2017南通市第一初级中学一模数学试卷
江苏省南通市第一初级中学2017-2018学年八年级下学期期末考试数学试卷【Word版含答案】

南通市第一初级中学 2017- 2018 学年度第二学期期末考试八年级数学一、选择题1. 一元二次方程5x 2- 4x -1 = 0中,二次项系数与一次项系数的和为()A. 9B. -1C.1D. - 92. 一元二次方程 x2- 8x -1 = 0配方后可变形为()A. (x + 4)2 = 17B.(x + 4)2 = 15 C.(x - 4)2 = 17 D.(x - 4)2 = 153. 一组数据:1、 2 、 2 、3 ,若添加一个数据 2 ,则发生变化的统计量是( )A.平均数B.中位数C.众数D.方差4. 若关于 x 的一元二次方程 mx2- 2x -1 = 0无实数根,则一次函数 y = (m +1)x - m 的图形不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5. 一元二次方程(x +1)(x + 2)=10根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于-1D.有两个根,其中一根大于 26. 一件原件100 元的商品,经过两次加价后售价121元,设平均每次加价的百分数为 x ,则可列出正确的方程是( )A.100(1+ 2x )=121 B.100(1+ x )2 = 121 C.100(1+ 2x )2 = 121 D.100[1+ x + (1+ x )2 ]= 1217. 若点 M (- 2,y ), N (-1,y ), P (8, y )在抛物线 y = - 1 x 2+ 2x 上,则 y , y , y 由小到大的顺序123为( )21 2 3A. y 1<y 2<y 3B. y 2<y 3<y 1C. y 3<y 1<y 2D. y 3<y 2<y 18. α , β 为方程2x 2- 5x -1 = 0 的两个实数根,则 2α 2 + 3αβ + 5β 的值为()A. -13B.12C.14D.159. 在平面直角坐标系中,点 A (4,-2), B (0,2), C (a ,-a ), a 为实数,当⊗ABC 的周长最小时, a 的值是( ) A. -1B. 0C.1D10. 已知关于 x 的二次函数 y = x 2- 2x - 2 ,当a ≤ x ≤ a + 2 时,函数有最大值1,则 a 的值为( )A. -1或1B.1或- 3C. -1或3D. 3 或- 321 二、填空题:(本大题共 8 个小题,每小题 3 分,共 24 分)在每小题中,请将答案直接填在答题卡中对应的横线上11. 解一元二次方程 x2- 3x + c = 0 时,正确解得一根为 x =2 ,则另一根的值为12. 将抛物线 y = x 2的图象向下平移 1 个单位,则平移后的抛物线的解析式为13. 二次函数图象关于 y 轴对称,最小值为-1,且经过(1,1) ,则该函数解析式为14. 方程2x2+ 3x -1 = 0 的两个根为 x , x, 则 1 + 1的值等于 x 1x 215. 一组数据:1, 2, x , 2, 3 的平均数是 2 ,则这组数据的众数是16. 如果数据 x 1, x 2,..., x n 的方差是 3,则另一组数据 2x 1, 2x 2,..., 2x n 的方差是17. 如图,某大桥有一段抛物线型的拱梁,抛物线的表达式为 y = ax2+ b x ,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的水平桥面OC ,当小强骑自行车行驶10 秒时和26 秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需秒18. 无论 x 为何值,关于 x 的代数式 x2+ 2ax - 3b 的值都是非负数,则 a + b 的最大值为三、解答题:(本大题共 10 个小题,共 96 分)请在答题卡指定区域内作答,解答时应写出文字说明、推理19.(本题 10 分)解下列方程:(1) x2- 4 = 3x (2) (2x + 3)2= (x -1)220.(本题 8 分)已知一次函数 y = kx + b 的图象经过点(-1, -5) ,且与正比例函数 y =1x 的图象相交于点2(2, m ) .求(1) m 的值;(2) 一次函数 y = kx + b 的解析式(3) 这两个函数图象与 x 轴所围成的三角形面积1 221.(本题14 分)甲、乙两名学生进行射击练习,两人在相同条件下各射击10 次,其结果统计如下:命中环数5678910甲命中环数的次数142111乙命中环数的次数124210(1)根据表中的相关数据,计算甲乙两人命中环数的平均数、众数、方差,并填入下表:平均数众数方差甲乙(2)根据所学的统计知识,利用上述数据评价甲乙两人的射击水平。
2017年江苏省南通市中考数学试卷含答案

------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
27.(本小题满分 13 分)
我们知道,三角形的内心是三条角平分线的交点.过三角形内心的一条直线与两边相
交,两交点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,
则把这条线段叫做这个三角形的“內似线”.
(1)等边三角形“內似线”的条数为
;
ቤተ መጻሕፍቲ ባይዱ
(2)如图, △ABC 中, AB AC ,点 D 在 AC 上,且 BD BC AD .求证: BD 是
课外阅读时间 t 频数 百分比
10≤t <30
4
8%
30≤t <50
8
16%
50≤t <70
a
40%
70 ≤t <90
16
b
90 ≤t <110
2
4%
合计
50
100%
请根据图表中提供的信息回答下列问题:
(1) a
,b
;
(2)将频数分布直方图补充完整;
(3)若全校有 900 名学生,估计该校有多少学生平均每天的课外阅读时间不少于
无
26.(本小题满分 10 分) 效
南通市、泰州市2017届数学一模(含参考答案)

2021年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每题5分,共计70分.1.函数的最小正周期为.2.设集合A={1,3},B={a+2,5},A∩B={3},那么A∪B=.复数z=〔1+2i〕2,其中i为虚数单位,那么z的实部为.34.口袋中有假设干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为,摸出黄球的概率为,那么摸出蓝球的概率为.5.如图是一个算法的流程图,那么输出的n的值为.6.假设实数x,y满足那么z=3x2y的最大值为.+7.抽样统计甲、乙两名学生的 5次训练成绩〔单位:分〕,结果如下:学生第1次第2次第3次第4次第5次甲658070857 5乙807075807 0那么成绩较为稳定〔方差较小〕的那位学生成绩的方差为.8.如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,那么三棱锥D1﹣A1BD的体积为cm3.9.在平面直角坐标系xOy中,直线2x+y=0为双曲线=1〔a>0,b>0〕的一条渐近线,那么该双曲线的离心率为.10.?九章算术?中的“竹九节〞问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面 4节的容积共3升,下面3节的容积共4升,那么该竹子最上面一节的容积为升.11.在△ABC中,假设?+2?=?,那么的值为.12.两曲线f〔x〕=2sinx,g〔x〕=acosx,相交于点P.假设两曲线在点P处的切线互相垂直,那么实数a的值为.1 3.函数2+2〕>f〔x〕的解集用区间表示为.f〔x〕=|x|+|x﹣4|,那么不等式f〔x1 4.在平面直角坐标系xOy 中,B,C为圆x2+y2=4上两点,点〔,〕,且⊥,那么线段A11ABACBC的长的取值范围为.二、解答题:本大题共6小题,共计90分.15.如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB= .1〕求cosβ的值;2〕假设点A的横坐标为,求点B的坐标.16.如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:1〕直线PA∥平面BDE;2〕平面BDE⊥平面PCD.17.如图,在平面直角坐标系xOy中,椭圆〔a>b>0〕的离心率为,焦点到相应准线的距离为1.〔1〕求椭圆的标准方程;〔2〕假设P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.18.如图,某机械厂要将长6m,宽2m的长方形铁皮在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到N处,FN交边BC于点P〕,再沿直线PE裁剪.ABCD进行裁剪.点F为AD的中点,点EMNFE 处〔点C,D分别落在直线BC下方点M,1〕当∠EFP=时,试判断四边形MNPE的形状,并求其面积;2〕假设使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.19.函数f〔x〕=ax2﹣x﹣lnx,a∈R.1〕当时,求函数f〔x〕的最小值;2〕假设﹣1≤a≤0,证明:函数f〔x〕有且只有一个零点;3〕假设函数f〔x〕有两个零点,求实数a的取值范围.20.等差数列{an}的公差d不0,且,,⋯,,⋯〔k1<k2<⋯<kn<⋯〕成等比数列,公比q.1〕假设k1=1,k2=3,k3=8,求的;〔2〕当何,数列{kn}等比数列;〔3〕假设数列{k}等比数列,且于任意n∈N*,不等式恒成立,求a的取范.1南通市2021届高三第一次研数学Ⅱ〔附加〕[做本包括四小,多做,按作答的前两分.解答写出文字明、明程或演算步.[修明]2作答.假设4-1:几何21.O的直径AB=4,C AO的中点,弦DE点C且足CE=2CD,求△OCE的面.[修4-2:矩与]22.向量是矩A的属于特征1的一个特征向量.在平面直角坐系xOy中,点P〔1,1〕在矩A的作用下P'〔3,3〕,求矩A.[修4-4:坐系与参数方程]23.在极坐系中,求直被曲ρ=4sin所θ截得的弦.[修4-5:不等式]24.求函数的最大.[必做]共2小,分20分〕25.如,在棱2的正方体ABCDA1B1C1D1中,P棱C1D1的中点,Q棱BB1上的点,且BQ=λBB1〔λ≠0〕.〔1〕假设,求AP与AQ所成角的余弦值;〔2〕假设直线AA1与平面APQ所成的角为45°,求实数λ的值.26.在平面直角坐标系xOy中,抛物线x2=2py〔p>0〕上的点M〔m,1〕到焦点F的距离为2,1〕求抛物线的方程;2〕如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.2021年江苏省南通市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每题5分,共计70分.1.函数的最小正周期为.【考点】三角函数的周期性及其求法.【分析】根据函数y=Asin〔ωx+φ〕的周期等于,得出结论.【解答】解:函数的最小正周期为,故答案为:.2.设集合A=1,3,B=a2,5,A∩B=3,那么A∪B=,3,5}{}{+}{【考点】并集及其运算.【分析】由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},那么A∪B={1,3,5}.