江苏省南通市第一初级中学2019-2020学年度第一学期七年级数学期末试题(PDF 有答案)

合集下载

2019-2020学年江苏省南通市崇川区、港闸区七年级(上)期末数学试卷解析版

2019-2020学年江苏省南通市崇川区、港闸区七年级(上)期末数学试卷解析版

2019-2020学年江苏省南通市崇川区、港闸区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.2020的绝对值等于()A.2020B.﹣2020C.D.﹣2.某经济开发区深入实施环境污染整治,每年减少污水排放167000吨.将167000用科学记数法表示为()A.167×103B.16.7×104C.1.67×105D.0.167×1063.一个正方体的表面展开图可以是下列图形中的()A.B.C.D.4.下列图形,不是柱体的是()A.B.C.D.5.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段6.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13B.2(x+1)+3x=13C.2x+3(x+1)=13D.2x+3(x﹣1)=137.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.8.如图,学校(记作A)在蕾蕾家(记作B)南偏西20°的方向上,若∠ABC=90°,则超市(记作C)在蕾蕾家的()A.南偏东60°的方向上B.南偏东70°的方向上C.北偏东70°的方向上D.北偏东60°的方向上9.若a2+2ab=﹣10,b2+2ab=16,则多项式a2+4ab+b2与a2﹣b2的值分别为()A.6,26B.﹣6,26C.6,﹣26D.﹣6,﹣2610.察下列图形:若图形(1)中阴影部分的面积为1,图形(2)中阴影部分的面积为,图形(3)中阴影部分的面积为,图形(4)中阴影部分的面积为,…,则第n个图形中阴影部分的面积用字母表示为()A.B.C.D.二、填空题(本大题共8小题,第11~13每小题3分,第14~18每小题3分,共29分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)11.计算|﹣1|+(﹣2)2=.12.如图,点B是线段AC上的点,点D是线段BC的中点,若AB=4cm,AC=10cm,则CD=cm.13.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2013次输出的结果为.14.当x=3时,代数式px3+qx+1的值为2019,则当x=﹣3时,代数式px3+qx+1的值是.15.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=°.16.某商品按标价八折出售仍能盈利b元,若此商品的进价为a元,则该商品的标价为元.(用含a,b的代数式表示).17.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为18.观察一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,将这列数排成如图所示形式.记a ij对应的数为第i行第j列的数,如a23=4,那么a97对应的数为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出解题过程或演算步骤)19.计算:(1);(2).20.先化简,再求值:5x2y﹣[6xy﹣2(xy﹣2x2y)﹣xy2]+4xy,其中x,y满足|x+|+(y﹣1)2=0.21.解方程:(1)2x﹣9=7x+6;(2).22.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有23人,在乙处参加社会实践的有17人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,问应派往甲、乙两处各多少人?23.如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.24.某商场销售一种西装和领带,西装每套定价200元,领带每条定价40元.国庆节期间商场决定开展促销活动.活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法和所需费用.25.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB 之间的数量关系:.26.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?2019-2020学年江苏省南通市崇川区、港闸区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:|2020|=2020故选:A.2.【解答】解:167000=1.67×105.故选:C.3.【解答】解:A,C,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有B是一个正方体的表面展开图.故选:B.4.【解答】解:长方体是四棱柱,三棱柱是柱体,圆锥是锥体,圆柱是柱体,故选:D.5.【解答】解:A、两点确定一条直线是正确的,不符合题意;B、同角的余角相等是正确的,不符合题意;C、两点之间,线段最短是正确的,不符合题意;D、两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意.故选:D.6.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选:A.7.【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,根据其定义;故本选项正确;C、根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选:B.8.【解答】解:如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:B.9.【解答】解:∵a2+2ab=﹣10,b2+2ab=16,∴a2+4ab+b2=(a2+2ab)+(b2+2ab),=﹣10+16,=6;∴a2﹣b2=(a2+2ab)﹣(b2+2ab),=﹣10﹣16,=﹣26.故选:C.10.【解答】解:结合所给的数值以及图形,知第n个图形中阴影部分的面积为.故选:C.二、填空题(本大题共8小题,第11~13每小题3分,第14~18每小题3分,共29分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)11.【解答】解:|﹣1|+(﹣2)2=1+4=5.12.【解答】解:∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm,∵D为BC中点,∴CD=BC=3cm,故答案为:3.13.【解答】解:将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6,依此类推,得到第2013次输出结果为6.故答案为:6.14.【解答】解:∵x=3时,代数式px3+qx+1的值为2019,∴27p+3q+1=2019,∴27p+3q=2018,∴﹣27p﹣3q=﹣2018,∴当x=﹣3时,px3+qx+1=﹣27p﹣3q+1=﹣2018+1=﹣2017.故答案为:﹣201715.【解答】解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.16.【解答】解:设标价x元,由题意得:80%x﹣b=a,解得:x=,故答案为:.17.【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.18.【解答】解:由图可知,第一行1个数,第二行3个数,第三行5个数,…,则第八行有15个数,前八行一共有:1+3+5+…+15=64个数,则第九行第7个数是这列数的第64+7=71个数,由图形中的数字可知,奇数个数为负数,偶数个数为正数,则a97对应的数为﹣71,故答案为:﹣71.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出解题过程或演算步骤)19.【解答】解:(1)原式===﹣8(2)原式===﹣+=.20.【解答】解:原式=5x2y﹣6xy+2xy﹣4x2y+xy2+4xy=x2y+xy2,∵|x+|+(y﹣1)2=0,∴x=﹣,y=1,则原式=﹣=﹣.21.【解答】解:(l)移项合并同类项得:﹣5x=15,解得:x=﹣3;(2)去分母,得4(2x﹣3)﹣5(x﹣2)=﹣20,去括号,得8x﹣12﹣5x+10=﹣20,移项,得8x﹣5x=﹣20+12﹣10,合并同类项,得3x=﹣18,系数化为1,得x=﹣6.22.【解答】解:设应派往甲处x人,根据题意,得23+x=2(20﹣x+17),解得x=17.则20﹣x=20﹣17=3.答:应派往甲处17人,乙处3人.23.【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.24.【解答】解:(1)方案一购买,需付款:20×200+40(x﹣20)=40x+3200(元),按方案二购买,需付款:0.9(20×200+40x)=3600+36x(元);(2)把x=30分别代入:40x+3200=4×30+3200=4400(元),3600+36×30=4680(元).因为4400<4680,所以按方案一购买更合算;(3)先按方案一购买20套西装(送20条领带),再按方案二购买(x﹣20)条领带,共需费用:20×200+0.9×40(x﹣20)=36x+3280,当x=30时,36×30+3280=4360(元).25.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图2,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)=(180°﹣∠NAC+180°﹣∠FBC)=(360°﹣∠ACB),∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣(180°﹣∠2)﹣∠ACB=360°﹣∠MAC﹣(180°﹣∠CBF)﹣∠ACB=360°﹣(180°﹣∠ACG)﹣(180°﹣∠BCG)=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.26.【解答】解:(1)∵点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,∴点B对应的数为4,∵点P到点A,B的距离相等,∴x﹣(﹣12)=4﹣x,∴x=﹣4.∴点P对应的数为﹣4..(2)当点P在点A左边时,﹣12﹣x+4﹣x=20,解得:x=﹣14;当点P在点A,B之间时,P A+PB=16<20,∴此情况不存在;当点P在点B右边时,x﹣(﹣12)+x﹣4=20,解得:x=6.综上所述:存在这样的点P,使点P到点A,B的距离之和为20,且x的值为﹣14或6.(3)①当运动时间为t秒时,点P对应的数为6t﹣12,点Q对应的数为4﹣4t,∵M为AP的中点,点N在线段BQ上,且,∴点M对应的数为3t﹣12,点N表示的数为.②∵MN=10,∴.解得:,t2=6.答:t为或6时,MN距离为10.。

