WeaknessesPan’’s Thermal Conductivity Ignored.•PanThe heat comes from not only the electrical heating tubes,but also heat conduction of the pans themselves.But the pan’s thermal conduction is ignored in the model,which may cause little inaccuracy.•Thermal Conductivity of Electrical Heating Tubes IgnoredIgnored..it is assumed that there are two electrical heating tubes in the oven and placed in a specific location.The initial temperature of the tubes is a desired constant temperature. In other words,the time electrical heating tubes spend to heating themselves is ignored.The simplification can cause some inaccuracy.simplification..•Linear simplificationIn model2,the length of the oven is discretized,so that the number of pans will changes linearly.calculating through simple integer linear method.This will lead to the result of our model is not accurate enough.ApplicationWe have discussed the heat distribution in the oven in model1.The heat distributionis shown in figure1and figure2.Figure1Figure2As shown,the edges of the oven are distributed the most heat.Areas on both sides of the,is distributed the least heat.While the middle area absorbs little less than theedges.So,we can separate the oven area into six parts,as shown bellow.Part1and part2are distributed the least heat and located the furthest from the heat source(the electrical heating tubes locate on the bottom of the oven).So these two parts absorb the least heat.Part3and part4are distributed the least heat but locating the nearest to the heat source.Part5located far from the bottom but distributed the most heat.So simply,we regard the heat of part3,part4and part5as the same.Part6 is distributed the most heat,and locating nearest to the bottom.So,the heat part6 absorbs is the most in the oven.Based on our conclusion above,we invent the iPan,a new combined pan,which can bake three kinds of food at the same time.For example,one wants to have a little bread,pieces of sausage,a chicken wing and a pizza for lunch.He will have to wait 30minutes at least for his lunch,if he just has one oven.As the Chinese saying goes,‘Bear paws and fish never come together’.By using iPan can solve the issue for him,he could put the bread in pan1,pizza in pan2,sausage in pan5and chicken wing in pan6,and power on.Thus,he can have his delicious lunch in at least10minutes.So,bear paws and fish come together.We make an advertisement