故答案为:{1,3,5}.3.复数z=〔12i2,其中i为虚数单位,那么z的实部为﹣3〕+【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘法运算化简得答案.【解答】解:∵z=〔1+2i〕2=1+4i+〔2i〕2=﹣3+4i,z的实部为﹣3.故答案为:﹣3.4.口袋中有假设干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为,摸出黄球的概率为,那么摸出蓝球的概率为.【考点】概率的根本性质.【分析】利用对立事件的概率公式,可得结论.【解答】解:∵摸出红球的概率为,摸出黄球的概率为,∴摸出蓝球的概率为1﹣﹣.故答案为.5.如图是一个算法的流程图,那么输出的n的值为5 .【考点】程序框图.【分析】由的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.6.假设实数x,y满足那么z=3x+2y的最大值为7 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.【解答】解:作出不等式组对应的平面区域如图:〔阴影局部〕.由z=3x+2y得y=﹣x+z平移直线y=﹣x+ z,由图象可知当直线y=﹣x+ z经过点A时,直线y=﹣x+ z的截距最大,此时z最大.由,解得A〔1,2〕,代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.7.抽样统计甲、乙两名学生的 5次训练成绩〔单位:分〕,结果如下:学生第1次第2次第3次第4次第5次甲658070857 5乙807075807 0那么成绩较为稳定〔方差较小〕的那位学生成绩的方差为20 .【考点】极差、方差与标准差.【分析】根据题意,分别求出甲、乙的平均数与方差,比拟可得S甲2>S乙2,那么乙的成绩较为稳定;即可得答案.【解答】解:根据题意,对于甲,其平均数=,其方差2[〔65﹣75〕2+=75=80﹣75〕2+〔70﹣75〕2+〔85﹣75〕2+〔75﹣75〕2]=50;对于乙,其平==75,其方=2+70﹣75〕2〔75﹣均数差S〔75〕[〔80﹣75〕+ 2+〔80﹣75〕2+〔70﹣75〕2]=20;比拟可得:S甲2>S乙2,那么乙的成绩较为稳定;故答案为:20.8.如图,在正四棱柱 ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,那么三棱锥D1﹣A1BD的体积为cm3.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥D1﹣A1BD的体积= = ,由此能求出结果.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1﹣A1BD的体积:= === = 〔cm3〕.故答案为:.9.在平面直角坐标系xOy中,直线2x+y=0为双曲线=1〔a>0,b>0〕的一条渐近线,那么该双曲线的离心率为.【考点】双曲线的简单性质.【分析】利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.【解答】解:直线2x+y=0为双曲线 =1〔a>0,b>0〕的一条渐近线,可得b=2a,即c2﹣a2=4a2,可得= .故答案为:.10.?九章算术?中的“竹九节〞问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共3升,下面3节的容积共4升,那么该竹子最上面一节的容积为升.【考点】等差数列的通项公式.【分析】设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.【解答】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.11.在△ABC中,假设?2?=?,那么的值为+【考点】平面向量数量积的运算;正弦定理.【分析】根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.【解答】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由?+2?=?,得ac?cosB+2bc?cosA=ba?cosC,由余弦定理得:a2+c2﹣b2〕+〔b2+c2﹣a2〕=〔b2+a2﹣c2〕,化简得=2,=,由正弦定理得= = .故答案为:.12.两曲线f〔x〕=2sinx,g〔x〕=acosx,相交于点P.假设两曲线在点P处的切线互相垂直,那么实数a的值为.【考点】利用导数研究曲线上某点切线方程.【分析】联立两曲线方程,可得tanx= = ,a>0,设交点P〔m,n〕,分别求出f〔x〕,g 〔x〕的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,再由同角根本关系式,化弦为切,解方程即可得到a的值.【解答】解:由f〔x〕=g〔x〕,即2sinx=acosx,即有tanx= = ,a>0,设交点P〔m,n〕,f〔x〕=2sinx的导数为f′〔x〕=2cosx,g〔x〕=acosx的导数为g′〔x〕=﹣asinx,由两曲线在点P处的切线互相垂直,可得2cosm?〔﹣asinm〕=﹣1,且tanm=,那么=1,分子分母同除以cos2m,即有=1,即为a2=1+ ,解得a= .故答案为:.13.函数f〔x〕=|x|+|x﹣4|,那么不等式f〔x2+2〕>f〔x〕的解集用区间表示为.【考点】绝对值不等式的解法.【分析】令g〔x〕=f〔x2+2〕﹣f〔x〕=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.【解答】解:令g〔x〕=f〔x2+2〕﹣f〔x〕=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|,x≥4时,g〔x〕=2x2﹣2x+4>0,解得:x≥4;≤x<4时,g〔x〕=2x2﹣4>0,解得:x>或x<﹣,故<x<4;0≤x<时,g〔x〕=0>0,不合题意;﹣≤x<0时,g〔x〕=2x>0,不合题意;x<﹣时,g〔x〕=2x2+2x﹣4>0,解得:x>1或x<﹣2,故x<﹣2,故答案为:.14.在平面直角坐标系2y2=4上两点,点A〔1,1〕,且AB⊥AC,那么线段xOy中,B,C为圆x+BC的长的取值范围为[,].【考点】直线和圆的方程的应用.【分析】画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.【解答】解:在平面直角坐标系xOy中,B,C为圆x2+y2=4上两点,点〔,〕,且⊥,11ABAC如下图当BC⊥OA时,BC取得最小值或最大值.由,可得B〔,1〕或〔,1〕,||由,可得C〔1,〕或〔1,﹣〕解得BCmin= = ,BCmax= = .故答案为:[ ,].二、解答题:本大题共6小题,共计90分.15.如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点 A.以OA为始边作锐角β,其终边与单位圆交于点B,AB= .1〕求cosβ的值;2〕假设点A的横坐标为,求点B的坐标.【考点】任意角的三角函数的定义.【分析】〔1〕由条件利用余弦定理,求得cosβ的值.2〕利用任意角的三角函数的定义,同角三角函数的根本关系,两角和差的正弦、余弦公式,求得点B的坐标.【解答】解:〔1〕在△AOB中,由余弦定理得,AB2=OA2+OB2﹣2OA?OBcos∠AOB,所以,= ,即.〔2〕因为,,∴.因为点A的横坐标为,由三角函数定义可得,,因为α为锐角,所以.所以,,即点.16.如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:1〕直PA∥平面BDE;2〕平面BDE⊥平面PCD.【考点】平面与平面垂直的判定;直与平面平行的判定.【分析】〔1〕OE,明OE∥PA.然后明PA∥平面BDE.2〕明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后明平面BDE⊥平面PCD.【解答】明:〔1〕OE,因O平行四形ABCD角的交点,所以OAC中点.又因EPC的中点,所以OE∥PA.⋯4分又因OE?平面BDE,PA?平面BDE,所以直PA∥平面BDE.⋯6分2〕因OE∥PA,PA⊥PD,所以O E⊥PD.⋯8分因OP=OC,EPC的中点,所以OE⊥PC.⋯10分又因PD?平面PCD,PC?平面PCD,PC∩PD=P,所以OE⊥平面PCD.⋯12分又因OE?平面BDE,所以平面BDE⊥平面PCD.⋯14分.17.如,在平面直角坐系xOy中,〔a>b>0〕的离心率,焦点到相准的距离1.〔1〕求的准方程;〔2〕假设P上的一点,点O作OP的垂交直于点Q,求的.【考点】直与的位置关系;的准方程.【分析】〔1〕由条件可得,,然后求解的方程.〔2〕由意知OP的斜率存在.当OP的斜率0,求解果;当OP的斜率不0,直OP方程y=kx.立方程,推出.OQ222.然后求解即可.=2k+【解答】解:〔1〕由意得,,,⋯2分解得,c=1,b=1.所以的方程.⋯4分〔2〕由意知OP的斜率存在.当OP的斜率0,,,所以.⋯6分当OP的斜率不0,直OP方程y=kx.由得〔2k2+1〕x2,解得,所以,=2所以.⋯9分因OP⊥OQ,所以直OQ的方程.由得,所以OQ2=2k2+2.⋯12分所以.上,可知.⋯14分.18.如,某机械厂要将6m,2m的方形皮ABCD行裁剪.点 F AD的中点,点E在BC上,裁剪先将四形CDFE沿直EF翻折到MNFE〔点C,D分落在直BC下方点M,N,FN交BC于点P〕,再沿直PE裁剪.1〕当∠EFP=,判断四形MNPE的形状,并求其面;2〕假设使裁剪得到的四形MNPE面最大,出裁剪方案,并明理由.【考点】函数模型的与用.【分析】〔1〕当∠EFP=,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四形MNPE矩形.即可得出.〔2〕解法一:,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四形MNPE 面= = ,化利用根本不等式的性即可得出.解法二:BE=tm,3<t<6,ME=6 t.可得PE=PF,即.,NP=3T+ ,四形MNPE面= = ,利用根本不等式的性即可得出.【解答】解:〔1〕当∠EFP=,由条件得∠EFP=∠EFD=∠FEP=.所以∠FPE=.所以FN⊥BC,四形MNPE矩形.⋯3分所以四形MNPE的面S=PN?MN=2m.⋯5分〔2〕解法一:,由条件,知∠EFP=∠EFD=∠FEP=θ.所以,,.⋯8分由得所以四形MNPE面====⋯12分.当且当,即取“=.〞⋯14分此,〔*〕成立.答:当,沿直PE裁剪,四形MNPE面最大,最大m2.⋯16分解法二:BE=tm,3<t<6,ME=6t.因∠EFP=∠EFD=∠FEP,所以PE=PF,即.所以,⋯8.分由得所以四形MNPE面==⋯1 2分=.当且当,即取“=.〞⋯14分此,〔*〕成立.答:当点E距B点m,沿直PE裁剪,四形MNPE面最大,最大m2.⋯16分.19.函数f〔x〕=ax2x lnx,a∈R.1〕当,求函数f〔x〕的最小;2〕假设1≤a≤0,明:函数f〔x〕有且只有一个零点;3〕假设函数f〔x〕有两个零点,求数a的取范.【考点】数在最大、最小中的用;根的存在性及根的个数判断;利用数研究函数的极.