江苏省南通市崇川区启秀中学2019-2020学年七年级上学期期末数学试卷 (含解析)

江苏省南通市崇川区启秀中学2019-2020学年七年级上学期期末数学试卷 (含解析)

江苏省南通市崇川区启秀中学2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.已知有理数a,b,c在数轴上对应的位置如图所示,化简|b−c|−|c−a|=()A. b−2c+aB. b−2c−aC. b+aD. b−a2.在−|−5|3,−(−5)3,(−5)3,−53中,最大的是A. −|−5|3B. −(−5)3C. (−5)3D. −533.下列变形中,不正确的是()A. a−b−(c−d)=a−b−c−dB. a−(b−c+d)=a−b+c−dC. a+b−(−c−d)=a+b+c+dD. a+(b+c−d)=a+b+c−d4.有理数的绝对值一定是()A. 正数B. 整数C. 正数或零D. 自然数5.下面说法错误的是()A. M是AB的中点,则AB=2AMB. 两点间线段的长度叫做两点的距离C. 一条射线把一个角分成两个角,这条射线叫做这个角的平分线D. 同角的补角相等6.若关于x的方程2x−m=x−2的解为x=3,则m的值为()A. −5B. 5C. −7D. 77.两个三次多项式的差是()A. 三次多项式B. 低于三次的整式C. 不高于三次的整式D. 不低于三次的整式8.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A. B. C. D.9.某款运动鞋的进价为a元/双,若要获利30%,则该款运动鞋的售价应定为()A. 30%a元/双B. 0.7a元/双C. 1.3a元/双D. (a+30%)元/双10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生.表示7班学生的识别图案是()A. B. C. D.二、填空题(本大题共8小题,共24.0分)11.(1)|−2|×(+2)=______(2)|−12|×5.2=______(3)|−12|−12=______(4)−3−|−5.3|=______ .12.已知当x=1时,2ax2−bx的值为3,则当x=2时,ax2−bx的值为______ .13.已知有理数a、b表示的点在数轴上的位置如图所示,化简:|b−a|−|a+1|=______.14.下列表面展开图的立体图形的名称分别是:______、______、______、______.15.央视2月8日报道,除夕夜春晚直播期间的观众总规模达10.33亿,10.33亿用科学记数法表示为______.16.20°30′的余角等于______.17.如图,已知∠1=∠3,CD//EF,试说明∠1=∠4.请将过程填写完整.解:∵∠1=∠3又∠2=∠3(_________________ )∴∠1=_______∴______//______(__________________ )又∵CD//EF∴AB//_______∴∠1=∠4(两直线平行,同位角相等)18.已知x=3是方程2x−a=1的解,则a=______.三、解答题(本大题共9小题,共72.0分)19.计算:(1)7+(−2)−(−8)(2)(−7)×5−(−36)÷4(3)−14−16×[2−(−3)2](4)(5xy2−3x2y)−3(xy2−2x2y)20.化简:(1)−3a+2(1−2a);(2)(x2−5x)−4(12x2−3x).21.解方程:(1)2(x+1)+3=1−(x−1);(2)1−2x5=2−3−x2.22.如图,已知线段a,b(1)作一条线段AB,使它等于a+b;(2)作一条线段MN,使它等于2b−a.23.如图,已知∠AOB=70°,∠BOC与∠AOB互余,∠BOD与∠AOB互补,且OE平分∠COD.(1)求∠AOE的度数.(2)请问∠AOB与∠DOE互余吗?试说明理由.24.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,现在有两种订单,A订单2个大花瓶与5个小饰品配成一套,B订单4个大花瓶与5个小饰品配成一套.(1)如果只做A订单则要安排多少名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.(2)如果只做B订单则要安排多少名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套25.如图,已知直线AB//DF,∠D+∠B=180°.(1)求证:DE//BC;(2)如果∠AMD=75°,求∠AGC的度数.26.我们知道相交的两直线的交点个数是1个,两平行直线的交点个数是0个;这样平面内的三条平行线它们的交点个数就是0个,经过同一点的三直线它们的交点个数就是1个;依次类推……(1)请你画图说明同一平面内的四条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的一个图形;如果没有,请说明理由;(3)在平面内画出5条直线,使交点数恰好是8个.27.如图,数轴上的三点A、B、C分别表示有理数a、b、c,化简|a−b|−|a+c|+|b−c|.-------- 答案与解析 --------1.答案:D解析:本题考查了数轴以及绝对值,由数轴上a、b、c的位置关系结合绝对值的定义求出|b−c|−|c−a|的值是解题的关键.观察数轴,可知:c<0<b<a,进而可得出b−c>0、c−a<0,再结合绝对值的定义,即可求出|b−c|−|c−a|的值.解:观察数轴,可知:c<0<b<a,∴b−c>0,c−a<0,∴|b−c|−|c−a|=b−c−(a−c)=b−a.故选:D.2.答案:B解析:本题考查有理数大小的比较,根据绝对值和有理数的乘方运算进行逐一计算,再比较即可.