for Brownie Gourmet Magazine in the end of the paper.Advertising SheetsReferences[1]Heat Radiation,/view/f5ed1619cc7931b765ce1599.html, Page.4[2]G.S.Ranganath,Black-body Radiation,/article/10.1007%2Fs12045-008-0028-7?LI=true#,February, 2013[3]Kaiqing Lu,The Chemical Basis of Heat Transfer,Journal of Higher Correspondence Education(Natural Sciences Edition),Vol.3:p.33,1996[4]Mark M.Meerschaert,Mathematical Modeling(Third Edition),China:China Machine Press,May.2009[5]Jianzhong Zhang,Monte Carlo Method,Mathematics in Practice and Theory,Vol.1p.28,1974[6]Shallow water equations,/wiki/Shallow_water_equations。
数学建模全国优秀论文范文

数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1.准备阶段主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
【VIP专享】2013年数模论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要一、问题重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。
由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要为了将碎纸片拼接在一起,而又无需耗费大量时间和人力。
本文利用计算机将图像数字化,用otsu 算法确定出图像二值化的最佳阈值,从而便能找出只包含0和1的图像矩阵(0代表黑色,1代表白色)。
在第一问中碎片数量小,我们很容易通过人力看出第一个碎片,提取其右边界数据,和别的碎片左边界数据一一比对,找出比对率最高的碎片。
为了使结果更加明显,更直接地找出匹配碎片,我们不比对数值为1的点,只找出值为0且一一对应的点的数量k ,利用程序计算出两个边界中0值点的数量num ,则配对比为:C=%100num2k ⨯ 第二三问数量大,待比较的边界增多。
为了解决图的最优划分问题,我们应用谱聚类算法的思想,对数据进行了处理,减少计算机比对时的运算量。
首先将二值化后的图像矩阵提取边界像素点,依0,1点分布特征,将其长分为5块,宽为2块(即均为每36个像素点为一块)。
通过软件算出各块0点个数,分别将每个边界的数据作为一个向量。
找出相匹配的碎片,即找出相似度最大的向量。
向量中带比对的数值均是一一对应的,因此,很自然地想到可以用距离来度量样本点间的相似程度。
对于定量变量,常用的是 Minkowski 距离来度量样本点间的相似程度:d q (x ,y )=qqk kk y x 1p1-⎥⎥⎦⎤⎢⎢⎣⎡∑= 当q=1时,我们得到绝对值距离:d (x ,y )=∑=p1-k k ky x利用计算机通过枚举法比较绝对值距离的大小,便能轻松找出相互匹配的碎片了。
关键字:otsu 算法 二值化 matlab 枚举法 Minkowski 距离一.问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
传统的拼接复原工作由人工完成,准确率较高,但由于效率很低,特别是当碎片数量巨大时,人工拼接很难在短时间内完成任务。
因此我们试图在计算机高度发展的基础上,开发碎纸片的自动拼接技术,以提高拼接复原效率。
1、建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片(仅纵切)数据进行拼接复原。
并写出人工干预的方式和时间点。
2、设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片(纵切和横切)数据进行拼接复原。
并写出人工干预的方式和时间点。
3、尝试设计相应的碎纸片拼接复原模型与算法,然后将附件5给出的一页英文印刷文字双面打印文件的碎片数据进行复原。
并写出人工干预的方式和时间点。
二、问题分析2.1问题一的分析问题一要求我们建立拼接复原模型和算法,将其附件1、2给出的中、英文各一页文件的碎纸片(仅纵切)数据进行拼接复原。
碎片切痕规则,且给出的每幅图像素均为1980×72,因此假设两个碎片匹配,则当其对齐拼接时,切断的字符能完全正确地被连接。
因此我们考虑从切割处入手。
观察可得共享一个切割边的碎片,当像素点无限接近于切割处时,两者的像素点是对称的。
因此我们利用计算机软件先将图片进行二值化处理,再选取最边上的一列像素点进行提取比对,利用各种方法进行对比,找出使比对结果最明显的方法。
再利用其找出各匹配的碎片。
2.2问题二的分析此问中横切与纵切的碎片数量多,面积小和需要考虑的边界数量多。
若延用问题一的方法,直接比对像素点,则循环过后会导致预算量太大,matlab无法计算。