【分析】〔1〕当,.求出函数的数,得到极点,然后判断性求解函数的最.〔2〕由f〔x〕=ax2 x lnx,得.当a≤0,函数f〔x〕在〔0,+∞〕上最多有一个零点,当1≤a≤0,f〔1〕=a1<0,,推出果.〔3〕由〔2〕知,当a≤0,函数f〔x〕在〔0,+∞〕上最多有一个零点.明a>0,由f〔x〕=ax2xlnx,得,明函数f〔x〕在〔0,x0〕上减;在〔0,∞〕+上增.要使得函数f〔x〕在〔0,+∞〕上有两个零点,只需要.通函数h〔x〕=2lnx+x1在〔0,+∞〕上是增函数,推出0<a<1.当0<a<1,函数f〔x〕有两个零点.明:lnx≤x1.t〔x〕=x 1 lnx,利用数求解函数的最即可.【解答】解:〔1〕当,.所以,〔x>0〕.⋯2分令f'〔x〕=0,得x=2,当x∈〔0,2〕,f'〔x〕<0;当x∈〔2,+∞〕,f'〔x〕>0,所以函数f〔x〕在〔0,2〕上减,在〔2,+∞〕上增.所以当x=2,f〔x〕有最小.⋯4分〔2〕由f〔x〕=ax2 x lnx,得所以当a≤0,,函数f〔x〕在〔0,+∞〕上减,所以当a≤0,函数f〔x〕在〔0,+∞〕上最多有一个零点.⋯6分因当1≤a≤0,f〔1〕=a 1<0,,所以当1≤a≤0,函数f〔x〕在〔0,+∞〕上有零点.1a0,函数〕有且只有一个零点.⋯8上,当≤≤〔分3〕由〔2〕知,当a≤0,函数f〔x〕在〔0,+∞〕上最多有一个零点.因函数f〔x〕有两个零点,所以a>0.⋯9分由f〔x〕=ax2x lnx,得,令g〔x〕=2ax2 x 1.因g〔0〕= 1<0,2a>0,所以函数g〔x〕在〔0,+∞〕上只有一个零点,x0.当x∈〔0,x0〕,g〔x〕<0,f'〔x〕<0;当x∈〔x0,+∞〕,g〔x〕>0,f'〔x〕>0.所以函数f 〔x〕在〔0,x0〕上减;在〔x0,+∞〕上增.要使得函数f〔x〕在〔0,+∞〕上有两个零点,只需要函数f〔x〕的极小f〔x0〕<,即.又因,所以2lnx0x01>0,+又因函数h〔x〕=2lnxx1在〔0,∞〕上是增函数,且h〔1〕=0,++所以x0>1,得.又由,得,所以0<a<1.⋯13分以下当0<a<1,函数f〔x〕有两个零点.当0<a<1,,所以.因,且f〔x0〕<0.所以函数f〔x〕在上有一个零点.又因〔因lnx≤x1〕,且f〔x0〕<0.所以函数f〔x〕在上有一个零点.所以当0<a<1,函数f〔x〕在内有两个零点.上,数a的取范〔0,1〕.⋯16分下面明:lnx≤x1.t〔x〕=x 1 lnx,所以,〔x>0〕.令t'〔x〕=0,得x=1.当x∈〔0,1〕,t'〔x〕<0;当x∈〔1,+∞〕,t'〔x〕>0.所以函数t〔x〕在〔0,1〕上减,在〔1,+∞〕上增.所以当x=1,t〔x〕有最小t〔1〕=0.所以t〔x〕=x1lnx≥0,得lnx≤x1成立.20.等差数列{an}的公差d不0,且,,⋯,,⋯〔k1<k2<⋯<kn<⋯〕成等比数列,公比q.〔1〕假设k1,2,3,求的;=1k=3k=8〔2〕当何,数列{kn}等比数列;〔3〕假设数列{kn}等比数列,且于任意n∈N*,不等式恒成立,求a1的取范.【考点】数列与不等式的合;等比数列的性.【分析】〔1〕由得:a13821的.,a,a成等比数列,从而4d=3ad,由此能求出〔2〕数列{kn}等比数列,,推出,从而,而.由此得到当,数列{kn}等比数列.〔3〕由数列{kn等比数列,1,.得到,a=d恒成立,再明于任意的正数ε〔0<ε<1〕,存在正整数n1,使得.要,即lnn11ε1的取范.<+【解答】解:〔1〕由可得:a1,a3,a8成等比数列,所以,⋯2分整理可得:4d2=3a1d.因d≠0,所以.⋯4分〔2〕数列{kn等比数列,.}又因,,成等比数列,所以.整理,得.因,所以1〔2kk〕=d〔2k kk〕.23213因2kk1k3,所以a1=d,即.⋯6≠+当,an=a1+〔n1〕d=nd,所以.又因,所以.所以,数列{kn等比数列.}上,当,数列{kn}等比数列.⋯8分〔3〕因数列{kn等比数列,由〔〕知1,.2a =d,an1〔〕1.= a+n1d=na因于任意n∈N*,不等式恒成立.所以不等式,即,恒成立.⋯10分下面明:于任意的正数ε〔0<ε<1〕,存在正整数n1,使得.要,即lnn1<1ε.nlnq+ln因,,解不等式,即,可得,所以.不妨取,当n1>n0,原式得.所以,所以a1≥2,即得a1的取范是[2,+∞〕.⋯16分南通市2021届高三第一次研数学Ⅱ〔附加〕[做本包括四小,2作答.假设多做,按作答的前两分.解答写出文字明、明程或演算步.[修4-1:几何明]21的直径AB=4AO的中点,弦DE点且足CE=2CDOCE.,,求△的面.【考点】与有关的比例段.【分析】由相交弦定理,得CD,DE中点H,OH⊥DE,利用勾股定理求出OH,即可求出△OCE的面.【解答】解:CD=x,CE=2x.因CA=1,CB=3,由相交弦定理,得CA?CB=CD?CE,所以1×3=x?2x=2x2,所以.⋯2分取DE中点H,OH⊥DE.因,所以⋯6.分又因,所以△OCE的面.⋯10分.[修4-2:矩与]22.向量是矩A的属于特征1的一个特征向量.在平面直角坐系xOy中,点P 〔1,1〕在矩A的作用下P'〔3,3〕,求矩A.【考点】特征与特征向量的算.【分析】,根据矩,列方程,即可求得a、b、c和d的,求得A.【解答】解:,因向量是矩A的属于特征1的一个特征向量,所以.所以⋯4分因点P〔1,1〕在矩A的作用下P'〔3,3〕,所以.所以⋯8分解得a=1,b=2,c=2,d=1,所以.⋯10分.[修4-4:坐系与参数方程]23.在极坐系中,求直被曲ρ=4sin所θ截得的弦.【考点】曲的极坐方程.【分析】极坐方程化直角坐方程,立,求出A,B的坐,即可求直ρ=4sinθ截得的弦.所【解答】解:以极点O坐原点,极x的正半建立平面直角坐系.直的直角坐方程y=x①,⋯3分被曲曲ρ=4sinθ直角坐方程的x2+y2 4y=0②.⋯6分由①②得或⋯8分所以A〔0,0〕,B〔2,2〕,所以直被曲ρ=4sinθ截得的弦所AB=.⋯10分.[修4-5:不等式]24.求函数的最大.【考点】柯西不等式在函数极中的用;三角函数的最.【分析】利用二倍角公式化函数的解析式,利用柯西不等式求解函数的最即可.【解答】解:⋯2分由柯西不等式得,⋯8分所以ymax=5,此.所以函数的最大5.⋯10分.[必做]共2小,分20分〕25.如,在棱2的正方体ABCDA1B1C1D1中,P棱C1D1的中点,Q棱BB1上的点,且BQ=λBB1 〔λ≠0〕.〔1〕假设,求AP与AQ所成角的余弦;〔2〕假设直AA1与平面APQ所成的角45°,求数λ的.【考点】直与平面所成的角.【分析】〔1〕以正交基底,建立如所示空直角坐系 A xyz.求出,,利用数量求解AP与AQ所成角的余弦.〔2〕,.求出平面APQ的法向量,利用空向量的数量求解即可.【解答】解:以正交基底,建立如所示空直角坐系A xyz.〔1〕因,,所以= .所以AP与AQ所成角的余弦.⋯4分〔2〕由意可知,,.平面APQ的法向量=〔x,y,z〕,即令z=2,x=2λ,y=2λ.所以=〔2λ,2λ,2〕.⋯6分又因直AA1与平面APQ所成角45°,所以|cos<,>|= = ,2.⋯10可得5λ4λ=0,又因λ≠0,所以分.26.在平面直角坐系xOy中,抛物x2=2py〔p>0〕上的点M〔m,1〕到焦点F的距离2,1〕求抛物的方程;2〕如,点E是抛物上异于原点的点,抛物在点E的切与x相交于点P,直PF与抛物相交于A,B两点,求△EAB面的最小.【考点】数在最大、最小中的用;抛物的准方程;直与抛物的位置关系.【分析】〔1〕求出抛物x2〔>〕的准方程,由抛物定,得到,即可求解=2pyp0p=2抛物的方程.〔2〕求出函数的.点,得到抛物在点E的切方程.求出.推出直PF的方程,点到直PF的距离,立求出AB,表示出△EAB的面,构造函数,通函数的数利用性求解最即可.【解答】解:〔1〕抛物x2〔>〕的准方程,=2pyp0因M〔m,1〕,由抛物定,知,所以,即p=2,所以抛物的方程x2=4y.⋯3分〔2〕因,所以.点,抛物在点E的切方程.令y=0,,即点.因,F〔0,1〕,所以直PF的方程,即2x+ty t=0.点到直PF的距离.⋯5分立方程消元,得22〔2t216〕yt2=0.++因△=〔2t2+16〕24t4=64〔t2+4〕>0,所以,,所以.⋯7分所以△EAB的面.不妨〔x>0〕,.因>0,所以,g'〔x〕<0,所以g〔x〕在g〔x〕在上增.上减;上,g'〔x〕所以当,.所以△EAB的面的最小.⋯10分.南通市、泰州市2017届数学一模(含参考答案) 2021年3月4日41 / 4141。
2017年江苏省南通市高考数学一模试卷

2017年江苏省南通市高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.函数的最小正周期为______ .【答案】【解析】解:函数的最小正周期为,故答案为:.根据函数y=A sin(ωx+φ)的周期等于,得出结论.本题主要考查三角函数的周期性及其求法,利用了y=A sin(ωx+φ)的周期等于,属于基础题.2.设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= ______ .【答案】{1,3,5}【解析】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.由交集的定义,可得a+2=3,解得a,再由并集的定义,注意集合中元素的互异性,即可得到所求.本题考查集合的交集、并集运算,注意运用定义法,以及集合中元素的互异性,属于基础题.3.复数z=(1+2i)2,其中i为虚数单位,则z的实部为______ .【答案】-3【解析】解:∵z=(1+2i)2=1+4i+(2i)2=-3+4i,∴z的实部为-3.故答案为:-3.直接利用复数代数形式的乘法运算化简得答案.本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为______ .【答案】0.17【解析】解:∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1-0.48-0.35=0.17.故答案为0.17.利用对立事件的概率公式,可得结论.本题考查对立事件的概率公式,熟练掌握概率的基本性质是求解本题的关键.5.如图是一个算法的流程图,则输出的n的值为______ .【答案】5【解析】解:当n=1,a=1时,满足进行循环的条件,执行循环后,a=5,n=3;满足进行循环的条件,执行循环后,a=17,n=5;满足进行循环的条件,退出循环故输出n值为5故答案为:5.由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a<16的最大n值,模拟程序的运行过程可得答案.本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行.6.若实数x,y满足则z=3x+2y的最大值为______ .【答案】7【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+2y得y=-x+z平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=3x+2y得z=3×1+2×2=7.即目标函数z=3x+2y的最大值为7.故答案为:7.作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.