解:∵−|−5|3=−125,−(−5)3=125,(−5)3=−125,−53=−125,∴最大的数是−(−5)3.故选B.3.答案:A解析:解:A、a−b−(c−d)=a−b−c+d,此选项错误;B、a−(b−c+d)=a−b+c−d,此选项正确;C、a+b−(−c−d)=a+b+c+d,此选项正确;D、a+(b+c−d)=a+b+c−d,此选项正确;如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.据此逐一判断即可得.本题主要考查去括号、添括号,解题的关键是掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.4.答案:C解析:此题考查了绝对值的定义,属于基础题,难度不大,注意对绝对值定义的掌握.根据绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,即可得出答案.解:有理数分为正数,负数和0,故一个有理数的绝对值大于等于0,即为正数或零.故选C.5.答案:C解析:本题考查了角平分线的定义、余角和补角、两点的距离等知识,属于基础题根据中点的性质,两点的距离、角平分线的定义,分别进行各选项的判断即可.解:A.M是AB的中点,则AB=2AM,正确;B.两点间线段的长度叫做两点的距离,正确;C.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,选项说法错误;D.同角的补角相等,正确.故选C.6.答案:B解析:解:把x=3代入方程得:6−m=3−2,解得:m=5,把x的值代入方程计算即可求出m的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.答案:C解析:解:两个三次多项式相减其结果不超过三次.故选C.整式加减后的次数不大于整式加减前的最高次数.本题考查整式的加减,注意整式的加减次数不相加减,而是把次数高的项当作整式的次数.8.答案:A解析:解:根据图形,根据俯视图发现最底层有4个小正方体,根据主视图,发现共有两列,左边一列有1个小立方体,右边一列有三个立方体,根据左视图发现最右上角共有3个小立方体,前面有2个小立方体,综合以上,A选项符合,故选:A.通过俯视图得出几何体底面的基本形状,再由主视图和左视图得出几何体,并对比三视图来判断所得几何体是否正确.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.9.答案:C解析:本题考查列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、利润率之间的数量关系.根据题意列等量关系式:售价=进价+利润,得解答时按等量关系直接求出售价.解:根据题意得,a(1+30%)=1.3a元/双.故选C.10.答案:D解析:本题主要考查数字的变化类,解题的关键是根据题意弄清题干规定的运算规则.根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.解:A.第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B.第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,不符合题意;C.第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D.第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,符合题意.故选D.11.答案:(1)4;(2)2.6;(3)0;(4)−8.3解析:解:(1)|−2|×(+2)=4(2)|−12|×5.2=2.6(3)|−12|−12=0(4)−3−|−5.3|=−8.3.故答案为:4、2.6、0、−8.3.根据有理数加减乘除的运算方法,以及绝对值的含义和求法,逐一求解即可.此题主要考查了有理数加减乘除的运算方法,以及绝对值的含义和求法,要熟练掌握.12.答案:6解析:解:把x=1代入代数式得:2a−b=3,则当x=2时,ax2−bx=4a−2b=2(2a−b)=6,故答案为:6把x=1代入代数式,使其值为3求出2a−b的值,再将x=2代入ax2−bx,变形后将2a−b的值代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.答案:b+1解析:本题主要考查绝对值化简的知识.根据数轴的特征得出b−a,a+1的符号是解题的关键.得出b−a,a+1的符号,去绝对值化简即可.解:∵a<−1<0<b<1∴b−a>0,a+1<0,∴|b−a|−|a+1|=b−a−[−(a+1)]=b−a+a+1=b+1.故答案为b+1.14.答案:圆柱圆锥四棱锥三棱柱解析:解:第一个图是圆柱,第二个图是圆锥,第三个图是四棱柱,第四个图是三棱柱,故答案为:圆柱,圆锥,四棱锥,三棱柱.根据图形结合所学的几何体的形状得出即可.本题考查了几何体的展开图的应用,主要考查学生的空间想象能力和观察图形的能力.15.答案:1.033×109解析:解:10.33亿=1.033×109,故答案为:1.033×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.16.答案:69°30′解析:此题主要考查了余角,关键是掌握余角定义.根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.解:90°−20°30′=69°30′,故答案为69°30′.17.