因此我们将图片二值化处理后,再利用噪声处理的思想,将四个边界上个的像素点分块,算出各块黑色点个数,将各图的数据储存在矩阵中,则只用比对各矩阵的数据,利用模糊聚类的方法来比较,配对的碎片。
2.3问题三的分析问题三在问题二的基础上加上了正反面,加大了运算量,但我们问题二的解法已经尽量对数据进行了处理简化,此问依旧能延用,只需改动数据便能达到解题的目的。
三、模型假设1、该文字文件被碎纸机破碎后,没有受到其它因素影响而有其它的损坏。
2、该文字文件在被破碎之前文字数据正常,没有缺印、重印或字迹模糊、数据错位等现象。
3、利用的电脑软件计算误差小,可以忽略不计。
四、符号说明Minkowski 距离d qc 改进后的陪对比c0改进前的配对比num 边界中0值点的数量n1前景的点数csum前景的质量矩阵m1前景的平均灰度n1当前阈值下的背景的点数sum-csum当前阈值下的质量矩m2当前阈值下的平均灰度t前景与背景的分割阈值w前景点数占图像比例u平均灰度w1点数占图像比例u1。
平均灰度u图像的总平均灰度g 前景和背景图象的方差k位置与值均相同的点的数量p nm,二值化处理后的灰度矩阵元素五、模型的建立及求解5.1 问题一的模型建立及求解首先将图片输入matlab软件,便自动将图片处理为数据矩阵,此时便可取出边界点进行匹配,通过程序,算出位置与值均相同的点的数量num,我们能得出直接匹配率c:c0=1980num×100%例如:匹配附件1中的“008.bmp”与“001.bmp”运行程序(程序见附录)得:c=0.7712num=1527再用枚举法匹配出合适的碎片时,数据如下:num=1862 c 0 =0.9404我们发现是否匹配所反映出的比率差异并不大,不难发现,空白处均被识别为匹配,导致匹配率都很高,因此我们需要进行改进,然后我们发现当灰度为40的点和灰度为50的点匹配时,肉眼看来没有区别,而计算机却判别为不同,此时必然也会参数误差。
要解决这个问题,我们需要将图像数据处理为只有0和1(0代表黑色,1代表白色),至于判定是0还是1的准则,通过确定图像二值化最佳阈值即能实现。
阈值将原图象分成前景,背景两个图象。
前景:用n 1,csum,m 1来表示在当前阈值下的前景的点数,质量矩,平均灰度 后景:用n 1, sum-csum,m 2来表示在当前阈值下的背景的点数,质量矩,平均灰度 当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准, 在otsu 算法中这个衡量差别的标准就是最大类间方差。
记t 为前景与背景的分割阈值,前景点数占图像比例为w 0, 平均灰度为u 0;点数占图像比例为w 1,平均灰度为u 1。
则图像的总平均灰度为:u= w 0×u 0+ w 1× u 1。
前景和背景图象的方差:g= w 0 (u 0)×(u 0-u)+ w 1×(u 1-u) ×(u 1-u)=w0×w 1×(u 0- u 1) ×(u 0- u 1)我们得到阈值后便能实现二值化了:pnm ,=⎩⎨⎧≥<t)0(x x 1n m,n m,)(t得出二值化处理后的灰度矩阵:p=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋯⋯7219801198072111p p p p ∶提取灰度矩阵左右边界构成新的匹配向量q:q=(q 11,q 21……q11980 ) 或q=(q 172,q 272……q198072)接下来再来对二值化后的图片矩阵进行比对处理。
改写后的程序不再比对值为1的点了,此时利用以下公式计算:C=%100num2k ⨯ 此时我们再来看与合适碎片与不合适碎片的比对率: 不合适: K=35 C=0.14056 合适: K=176 C=0.90683由此看出差距明显,实现起来误差小,具有较高可行性。
通过编程实现循环查找,便能快速找出配对碎片了(代码见附录)。
得出的结论和人工干预方式和时间见附录。
5.2问题二、三的模型建立及求解首先处理数据,简化比对运算。
二值化处理方法同上,此问中图像像素为:180×72。
我们先从宏观观察的左右边界一般有3个字符密集处,2个空白处;上下1个密集处,1个空白处。
由此应左右边界分为5块,上下2块。
再从微观,即像素点的分配考虑,发现如此刚好每块有36个像素点。
此分法合理。
然后再由计算机算出每块0(即黑点)的个数,做好编号,依次储存在向量中。
由此,每个图像的数据我们均有记录之后,左右上下的边界都能通过比对找到匹配碎片了。
对于向量的匹配,我们通过计算出的绝对值距离来判断是否匹配:d (x ,y )=∑=p1-k k ky x如我们在matlab 软件中输入附件4的图片“000.bmp ”和“001.bmp ” 对000的上下左右边界处理后得出的向量a ,b ,c ,d :a=[0] [0] b=[0] [0] c=[0] [5] [0] [32] [0] d =[0] [2] [0] [33] [0]对001的上下左右边界处理后得出的向量a ,b ,c ,d : a=[0] [0] b=[32] [4] c=[0] [3] [32] [22] [5] d =[0] [23] [30] [9] [0] 得出无论怎么摆放,均无法匹配。
通过程序枚举算出000与102左右匹配。
102的数据: a=[0] [0] b=[0] [0] c=[0] [10] [0] [0] [0] d =[0] [5] [0] [32] [0]102的左边与000的右边绝对距离为:d (x ,y )=∑=p1-k k ky x=(0-0)+(5-5)+(0-0)+(32-32)+(0-0)=0由此例我们能看出匹配的两幅图的绝对值距离可以非常的小,我们通过多次试验发现此法可行性很高。