【答案】20【解析】解:根据题意,对于甲,其平均数甲==75,其方差S甲2=[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50;对于乙,其平均数乙==75,其方差S乙2=[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20;比较可得:S甲2>S乙2,则乙的成绩较为稳定;故答案为:20.根据题意,分别求出甲、乙的平均数与方差,比较可得S甲2>S乙2,则乙的成绩较为稳定;即可得答案.本题考查方差的计算,注意掌握方差的计算公式.8.如图,在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1-A1BD的体积为______ cm3.【答案】【解析】解:∵在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,∴三棱锥D1-A1BD的体积:=====(cm3).故答案为:.三棱锥D1-A1BD的体积==,由此能求出结果.本题考查三棱锥的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.9.在平面直角坐标系x O y中,直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,则该双曲线的离心率为______ .【答案】【解析】解:直线2x+y=0为双曲线=1(a>0,b>0)的一条渐近线,可得b=2a,即c2-a2=4a2,可得=.故答案为:.利用双曲线的渐近线方程得到a,b关系,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,考查计算能力.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为______ 升.【答案】【解析】解:设最上面一节的容积为a1,由题设知,解得.故答案为:.设最上面一节的容积为a1,利用等差数列的通项公式、前n项和公式列出方程组,能求出结果.本题考查等差数列的首项的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.11.在△ABC中,若•+2•=•,则的值为______ .【答案】【解析】解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,由•+2•=•,得ac•cos B+2bc•cos A=ba•cos C,由余弦定理得:(a2+c2-b2)+(b2+c2-a2)=(b2+a2-c2),化简得=2,∴=,由正弦定理得==.故答案为:.根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出的值.本题考查了平面向量的数量积以及余弦定理和正弦定理的应用问题,是综合性题目.12.已知两曲线f(x)=2sinx,g(x)=acosx,,相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为______ .【答案】【解析】解:由f(x)=g(x),即2sinx=acosx,即有tanx==,a>0,设交点P(m,n),f(x)=2sinx的导数为f′(x)=2cosx,g(x)=acosx的导数为g′(x)=-asinx,由两曲线在点P处的切线互相垂直,可得2cosm•(-asinm)=-1,且tanm=,则=1,分子分母同除以cos2m,即有=1,即为a2=1+,解得a=.故答案为:.联立两曲线方程,可得tanx==,a>0,设交点P(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为-1,再由同角基本关系式,化弦为切,解方程即可得到a的值.本题考查导数的运用:求切线的斜率,两直线垂直的条件:斜率之积为-1,同时考查同角三角函数的基本关系式,考查化简整理的运算能力,属于中档题.13.已知函数f(x)=|x|+|x-4|,则不等式f(x2+2)>f(x)的解集用区间表示为______ .【答案】,,【解析】解:令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,x≥4时,g(x)=2x2-2x+4>0,解得:x≥4;≤x<4时,g(x)=2x2-4>0,解得:x>或x<-,故<x<4;0≤x<时,g(x)=0>0,不合题意;-≤x<0时,g(x)=2x>0,不合题意;x<-时,g(x)=2x2+2x-4>0,解得:x>1或x<-2,故x<-2,故答案为: ,,.令g(x)=f(x2+2)-f(x)=x2+2+|x2-2|-|x|-|x-4|,通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可.本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.14.在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,则线段BC的长的取值范围为______ .【答案】[,]【解析】解:在平面直角坐标系x O y中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,如图所示当BC⊥OA时,|BC|取得最小值或最大值.由,可得B(,1)或(,1),由,可得C(1,)或(1,-)解得BC min==,BC max==.故答案为:[,].画出图形,当BC⊥OA时,|BC|取得最小值或最大值,求出BC坐标,即可求出|BC|的长的取值范围.本题考查直线与圆的方程的综合应用、考查数形结合以及转化思想的应用,考查计算能力,属于难题.二、解答题(本大题共12小题,共154.0分)15.如图,在平面直角坐标系x O y中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=.(1)求cosβ的值;(2)若点A的横坐标为,求点B的坐标.【答案】解:(1)在△AOB中,由余弦定理得,AB2=OA2+OB2-2OA•OB cos∠AOB,所以,∠=,即.(2)因为,,,∴.因为点A的横坐标为,由三角函数定义可得,,因为α为锐角,所以.所以,,即点,.【解析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.本题主要考查余弦定理,任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式的应用,属于基础题.16.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:(1)直线PA∥平面BDE;(2)平面BDE⊥平面PCD.【答案】证明:(1)连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.又因为E为PC的中点,所以OE∥PA.…4分又因为OE⊂平面BDE,PA⊄平面BDE,所以直线PA∥平面BDE.…6分(2)因为OE∥PA,PA⊥PD,所以OE⊥PD. (8)分因为OP=OC,E为PC的中点,所以OE⊥PC. (10)分又因为PD⊂平面PCD,PC⊂平面PCD,PC∩PD=P,所以OE⊥平面PCD.…12分又因为OE⊂平面BDE,所以平面BDE⊥平面PCD.…14分.【解析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.本题考查平面与平面垂直的判定定理的应用,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.17.如图,在平面直角坐标系x O y中,已知椭圆(a>b>0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过点O作OP的垂线交直线于点Q,求的值.【答案】解:(1)由题意得,,,…2分解得,c=1,b=1.所以椭圆的方程为.…4分(2)由题意知OP的斜率存在.当OP的斜率为0时,,,所以.…6分当OP的斜率不为0时,设直线OP方程为y=kx.由得(2k2+1)x2=2,解得,所以,所以.…9分因为OP⊥OQ,所以直线OQ的方程为.由得,所以OQ2=2k2+2.…12分所以.综上,可知.…14分.【解析】(1)由已知条件可得,,然后求解椭圆的方程.(2)由题意知OP的斜率存在.当OP的斜率为0时,求解结果;当OP的斜率不为0时,设直线OP方程为y=kx.联立方程组,推出.OQ2=2k2+2.然后求解即可.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.18.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.【答案】解:(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.所以∠FPE=.所以FN⊥BC,四边形MNPE为矩形.…3分所以四边形MNPE的面积S=PN•MN=2m2.…5分(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.所以,,.…8分由>><<得>>,<<所以四边形MNPE面积为== ==…12分.当且仅当,即,时取“=”.…14分此时,(*)成立.答:当∠时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分解法二:设BE=tm,3<t<6,则ME=6-t.因为∠EFP=∠EFD=∠FEP,所以PE=PF,即.所以,.…8分由<<>>得<<>,<所以四边形MNPE面积为==…12分=.当且仅当,即时取“=”.…14分此时,(*)成立.答:当点E距B点m时,沿直线PE裁剪,四边形MNPE面积最大,最大值为m2.…16分.【解析】(1)当∠EFP=时,由条件得∠EFP=∠EFD=∠FEP=.可得FN⊥BC,四边形MNPE 为矩形.即可得出.(2)解法一:设∠<<,由条件,知∠EFP=∠EFD=∠FEP=θ.可得,,.四边形MNPE面积为==,化简利用基本不等式的性质即可得出.解法二:设BE=tm,3<t<6,则ME=6-t.可得PE=PF,即.,NP=3-T+,四边形MNPE面积为==,利用基本不等式的性质即可得出.本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质、三角函数的单调性应与求值,考查了推理能力与计算能力,属于中档题.19.已知函数f(x)=ax2-x-lnx,a∈R.(1)当时,求函数f(x)的最小值;(2)若-1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.【答案】解:(1)当时,.所以′,(x>0).…2分令f'(x)=0,得x=2,当x∈(0,2)时,f'(x)<0;当x∈(2,+ )时,f'(x)>0,所以函数f(x)在(0,2)上单调递减,在(2,+ )上单调递增.所以当x=2时,f(x)有最小值.…4分(2)由f(x)=ax2-x-lnx,得′,>.所以当a≤0时,′<,函数f(x)在(0,+ )上单调递减,所以当a≤0时,函数f(x)在(0,+ )上最多有一个零点.…6分因为当-1≤a≤0时,f(1)=a-1<0,>,所以当-1≤a≤0时,函数f(x)在(0,+ )上有零点.