答案:对顶角相等∠2AB CD同位角相等,两直线平行EF解析:本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.求出∠1=∠2,根据平行线的判定推出AB//CD//EF,根据平行线的性质得出即可.解:∵∠1=∠3,∵∠2=∠3(对顶角相等),∴∠1=∠2,∴AB//CD(同位角相等,两直线平行),∵CD//EF(已知),∴AB//EF,∴∠1=∠4(两直线平行,同位角相等).故答案为对顶角相等;∠2;AB;CD;同位角相等,两直线平行;EF.18.答案:5解析:把x=3代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.解:把x=3代入方程得:6−a=1,解得:a=5,故答案为:5.19.答案:解:(1)原式=7−2+8=13;(2)原式=−35+9=−26;(3)原式=−1−16×(2−9)=−1−16×(−7)=−1+112=111;(4)原式=5xy2−3x2y−3xy2+6x2y=2xy2+3x2y.解析:(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去括号进而合并同类项得出答案.此题主要考查了整式的加减以及有理数的混合运算,正确掌握相关运算法则是解题关键.20.答案:解:(1)原式=−3a+2−4a=−7a+2;(2)原式=x2−5x−2x2+12x=−x2+7x.解析:本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.21.答案:解:(1)去括号,得2x+2+3=1−x+1,移项、合并同类项,得3x=−3,方程两边同时除以3,得x=−1;(2)去分母,得2(1−2x)=20−5(3−x),去括号,得2−4x=20−15+5x,移项、合并同类项,得−9x=3,.方程两边同时除以−9,得x=−13解析:此题考查了解一元一次方程的解法,熟练掌握解一元一次方程的法则是解本题的关键.(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.22.答案:解:(1)如图所示:AB即为所求;(2)如图所示:MN即为所求.解析:此题主要考查了复杂作图,关键是掌握作一条线段等于已知线段的作法.(1)首先画一条射线,再在直线上分别截取a,b即可得出;(2)首先画一条射线,再在直线上截取MD=BD=b,然后以B为端点,在AB上截取BN=a即可.23.答案:解:(1)∵∠AOB=70°,∠BOC与∠AOB互余,∠BOD与∠AOB互补,∴∠BOC=90°−70°=20°,∠BOD=180°−70°=110°,∴∠COD=∠BOD−∠BOC=90°,∵OE平分∠COD,∴∠EOC=∠DOE=45°,∴∠AOE=180°−∠DOE=180°−45°=135°;(2)∠AOB与∠DOE不互余.理由如下:∵∠AOB=70°,∠DOE=45°,∴∠AOB+∠DOE=115°≠90°,∴∠AOB与∠DOE不互余.解析:本题考查余角,补角,以及角的计算,找出各角之间的关系是解题关键.(1)根据补角和余角的概念求出∠BOC和∠BOD的度数,进而求出∠COD的度数,然后根据角平分线的定义求出∠DOE,再根据∠AOE=∠180°−∠DOE求解即可;(2)根据(1)中得出的∠DOE和∠AOB的度数,根据两角的和分析即可.24.答案:解:(1)设:安排x人制作大花瓶,则安排(20−x)人制作小花瓶5×12x=2×10(20−x)解得:x=5.答:如果只做A订单则要安排5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套;(2)设:安排y人制作大花瓶,则安排(20−y)人制作小花瓶5×12y=4×10(20−y)解得y=8.答:如果只做B订单则要安排8名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.解析:本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.(1)(2)分别根据题意可以列出相应的方程,从而可以解答本题.25.答案:解:(1)∵AB//DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE//BC;(2)∵DE//BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°−∠AGB=180°−75°=105°.解析:(1)根据平行线的性质得出∠D+∠BHD=180°,求出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,根据邻补角的定义求出即可.本题考查了平行线的性质和判定,邻补角的定义的应用,能求出DE//BC是解此题的关键.26.答案:解:(1)如图所示:同一平面内的四条直线最多有6个交点.(2)可以有4个交点,有3种不同的情形,如下图示.(3)如图所示:解析:此题考查平面内不重合直线的位置关系,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.(1)一平面内的四条直线最多有6个交点.画图即可;(2)平面内的五条直线可以有4个交点,有3种不同的情形;(3)先画两组成“井”字型的平行线,再画出与这两组平行线都相交的直线即可.27.答案:解:由数轴得,c>0,a<b<0,|a|>|c|,因而a−b<0,a+c<0,b−c<0.∴原式=b−a+a+c+c−b,=2c.解析:此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.由数轴可知:c>0,a<b<0,|a|>|c|,所以可知:a−b<0,a+c<0,b−c<0.根据负数的绝对值是它的相反数可求值.。