综上,当-1≤a≤0时,函数f(x)有且只有一个零点.…8分(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.因为函数f(x)有两个零点,所以a>0.…9分由f(x)=ax2-x-lnx,得′,>,令g(x)=2ax2-x-1.因为g(0)=-1<0,2a>0,所以函数g(x)在(0,+ )上只有一个零点,设为x0.当x∈(0,x0)时,g(x)<0,f'(x)<0;当x∈(x0,+ )时,g(x)>0,f'(x)>0.所以函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要函数f(x)的极小值f(x0)<0,即<.又因为,所以2lnx0+x0-1>0,又因为函数h(x)=2lnx+x-1在(0,+ )上是增函数,且h(1)=0,所以x0>1,得<<.又由,得,所以0<a<1.…13分以下验证当0<a<1时,函数f(x)有两个零点.当0<a<1时,>,所以<<.因为>,且f(x0)<0.所以函数f(x)在,上有一个零点.又因为>(因为lnx≤x-1),且f(x0)<0.所以函数f(x)在,上有一个零点.所以当0<a<1时,函数f(x)在,内有两个零点.综上,实数a的取值范围为(0,1).…16分下面证明:lnx≤x-1.设t(x)=x-1-lnx,所以′,(x>0).令t'(x)=0,得x=1.当x∈(0,1)时,t'(x)<0;当x∈(1,+ )时,t'(x)>0.所以函数t(x)在(0,1)上单调递减,在(1,+ )上单调递增.所以当x=1时,t(x)有最小值t(1)=0.所以t(x)=x-1-lnx≥0,得lnx≤x-1成立.【解析】(1)当时,.求出函数的导数,得到极值点,然后判断单调性求解函数的最值.(2)由f(x)=ax2-x-lnx,得′,>.当a≤0时,函数f(x)在(0,+ )上最多有一个零点,当-1≤a≤0时,f(1)=a-1<0,>,推出结果.(3)由(2)知,当a≤0时,函数f(x)在(0,+ )上最多有一个零点.说明a>0,由f(x)=ax2-x-lnx,得′,>,说明函数f(x)在(0,x0)上单调递减;在(x0,+ )上单调递增.要使得函数f(x)在(0,+ )上有两个零点,只需要<.通过函数h(x)=2lnx+x-1在(0,+ )上是增函数,推出0<a<1.验证当0<a<1时,函数f(x)有两个零点.证明:lnx≤x-1.设t(x)=x-1-lnx,利用导数求解函数的最值即可.本题考查函数的导数的综合应用,函数的单调性以及函数的极值,构造法以及分类讨论思想的应用,考查计算能力.20.已知等差数列{a n}的公差d不为0,且,,…,,…(k1<k2<…<k n<…)成等比数列,公比为q.(1)若k1=1,k2=3,k3=8,求的值;(2)当为何值时,数列{k n}为等比数列;(3)若数列{k n}为等比数列,且对于任意n∈N*,不等式>恒成立,求a1的取值范围.【答案】解:(1)由已知可得:a1,a3,a8成等比数列,所以,…2分整理可得:4d2=3a1d.因为d≠0,所以.…4分(2)设数列{k n}为等比数列,则.又因为,,成等比数列,所以.整理,得.因为,所以a1(2k2-k1-k3)=d(2k2-k1-k3).因为2k2≠k1+k3,所以a1=d,即.…6分当时,a n=a1+(n-1)d=nd,所以.又因为,所以.所以,数列{k n}为等比数列.综上,当时,数列{k n}为等比数列.…8分(3)因为数列{k n}为等比数列,由(2)知a1=d,>.,a n=a1+(n-1)d=na1.因为对于任意n∈N*,不等式>恒成立.所以不等式>,即>,<<恒成立.…10分下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.因为<,则<,解不等式<,即>,可得>,所以>.不妨取,则当n1>n0时,原式得证.所以<,所以a1≥2,即得a1的取值范围是[2,+ ).…16分【解析】(1)由已知得:a1,a3,a8成等比数列,从而4d2=3a1d,由此能求出的值.(2)设数列{k n}为等比数列,则,推导出,从而,进而.由此得到当时,数列{k n}为等比数列.(3)由数列{k n}为等比数列,a1=d,>.得到>,<<恒成立,再证明对于任意的正实数ε(0<ε<1),总存在正整数n1,使得<.要证<,即证lnn1<n1lnq+lnε.由此能求出a1的取值范围.本题考查等差数列的首项与公差的比值的求法,考查满足等比数列的等差数列的首项与公差的比值的确定,考查数列的首项的取值范围的求法,综合性强,难度大,对数学思维要求较高.21.已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.【答案】解:设CD=x,则CE=2x.因为CA=1,CB=3,由相交弦定理,得CA•CB=CD•CE,所以1×3=x•2x=2x2,所以.…2分取DE中点H,则OH⊥DE.因为,所以.…6分又因为,所以△OCE的面积.…10分.【解析】由相交弦定理,得CD,DE中点H,则OH⊥DE,利用勾股定理求出OH,即可求出△OCE 的面积.本题考查的是相交弦定理,垂径定理与勾股定理,考查学生分析解决问题的能力,属于中档题.22.已知向量是矩阵A的属于特征值-1的一个特征向量.在平面直角坐标系x O y中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.【答案】解:设,因为向量是矩阵A的属于特征值-1的一个特征向量,所以.所以…4分因为点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),所以.所以…8分解得a=1,b=2,c=2,d=1,所以.…10分.【解析】设,根据矩阵变换,列方程组,即可求得a、b、c和d的值,求得A.本题考查矩阵的变换,考查方程思想,体现转化思想,属于中档题.23.在极坐标系中,求直线被曲线ρ=4sinθ所截得的弦长.【答案】解:以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.直线的直角坐标方程为y=x①,…3分曲线ρ=4sinθ的直角坐标方程为x2+y2-4y=0②.…6分由①②得或…8分所以A(0,0),B(2,2),所以直线被曲线ρ=4sinθ所截得的弦长AB=.…10分.【解析】极坐标方程化为直角坐标方程,联立,求出A,B的坐标,即可求直线被曲线ρ=4sinθ所截得的弦长.本题考查极坐标方程化为直角坐标方程,考查方程思想,比较基础.24.求函数的最大值.【答案】解:…2分由柯西不等式得,…8分所以y max=5,此时.所以函数的最大值为5.…10分.【解析】利用二倍角公式化简函数的解析式,利用柯西不等式求解函数的最值即可.本题考查是的最值,柯西不等式在最值中的应用,考查转化思想以及计算能力.25.如图,在棱长为2的正方体ABCD-A1B1C1D1中,P为棱C1D1的中点,Q为棱BB1上的点,且BQ=λBB1(λ≠0).(1)若,求AP与AQ所成角的余弦值;(2)若直线AA1与平面APQ所成的角为45°,求实数λ的值.【答案】解:以,,为正交基底,建立如图所示空间直角坐标系A-xyz.(1)因为,,,,,,所以<,>=.所以AP与AQ所成角的余弦值为.…4分(2)由题意可知,,,,,,.设平面APQ的法向量为=(x,y,z),则即令z=-2,则x=2λ,y=2-λ.所以=(2λ,2-λ,-2).…6分又因为直线AA1与平面APQ所成角为45°,所以|cos<,>|==,可得5λ2-4λ=0,又因为λ≠0,所以.…10分.【解析】(1)以,,为正交基底,建立如图所示空间直角坐标系A-xyz.求出,,,,,,利用数量积求解AP与AQ所成角的余弦值.(2),,,,,.求出平面APQ的法向量,利用空间向量的数量积求解即可.本题考查空间向量数量积的应用,直线与平面所成角的求法,异面直线所成角的求法,考查计算能力.26.在平面直角坐标系x O y中,已知抛物线x2=2py(p>0)上的点M(m,1)到焦点F的距离为2,(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.【答案】解:(1)抛物线x2=2py(p>0)的准线方程为,因为M(m,1),由抛物线定义,知,所以,即p=2,所以抛物线的方程为x2=4y.…3分(2)因为,所以′.设点,,,则抛物线在点E处的切线方程为.令y=0,则,即点,.因为,,F(0,1),所以直线PF的方程为,即2x+ty-t=0.则点,到直线PF的距离为.…5分联立方程消元,得t2y2-(2t2+16)y+t2=0.因为△=(2t2+16)2-4t4=64(t2+4)>0,所以,,所以.…7分所以△EAB的面积为.不妨设(x>0),则′.因为,时,g'(x)<0,所以g(x)在,上单调递减;,上,g'(x)>0,所以g(x)在,上单调递增.所以当时,.所以△EAB的面积的最小值为.…10分.【解析】(1)求出抛物线x2=2py(p>0)的准线方程为,由抛物线定义,得到p=2,即可求解抛物线的方程.(2)求出函数的′.设点,,,得到抛物线在点E处的切线方程为.求出,.推出直线PF的方程,点,到直线PF的距离,联立求出AB,表示出△EAB的面积,构造函数,通过函数的导数利用单调性求解最值即可.本题考查抛物线与直线的位置关系的应用,函数的导数与函数的最值的求法,考查转化思想以及构造法的应用,难度比较大.。
2017年南通市通州区中考数学一模试卷含答案解析

2017年江苏省南通市通州区中考数学一模试卷一、选择题(每题3分,共24分)1.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)2.当二次函数y=x2+4x+9取最小值时,x的值为()A.﹣2 B.1 C.2 D.93.二次函数y=x2+2x+2与坐标轴的交点个数是()A.0个B.1个C.2个D.3个4.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()A.600 m2B.625 m2C.650 m2D.675 m25.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm8.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.二、填空题(每题4分,共32分)9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n 时,y的值为.11.将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x 轴上,则m=.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.13.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为.14.如图所示,点A是半圆上一个三等分点,点B是的中点,点P是直径MN 上一动点,若⊙O的直径为2,则AP+BP的最小值是.15.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于.16.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为.三、解答题17.计算:.18.已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(3,0),C(0,﹣3)三点,求这个二次函数的解析式.19.