江苏省南通市2019-2020学年数学七上期末考试试题

江苏省南通市2019-2020学年数学七上期末考试试题

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短 2.已知A B 与∠∠互为余角,C ∠与B Ð互为补角,则C ∠比A ∠大( )A.45︒B.90︒C.135︒D.180︒3.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为( )A .150°B .140°C .120°D .110°4.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( ) A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x+=+ 5.在一次革命传统教育活动中,有n 位师生乘坐m 辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m +=-①;6010628m m +=+②; 1086062n n -+=③;1086062n n +-=④中,其中正确的有( ) A.①③ B.②④C.①④D.②③6.在如图所示的2019年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是( )A.27B.51C.65D.727.组成多项式2x 2-x-3的单项式是下列几组中的( ) A .2x 2,x ,3B .2x 2,-x ,-3C .2x 2,x ,-3D .2x 2,-x ,38.已知实数,,x y z 满足5422x y z x y z ++=⎧⎨+-=⎩则代数式441x z -+的值是( )A . 3-B .3C . 7-D .7 9.单项式4x 2的系数是( ) A .4B .3C .2D .110.计算(-3)×(-5)的结果是( ) A .15 B .-15 C .8 D .-8 11.若a+b <0,ab <0,则( ) A .a >0,b >0 B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 12.计算(﹣6)+(﹣3)的结果等于( )A .-9B .9C .-3D .3 二、填空题13.如图,已知EOC ∠是平角,OD 平分BOC ∠,在平面上画射线OA ,使AOC ∠和COD ∠互余,若50BOC ∠=︒,则AOB ∠是__________.14.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=14∠AOD ,则∠AOD=______°.15.若某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏了20%,则这单买卖是___了(填“赚”或“亏”). 16.方程320x -+=的解为________.17.单项式23x y-的系数是____.18.若()2520x y -++=,则x-y=________.19.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)20.若x ,y 互为相反数,a 、b 互为倒数,则 32x 2y ab+- 代数式的值为________. 三、解答题21.如图,在正方形格中,每个小正方形的边长为1,对于两个点P ,Q 和线段AB ,给出如下定义:如果在线段AB 上存在点M ,N (M ,N 可以重合)使得PM=QN ,那么称点P 与点Q 是线段AB 的一对关联点. (1)如图,在Q1,Q2,Q3这三个点中,与点P 是线段AB 的一对关联点的是 ;(2)直线l ∥线段AB ,且线段AB 上的任意一点到直线l 的距离都是1.若点E 是直线l 上一动点,且点E 与点P 是线段AB 的一对关联点,请在图中画出点E 的所有位置.22.如图,点C 是线段AB 的中点.(1)尺规作图:延长AB 到D ,使BD =AB (不写作法,保留作图痕迹).(2)若AC =2cm ,求AD 的长.23.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?24.如图1,已知数轴上两点A 、B 对应的数分别为﹣2、5,点P 为数轴上的一动点,其对应的数为x .(1)PA= ;PB= (用含x 的式子表示)(2)在数轴上是否存在点P ,使PA+PB=10?若存在,请直接写出x 的值;若不存在,请说明理由. (3)如图2,点P 以2个单位/s 的速度从点O 向右运动,同时点A 以4个单位/s 的速度向左运动,点B 以16个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB OPMN-的值是否发生变化?请说明理由.25.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 32 26.数学问题:计算等差数列5,2,﹣1,﹣4……前n 项的和. 问题探究:为解决上面的问题,我们从最简单的问题进行探究. 探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第1项,用a 1表示:排在第二位的数称为第2项,用a 2表示……排在第n 位的数称为第n 项,用a n 表示.一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差,公差通常用字母d 表示.如:数列2,4,6,8,….为等差数列,其中a 1=2,公差d =2. (1)已知等差数列5,2,﹣1,﹣4,…则这个数列的公差d = ,第5项是 . (2)如果一个数列a 1,a 2,a 3,a 4,…是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,……a n ﹣a n ﹣1=d ,所以a 2=a 1+d ,a 3=a 2+d =a 1+2d ,a 4=a 1+3d ,……:由此可得a n = (用a 1和d 的代数式表示)(3)对于等差数列5,2,﹣1,﹣4,…,a n = 请判断﹣2020是否是此等差数列的某一项,若是,请求出是第几项:若不是,说明理由.探究二:二百多年前,数学王子高斯用他独特的方法快速计算出1+2+3+4+…+100的值.我们从这个算法中受到启发,用此方法计算数列1,2,3,…,n 的前n 项和:由121121(1)(1)(1)(1)n nn n n n n n ++⋯+-++-+⋯+++++⋯++++ 可知(1)1232n nn +⨯+++⋯+=(4)请你仿照上面的探究方式,解决下面的问题:若a 1,a 2,a 3,…,a n 为等差数列的前n 项,前n 项和S n =a 1+a 2+a 3+…+a n .证明:S n =na 1+(1)2n n d -. (5)计算:计算等差数列5,2,﹣1,﹣4…前n 项的和S n (写出计算过程). 27.-15-(-8)+(-11)-12.28.某粮库3天内粮食进出库的吨数如下:(“+”表示进库,“-”表示出库)(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨? (3)如果进出的装卸费都是每吨5元,那么这3天要付多少元装卸费?【参考答案】*** 一、选择题 1.D 2.B 3.B 4.C 5.A 6.D 7.B8.A 9.A 10.A 11.D 12.A 二、填空题13. SKIPIF 1 < 0 或 SKIPIF 1 < 0解析:115︒或15︒ 14.144° 15.亏16. SKIPIF 1 < 0 解析:23x =17.- SKIPIF 1 < 0 解析:-1318.719. SKIPIF 1 < 0 解析:①②④ 20.-3 三、解答题21.(1)Q 2、Q 3;(2)8个点E ,见解析. 22.(1)见解析;(2)8cm . 23.见解析24.(1)|x+2|,|x ﹣5|;(2)x=6.5或﹣3.5;(3)不发生变化,理由见解析. 25.(1)﹣7a 2b ﹣6ab 2﹣3c ;(2)2833a b -+,12. 26.(1)﹣3,﹣7;(2)a n =a 1+(n ﹣1)d ;(3)﹣3n+8;(4)详见解析;(5)231322n n S n =-+27.-3028.(1)库里的粮食减少了;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.。