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.20.如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.已知二次函数y=﹣2x2+4x+6.(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.(2)当x在什么范围内时,y随x的增大而增大?(3)当x在什么范围内时,y≤6?23.如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c过A、B两点.(1)求直线AB和这个抛物线的解析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?24.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.2017年江苏省南通市通州区中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共24分)1.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.2.当二次函数y=x2+4x+9取最小值时,x的值为()A.﹣2 B.1 C.2 D.9【考点】二次函数的最值.【分析】把二次函数整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵y=x2+4x+9=(x+2)2+5,∴当x=﹣2时,二次函数有最小值.故选A.3.二次函数y=x2+2x+2与坐标轴的交点个数是()A.0个B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.【解答】解:∵△=22﹣4×1×2=﹣4<0,∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,故选B.4.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()A.600 m2B.625 m2C.650 m2D.675 m2【考点】二次函数的应用.【分析】先求出最大面积的表达式,再运用性质求解.【解答】解:设矩形的一边长为xm,则其邻边为(50﹣x)m,若面积为S,则S=x(50﹣x)=﹣x2+50x=﹣(x﹣25)2+625.∵﹣1<0,∴S有最大值.当x=25时,最大值为625,故选:B.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.6.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)【考点】圆周角定理;坐标与图形性质;含30度角的直角三角形.【分析】首先设⊙A与x轴另一个的交点为点D,连接CD,由∠COD=90°,根据90°的圆周角所对的弦是直径,即可得CD是⊙A的直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ODC的度数,继而求得点C的坐标.【解答】解:设⊙A与x轴另一个的交点为点D,连接CD,∵∠COD=90°,∴CD是⊙A的直径,即CD=10,∵∠OBC=30°,∴∠ODC=30°,∴OC=CD=5,∴点C的坐标为:(0,5).故选A.7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm【考点】点与圆的位置关系.【分析】点P应分为位于圆的内部于外部两种情况讨论.当点P在圆内时,直径=最小距离+最大距离;当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选C.8.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为()A.2cm B.cm C.D.【考点】垂径定理;勾股定理.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.二、填空题(每题4分,共32分)9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n 时,y的值为3.【考点】抛物线与x轴的交点.【分析】根据二次函数对称轴方程x=﹣可以求得m+n,即x的值.然后将x 的值代入抛物线方程求得y的值.【解答】解:∵抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),∴该抛物线的对称轴方程为﹣=,即m+n=0,∴x=m+n=0,∴y=0+3=3,即y=3.故答案是:3.11.将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x 轴上,则m=2.【考点】二次函数图象与几何变换.【分析】把二次函数解析式整理成顶点式形式,再根据向下平移横坐标不变,纵坐标减写出平移后的解析式,然后根据顶点在x轴上,纵坐标为0列式计算即可得解.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵图象向下平移1个单位,∴平移后的二次函数解析式为y=(x﹣1)2+m﹣2,∵顶点恰好落在x轴上,∴m﹣2=0,解得m=2.故答案为:2.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10.【考点】垂径定理.【分析】首先连接OD,并设OD=x,然后在△ODE中,由勾股定理,求出OD 的长,即可求出⊙O的直径为多少.【解答】解:如图,连接OD,设OD=x,,∵AB是⊙O的直径,而且CD⊥AB于E,∴DE=CE=6÷2=3,在Rt△ODE中,x2=(x﹣1)2+32,解得x=5,∵5×2=10,∴⊙O的直径为10.故答案为:10.14.如图所示,点A是半圆上一个三等分点,点B是的中点,点P是直径MN 上一动点,若⊙O的直径为2,则AP+BP的最小值是.【考点】圆心角、弧、弦的关系;轴对称﹣最短路线问题.【分析】作点B关于MN的对称点B′,连接A B′交MN于点P,连接BP,由三角形两边之和大于第三边即可得出此时AP+BP=AB′最小,连接OB′,根据点A 是半圆上一个三等分点、点B是的中点,即可得出∠AOB′=90°,再利用勾股定理即可求出AB′的值,此题得解.【解答】解:作点B关于MN的对称点B′,连接AB′交MN于点P,连接BP,此时AP+BP=AB′最小,连接OB′,如图所示.∵点B和点B′关于MN对称,∴PB=PB′.∵点A是半圆上一个三等分点,点B是的中点,∴∠AON=180°÷3=60°,∠B′ON=∠AON÷2=30°,∴∠AOB′=∠AON+∠B′ON=90°.∵OA=OB′=1,∴AB′=.故答案为:.15.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于60°.【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,又由圆周角定理,求得∠A的度数,继而求得答案.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠C=30°,∴∠ABD=90°﹣∠A=60°.故答案为:60°.16.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为1cm或7cm.【考点】垂径定理;勾股定理.【分析】两条平行的弦可能在圆心的同旁或两旁,应分两种情况进行讨论.【解答】解:圆心到两条弦的距离分别为d1==4cm,d2==3cm.故两条弦之间的距离d=d1﹣d2=1cm或d=d1+d2=7cm三、解答题17.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用绝对值的代数意义化简,第二项利用立方根定义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=﹣2+1﹣3=﹣4.18.已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(3,0),C(0,﹣3)三点,求这个二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】由于已知了抛物线与x的两交点坐标,则可设交点式y=a(x+1)(x﹣3),然后把C点坐标代入计算出a即可.【解答】解:设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×1×(﹣3)=﹣3,解得a=1,所以这个二次函数的解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3.19.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.【考点】垂径定理.【分析】如图,过点O作OM⊥AB于点M.根据垂径定理得到AM=BM.然后利用等腰三角形“三线合一”的性质推知EM=FM,故AE=BE.【解答】证明:如图,过点O作OM⊥AB于点M,则AM=BM.又∵OE=OF∴EM=FM,∴AE=BF.20.如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.【考点】垂径定理;勾股定理.【分析】根据勾股定理求得AB的长,再点C作CE⊥AB于点E,由垂径定理得出AE,即可得出BD的长.【解答】解:(1)∵在三角形ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,点C作CE⊥AB于点E,则AD=2AE,AC2=AE•AB,即32=AE×5∴AE=1.8,∴AD=2AE=2×1.8=3.6∴BD=AB﹣AD=5﹣3.6=1.4.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.【解答】解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=4.22.已知二次函数y=﹣2x2+4x+6.(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.(2)当x在什么范围内时,y随x的增大而增大?(3)当x在什么范围内时,y≤6?【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)利用配方法把二次函数y=x2﹣2x﹣3化为顶点式,即可得出其对称轴方程及顶点坐标;根据x、y轴上点的坐标特点分别另y=0求出x的值,令x=0求出y的值即可.(2)根据开口方向和对称轴即可确定其增减性;(3)令y=0求得x的值并结合开口方向确定答案即可.【解答】解:(1)∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴对称轴是x=1,顶点坐标是(1,8);令y=0,则﹣2x2+4x+6=0,解得x1=﹣1,x2=3;∴图象与x轴交点坐标是(﹣1,0)、(3,0).(2)∵对称轴为:x=1,开口向下,∴当x≤1时,y随x的增大而增大;(3)令y=﹣2x2+4x+6=6解得:x=0或x=2∵开口向下∴当x≤0或x≥2时y≤6.23.如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c过A、B两点.(1)求直线AB和这个抛物线的解析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?【考点】二次函数综合题.【分析】(1)求出OB,把A、B的坐标代入y=﹣x2+bx+c和y=kx+e求出即可;(2)求出D的坐标,再根据面积公式求出即可;(3)求出M、N的坐标,求出MN的值,再化成顶点式,即可求出答案.【解答】解:(1)∵在Rt△AOB中,tan∠ABO=,OA=2,即=,∴0B=4,∴A(0,2),B(4,0),把A、B的坐标代入y=﹣x2+bx+c得:,解得:b=,∴抛物线的解析式为y=﹣x2+x+2,设直线AB的解析式为y=kx+e,把A、B的坐标代入得:,解得:k=﹣,e=2,所以直线AB的解析式是y=﹣x+2;(2)过点D作DE⊥y轴于点E,由(1)抛物线解析式为y=﹣x2+x+2=﹣(x﹣)2+,即D的坐标为(,),则ED=,EO=,AE=EO﹣OA=,S△ABD=S梯形DEOB﹣S△DEA﹣S△AOB=×(+4)×﹣×﹣4×2=;(3)由题可知,M、N横坐标均为t.∵M在直线AB:y=﹣x+2上∴M(t,﹣t+2)∵N在抛物线y=﹣x2+x+2上∴M(t,﹣t2+t+2),∵作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N,∴MN=﹣t2+t+2﹣(﹣+2)=﹣t2+4t=﹣(t﹣2)2+4,其中0<t<4,,∴当t=2时,MN最大=4所以当t=2时,MN的长度l有最大值,最大值是4.24.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【考点】二次函数的应用.【分析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将x=45代入求出即可;(3)当y=10000时,代入求出即可;(4)利用配方法求出二次函数最值即可得出答案.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.2017年4月18日。
江苏省南通市第一初级中学17—18学年七年级上学期期末考试数学试题$832465

南通市第一初级中学 2017-2018 学年度第一学期期末考试初一数学(试卷满分:150 分 考试时间:120 分钟)一、选择题(30 分)1. 如果 a=b ,则下列式子不一定成立的是( ) A.a+c=b+c B.ac=bc C.22b a = D.cb c a=2. 已知下列方程:①x 22-x =;② 0.5x=1;③ 1-x 83x=;④8x 4-x 2=;⑤x=0;⑥0y 2x =+.属于一元一次方程的有( )A.5个B.4个C.3个D.2个 3.解方程163-x 2-21x =+,去分母正确的是( )A. 63-x 2-)1x (3=+B. 13-x 2-)1x (3=+C.12)3-x 2(-)1x (3=+ D.6)3-x 2()1x (3=-+4.在实数1010010001.0,27228-433π,,,,中无理数有( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个5. 如图,一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是( )A.教B.育C.创D.市6. 下列说法正确的个数是()①射线AB 与射线BA 是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B 是AC 的中点.A.1 个B. 2 个C.3 个D. 4 个7.如图,小强从A 处出发沿北偏东70°方向行走,走至B 处,又沿着北偏西30°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转80°B. 右转80°C.右转100°D.左转100°8. 如图,AB∥CD,∠P=40°,∠D=100°,则∠ABP 的度数是()A. 110°B. 120°C. 130°D. 140°A. 5 个B. 4 个C. 3 个D. 2 个第7题第8题第15题9. 点P 为直线l外一点,点A、B、C 为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P到直线l的距离为()A. 4cmB. 6cmC. 小于4cmD. 不大于4cm10. 小林沿着笔直的公路靠右匀速行走,发现每隔5 分钟从背后驶过一辆101 路公交车,每隔3 分钟从迎面驶来一辆101 路公交车.假设每个每辆101 路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A. 3 分钟B. 3.75 分钟C. 4 分钟D. 5 分钟二、填空题(24 分)11. 命题“同位角相等,两直线平行.”的题设是_________.12. 已知关于x的方程3x-2a=7 的解是2,则a的值为_________ .13. 若∠α=38°46′,则∠α的余角为_______.14. 若一个正数的两个平方根分别是2a-1 和-a+5,这个正数是________.15. 如图,将△ABE 向右平移3cm 得到△DCF,如果△ABE 的周长是12cm,那么四边形ABFD 的周长是___________cm.16. 已知a,b 为实数,且02015=.+,求_______a2016b-12=+-1(b)a17. 如果∠α与∠β的两边分别平行,∠α比∠β的三倍少24°,则∠α的度数是_________度.18. 定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为n(其k2中k 是使n为奇数的正整数),并且重复运算,如取n=26,则k2则当n=898 时,第2018 次“F”运算的结果是_________ .三、解答题(96 分)19. (10 分) (1)计算:227--|2-2|)5-(32++(2)解方程:131-x 61x 5=++20.(8 分)如图,在边长为 1 个单位长度的小正方形组成的网格中(1)把△ABC 进行平移,得到△A ′B ′C ′,使点 A 与A ′ 对应,请在网格中画出△A ′B ′C ′; (2)线段AA ′与线段CC ′的位置关系是:_____(填“平行”或“相交”); (3)求出△ABC 的面积.21.(7 分)如图,AB∥CD,∠1=∠2,∠BAC= 65°. 将求∠AGD 的过程填写完整。
2017年中考数学模拟试卷 (含答案解析) (2)

2017年江苏省南通市启东市中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)4的倒数是()A.4 B.﹣4 C.D.﹣2.(3分)下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C.=±3 D.=﹣23.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>14.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.(3分)如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.(3分)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形7.(3分)下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差9.(3分)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.10.(3分)如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.(2分)方程=1的根是x=.12.(2分)已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.13.(2分)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.14.(2分)一元二次方程x2+x﹣2=0的两根之积是.15.(2分)如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC 的度数是度.16.(2分)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B 的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.(2分)如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.18.(2分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题:(本大题共8小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.20.(1)解方程:+=4.(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.24.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?25.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.26.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.2017年江苏省南通市启东市中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2017•启东市一模)4的倒数是()A.4 B.﹣4 C.D.﹣【分析】乘积是1的两数互为倒数,据此进行计算即可.【解答】解:由题可得,4的倒数是.故选:C.2.(3分)(2016•昆明)下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C.=±3 D.=﹣2【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选D.3.(3分)(2013•武汉)式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.4.(3分)(2016•河南)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.5.(3分)(2010•昆明)如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm【分析】圆锥的侧面积=,把相应数值代入即可求解.【解答】解:设母线长为R,由题意得:65π=,解得R=13cm.故选D.6.(3分)(2017•启东市一模)下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形【分析】由菱形的判定、矩形的性质、全等三角形的判定、平行四边形的性质分别进行判断,即可得出结论.【解答】解:A、对角线互相垂直的四边形是菱形,不正确;B、矩形的对角线相等,正确;C、有两边及一角对应相等的两个三角形全等,不正确;D、平行四边形是轴对称图形,不正确;故选:B.7.