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分)1.2016年9月15日22时04分,中国在酒泉卫星发射中心用长征二号FT2运载火箭将天宫二号空间实验室发射升空。

次日,天宫二号于成功实施了两次轨道控制,顺利进入运行轨道。

天宫二号空间实验室将开展的实验中,包括了空间科学物理领域重点项目——空间冷原子钟实验,有望实现3千万年误差一秒的超高精度,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响。

空间冷原子钟可以将航天器自主守时精度提高两个数量级,大幅提高导航定位精度。

3000用科学记数法表示为()A.3 B. 0.3 C. 0.3D.2.下列算式中,运算结果为负数的是().A. (2)-- B. 3(2)- C.2- D. 2(2)-3.下列计算正确的是().A. 22232x y x y x y-= B. 277a a a+=C. 532y y-= D. 325a b ab+=4.已知1a b-=,则代数式223a b--的值是().A. 1-B. 1C. 5D.5-5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.aB.C.D.6.若21(2)02x y-++=,则( )的值为()A.1-B.1C.D. 20167.人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比。

人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势。

2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是()美国日本中国印度德国卡塔尔0.9 -0.0772 0.48 1.312 -0.2 4.93A.卡塔尔B.中国C.日本D.德国8.历史上,数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示,例如1x=-时,多项式2()35f x x x=+-的值记为(1)f-,那么(1)f-等于().A. 1-B. 3-C.7-D. 9-考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页。

2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)

2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)