(3分)(2017•启东市一模)下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°【分析】根据四边形、等边三角形,等腰梯形的性质,结合各选项进行判断即可.【解答】解:A、四边形不具有稳定性,原说法错误,故本选项错误;B、等边三角形不是中心对称图形,说法错误,故本选项错误;C、等腰梯形的对角线不一定互相垂直,说法错误,故本选项错误;D、任意多边形的外角和是360°,说法正确,故本选项正确;故选D.8.(3分)(2010•宿迁)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选B.9.(3分)(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC=x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.10.(3分)(2017•启东市一模)如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选A.二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.(2分)(2016•湖州)方程=1的根是x=﹣2.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进行检验即可.【解答】解:两边都乘以x﹣3,得:2x﹣1=x﹣3,解得:x=﹣2,检验:当x=﹣2时,x﹣3=﹣5≠0,故方程的解为x=﹣2,故答案为:﹣2.12.(2分)(2016•盐城)已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是8π.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.13.(2分)(2016•泰州)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE 与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE :S△ABC=(AD:AB)2=1:9,故答案为:1:9.14.(2分)(2017•启东市一模)一元二次方程x2+x﹣2=0的两根之积是﹣2.【分析】根据根与系数的关系,即可求得答案.【解答】解:设一元二次方程x2+x﹣2=0的两根分别为α,β,∴αβ=﹣2.∴一元二次方程x2+x﹣2=0的两根之积是﹣2.故答案为:﹣2.15.(2分)(2009•崇左)如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是19度.【分析】先根据圆周角定理,求出∠C的度数,再根据两条直线平行,内错角相等,得∠OAC=∠C.【解答】解:∵∠AOB=38°∴∠C=38°÷2=19°∵AO∥BC∴∠OAC=∠C=19°.16.(2分)(2016•宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE 中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.17.(2分)(2017•启东市一模)如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.【分析】过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=b,AD=OE=a,进而表示出ED及OE+BD的长,即可表示出B坐标;由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.【解答】解:过A作AE⊥x轴,过B作BD⊥AE,∵∠OAB=90°,∴∠OAE+∠BAD=90°,∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE,在△AOE和△BAD中,,∴△AOE≌△BAD(AAS),∴AE=BD=b,OE=AD=a,∴DE=AE﹣AD=b﹣a,OE+BD=a+b,则B(a+b,b﹣a);∵A与B都在反比例图象上,得到ab=(a+b)(b﹣a),整理得:b2﹣a2=ab,即()2﹣﹣1=0,∵△=1+4=5,∴=,∵点A(a,b)为第一象限内一点,∴a>0,b>0,则=.故答案为.18.(2分)(2016•淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F 为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.三、解答题:(本大题共8小题,共84分.)19.(2009•江苏)计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.【分析】按照实数的运算法则依次计算,注意负指数为正指数的倒数;任何非0数的0次幂等于1.【解答】解:(1)原式=2﹣1+2=3.(2)原式=.20.(2017•启东市一模)(1)解方程:+=4.(2)解不等式组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先解每个不等式,两个不等式组的解集的公共部分就是不等式组的解集.【解答】解:(1)去分母得:x﹣5x=4(2x﹣3),解得:x=1,经检验x=1是分式方程无解;(2),∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2.21.(2017•启东市一模)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.【分析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.(2016•龙东地区)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.(2)用总数减去A、C、D中的人数,即可解决,画出条形图即可.(3)用样本估计总体的思想解决问题.【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.23.(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN ﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.24.(2017•启东市一模)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B 种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.25.(2014•烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【分析】方法一:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.方法二:(1)略.(2)利用垂直公式及中点公式求出点B关于直线AC的对称点B’坐标,并得出B’与点D重合.(3)分别求出点A,C,E,D坐标,并证明直线ED与AC斜率相等.【解答】方法一:解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴ED∥AC.方法二:(1)略.(2)设C点坐标为(t,0),B点关于直线AC的对称点为B′,∵∠ACB=90°,∴AC⊥BC,∴K AC×K BC=﹣1,∵OA=,∴A(0,),B(2,),C(t,0),∴=﹣1,∴t(t﹣2)=﹣1,∴t=1,C(1,0),∴,,∴B′x=0,B′Y=﹣,∴B关于直线AC的对称点即为点D.(3)∵A(0,),B(2,),∴,解得:x1=2(舍),x2=﹣2,∴E(﹣2,),D(0,﹣),A(0,),C(1,0),∴K ED=,K AC=,∴K ED=K AC,∴ED∥AC.26.(2016•北京)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.【分析】(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定义可知,MN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与x轴的夹角为45°,由因为点N在圆O上,所以该直线MN与圆O一定要有交点,由此可以求出m 的范围.【解答】解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=﹣x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1参与本试卷答题和审题的老师有:szl;sjzx;zhjh;wdxwzk;sd2011;lanchong;家有儿女;caicl;bjy;三界无我;郝老师;sks;zcx;星期八;心若在;守拙;弯弯的小河;xiu;自由人;王学峰;zgm666(排名不分先后)菁优网2017年4月11日。
南通一模数学试题及答案

南通一模数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的。
)1. 若函数f(x) = x^2 - 4x + 3,求f(2)的值。
A. -1B. 3C. 5D. 72. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,判断三角形ABC的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 计算下列极限:lim(x→0) (sin(x)/x)。
A. 0B. 1C. π/2D. 24. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。
A. {1, 2}B. {2, 3}C. {3, 4}D. {1, 4}5. 若方程2x - 3y = 6的解为(x, y),求y/x的值。
A. -2/3B. 2/3C. 3/2D. -3/26. 计算下列定积分:∫(0 to 1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 17. 已知向量a = (3, -2),向量b = (1, 2),求向量a·b。
A. -1B. 1C. 5D. -58. 计算下列二项式展开式中x^2的系数:(x + 2)^3。
A. 4B. 6C. 8D. 129. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x)。
A. 3x^2 - 12x + 11B. 3x^2 - 12x + 6C. 3x^2 - 6x + 11D. 3x^2 - 6x + 610. 计算下列复数的模:z = 3 + 4i。
A. 5B. √(3^2 + 4^2)C. √(9 + 16)D. 7二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = 2x + 3,求f(-1)的值。
12. 计算下列三角函数值:sin(π/6)。
13. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5。