第5章《平面图形的认识(一)》试题精选(1)一.选择题(共2小题)1.(2019秋•江都区期末)将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′AD ′=16°,则∠EAF 的度数为( )A .40°B .45°C .56°D .37°2.(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共9小题)3.(2019秋•南京期末)已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB = .4.(2019秋•高邮市期末)一个角的余角比这个角补角的15大10°,则这个角的大小为 .5.(2019秋•崇川区期末)已知射线OA ,从O 点再引射线OB ,OC ,使∠AOB =67°31′,∠BOC =48°39′,则∠AOC 的度数为6.(2019秋•高新区期末)已知线段AB =5cm ,点C 在直线AB 上,且BC =3cm ,则线段AC = cm .7.(2019秋•淮安区期末)如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于 度.8.(2019秋•句容市期末)如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC = °.9.(2019秋•句容市期末)如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n∠BOC ,∠BOD =1n ∠AOB ,则∠DOE = °.(用含n 的代数式表示)10.(2019秋•泰兴市期末)如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.11.(2019秋•建湖县期末)如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;①∠AOC=∠BOD;①∠AOC=∠COE;①∠COE与∠DOE互为补角;①∠AOC与∠DOE互为补角;①∠BOD与∠COE互为余角.其中错误的有.(填序号)三.解答题(共26小题)12.(2019秋•东海县期末)如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=13∠EOC.(1)若OE⊥AC,垂足为O点,则∠BOE的度数为°,∠BOD的度数为°;在图中,与∠AOB相等的角有;(2)若∠AOD=32°,求∠EOC的度数.13.(2019秋•工业园区期末)如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.14.(2019秋•镇江期末)如图1,点C为线段AB延长线上的一点,点D是AC的中点,且点D不与点B 重合,AB=8,设BC=x.(1)①若x=6,如图2,则BD=;①用含x的代数式表示CD,BD的长,直接写出答案;CD=,BD=;(2)若点E为线段CD上一点,且DE=4,你能说明点E是线段BC的中点吗?15.(2019秋•高邮市期末)如图,已知∠AOB=150°,将一个直角三角形纸片(∠D=90°)的一个顶点放在点O处,现将三角形纸片绕点O任意转动,OM平分斜边OC与OA的夹角,ON平分∠BOD.(1)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若∠COD=30°,则∠MON =;(2)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若射线OD恰好平分∠MON,若∠MON=8∠COD,求∠COD的度数;(3)将三角形纸片绕点O从OC与OA重合位置顺时针转动到OD与OA重合的位置,猜想在转动过程中∠COD和∠MON的数量关系?并说明理由.16.(2019秋•沭阳县期末)(1)如图①,OC是∠AOE内的一条射线,OB是∠AOC的平分线,OD是∠COE 的平分线,∠AOE=120°,求∠BOD的度数;(2)如图①,点A、O、E在一条直线上,OB是∠AOC的平分线,OD是∠COE的平分线,请说明OB ⊥OD.17.(2019秋•鼓楼区期末)如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)18.(2019秋•秦淮区期末)【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.19.(2019秋•太仓市期末)如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.20.(2019秋•兴化市期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=60°,求∠AOF的度数;(2)若∠BOD:∠BOE=4:3,求∠AOF的度数.21.(2019秋•赣榆区期末)如图,已知线段AB,延长AB到C,点D是线段AB的中点,点E是线段BC 的中点.(1)若BD=5,BC=4,求线段EC、AC的长;(2)试说明:AC=2DE.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.23.(2019秋•扬州期末)如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.24.(2019秋•南京期末)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.25.(2019秋•崇川区期末)如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.26.(2019秋•东台市期末)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图①,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图①所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图①所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.27.(2019秋•淮安区期末)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.28.(2019秋•清江浦区期末)如图,C为线段AB上一点,D在线段AC上,且AD=23AC,E为BC的中点.(1)若AC=6,BE=1,求线段AB、DE的长;(2)试说明:AB+BD=4DE.29.(2019秋•张家港市期末)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.30.(2019秋•高新区期末)如图,O为直线AB上一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.(1)图中有个小于平角的角;(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.31.(2019秋•江都区期末)如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE:∠BOE=5:3,OF平分∠AOE.(1)求∠BOE的度数;(2)求∠DOF的度数.32.(2019秋•建湖县期末)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.33.(2019秋•常熟市期末)已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.34.(2019秋•南京期末)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.35.(2019秋•沛县期末)已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.36.(2019秋•清江浦区期末)如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC =α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.37.(2019秋•句容市期末)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.第5章《平面图形的认识(一)》试题精选(1)参考答案与试题解析一.选择题(共2小题)1.【答案】D【解答】解:设∠EAD′=α,∠F AB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠F AB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.2.【答案】A【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.二.填空题(共9小题)3.【答案】见试题解答内容【解答】解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=23 AB,∵BD:AB=2:3,∴BD=23nn,∴CD=BC+BD=43nn=8,∴AB=6;①当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;①当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=38nn=3,故AB=6或3.故答案为:6或34.【答案】见试题解答内容【解答】解:设这个角为∠α,则90°﹣∠α=15(180°﹣∠α)+10°,解得:∠α=55°,故答案为:55°.5.【答案】见试题解答内容【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;①OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.6.【答案】见试题解答内容【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为8或2.7.【答案】见试题解答内容【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.8.【答案】见试题解答内容【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.9.【答案】见试题解答内容【解答】解:设∠BOE =x °,∵∠BOE =1n ∠BOC ,∴∠BOC =nx ,∴∠AOB =∠AOC +∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60°n +x ,∴∠DOE =∠BOD ﹣∠BOE =60°n +x ﹣x =60°n ,故答案为:60n .10.【答案】见试题解答内容【解答】解:如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40°,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°,故答案为:110.11.【答案】见试题解答内容【解答】解:∵∠BOE =90°,∴∠AOE =180°﹣∠BOE =180°﹣90°=90°=∠AOC +∠COE ,因此①不符合题意;由对顶角相等可得①不符合题意;∵∠AOE =90°=∠AOC +∠COE ,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠COE +∠DOE =180°,因此①不符合题意;∠EOC +∠DOE =180°,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠BOD =∠AOC ,且∠COE +∠AOC =90°,因此①不符合题意;故答案为:①①三.解答题(共26小题)12.【答案】见试题解答内容【解答】解:(1)∵OE ⊥AC ,∴∠AOE =∠COE =90°,∵∠BOE =13∠EOC ,∴∠BOE =13×90°=30°;∴∠AOB =90°﹣30°=60°,∵OD 平分∠AOB ,∴∠BOD =12nAOB =30°; ∴∠DOE =∠BOD +∠BOE =60°,∴∠AOB =∠DOE ;故答案为:30,30,∠EOD ;(2)∵OD 平分∠AOB ,∴∠AOB =2∠AOD .∵∠AOD=32°,∴∠AOB=64°.∴∠COB=180°﹣∠AOB=116°.∵∠BOE=13∠EOC,∴∠EOC=34∠COB=34×116°=87°.13.【答案】见试题解答内容【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE ∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.14.【答案】见试题解答内容【解答】解:①∵BC=6,AB=8,∴AC=AB+BC=14,∵点D是AC的中点,∴AD=DC=12AC=7,∴BD=AB﹣AD=8﹣7=1;故答案为1;①用含x的代数式表示:CD=12(8+x)=4+12x,BD=|8﹣(4+12x)|=|4−12x|,故答案为:4+12x,|4−12x|;(2)能说明点E是线段BC的中点.理由如下:如图所示:∵AB=8,设BC=x,∴AC=AB+BC=8+x,DE=4,∵点D是AC的中点,∴AD=DC=12AC=4+12x,∴CE=DC﹣DE=4+12x﹣4=12x,BE=DE﹣DB=4﹣(AB﹣AD)=4﹣(4−12 x)=1 2x.∴CE=BE.所以点E是线段BC的中点.15.【答案】见试题解答内容【解答】解:(1)∵∠AOB=150°,∠COD=30°,∴∠AOC+∠BOD=∠AOB﹣∠COD=150°﹣30°=120°,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nBOD,∴∠AOM+∠BON=12(∠AOC+∠BOD)=60°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=90°,故答案为:90°;(2)∵∠MON=8∠COD,∴设∠COD=α,则∠MON=8α,∵OD平分∠MON,∴∠DOM=∠DON=4α,∴∠COM=3α,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOC=2∠COM=6α,∠BOD=2∠DON=8α,∵∠AOB=∠AOC+∠COD+∠BOD=6α+α+8α=150°,∴α=10°,∴∠COD=10°;(3)∠COD+150°=2∠MON或2∠COD=210°﹣∠MON,理由:①三角形纸片在∠AOB的内部,如图1,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nnnn,∵∠AOM+∠BON=150°﹣∠MON,∠COD=150°﹣2(∠AOM+∠BON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①如图2,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠DON=12nnnn,∵∠AOM+∠DON=150°+∠BOD﹣∠MON,∴∠AOM﹣∠DON=150°﹣∠MON,∵∠COD=∠BOC+∠BOD=150°﹣∠AOC+∠BOD=150°﹣2(∠AOM﹣∠DON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①三角形纸片在∠AOB的外部,如图3,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=∠COM=12∠AOC,∠BON=∠DON=12nnnn,∵∠AOM+∠BON=360°﹣150°﹣∠MON,∠COD=∠AOM+∠BON﹣∠MON=360°﹣150°﹣2(∠MOC+∠DON)=210°﹣2(∠MON+∠COD)∴3∠COD=210°﹣2∠MON,综上所述,∠COD+150°=2∠MON或2∠COD=210°﹣2∠MON.16.【答案】见试题解答内容【解答】解:(1)∵OB是∠AOC的平分线∴∠nnn=12nnnn同理,∠nnn=12nnnn∴∠BOD=∠BOC+∠DOC=12∠AOC+12∠EOC=12(∠AOC+∠EOC)=12∠AOE,∵∠AOE=120°∴∠nnn=12×120°=60°(2)由(1)可知∠nnn=12nnnn∵∠AOE=180°∴∠nnn=12×180°=90°∴OB⊥OD.17.【答案】见试题解答内容【解答】解:(1)∵OC⊥OD,∠DOE=150°,∴∠COE=∠DOE﹣∠COD=150°﹣90°=60°,∵射线OE平分∠BOC.∴∠COE=∠BOE=60°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣60°﹣60°=60°,(2))∵OC⊥OD,∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣90°,∵射线OE平分∠BOC.∴∠COE=∠BOE=α﹣90°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.18.【答案】见试题解答内容【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M 在运动过程中表示的数为20﹣3t ,故答案为:20﹣3t ;(3)当AM =2BM 时,30﹣3t =2×3t ,解得:t =103;当AB =2AM 时,30=2×(30﹣3t ),解得:t =5;当BM =2AM 时,3t =2×(30﹣3t ),解得:t =203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (4)当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;当AM =2NM 时,30﹣3t =2[2t ﹣(30﹣3t )],解得:t =9013;当MN =2AM 时,2t ﹣(30﹣3t )=2(30﹣3t ),解得:t =9011; 当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;答:t 为152或9013或9011或152时,点M 是线段AN 的“二倍点”.19.【答案】见试题解答内容【解答】解:(1)∵OG ⊥CD .∴∠GOC =∠GOD =90°,∵∠AOC =∠BOD =38°12′,∴∠BOG =90°﹣38°12′=51°48′,(2)OG 是∠EOB 的平分线,理由:∵OC 是∠AOE 的平分线,∴∠AOC =∠COE =∠DOF =∠BOD ,∵∠COE +∠EOG =∠BOG +∠BOD =90°,∴∠EOG =∠BOG ,即:OG 平分∠BOE .20.【答案】见试题解答内容【解答】解:(1)∵OE平分∠BOC,∠BOE=60°,∴∠BOC=2∠BOE=120°,∴∠AOC=180°﹣120°=60°,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣60°=30°;(2)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠BOD:∠BOE=4:3,∴∠BOD:∠BOE:∠EOC=4:3:3,∴∠BOD=180°×44+3+3=72°=∠AOC,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣72°=18°.21.【答案】见试题解答内容【解答】解:(1)∵D是线段AB的中点,BD=5,∴AB=2BD=10,∵E是线段BC的中点,BC=4,∴EC=12BC=2,∴AC=AB+BC=10+4=14;(2)∵D是线段AB的中点,∴AB=2BD,∵E是线段BC的中点,∴BC=2BE,∴AC=AB+BC=2BD+2BE=2DE.22.【答案】见试题解答内容【解答】解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=12∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=n−50 2,∴∠DOE=∠COD+∠COE=n−502+25°=n2;(3)∠nnn=n2,与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=n2,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=n−n 2,∴∠DOE=∠COD+∠COE=n−n2+n2=n2;23.【答案】见试题解答内容【解答】解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.24.【答案】见试题解答内容【解答】解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC=12nn=12×17=172,又∵AE=AC+CE,∴AE=172+112=14,∵点D为线段AE的中点,∴DE=12AE=12×14=7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC=12nn=12×20=10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=12nn,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.25.【答案】见试题解答内容【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.26.【答案】见试题解答内容【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD﹣∠EOC=12∠AOC−12∠BOC=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.27.【答案】见试题解答内容【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.28.【答案】见试题解答内容【解答】解:(1)∵E为BC的中点,BE=1,∴BC=2BE=2,CE=BE=1,∵AC=6,∴AB=AC+BC=6+2=8,∵AD=23AC,AC=6,∴AD=4,∴DC=6﹣4=2,∴DE=DC+CE=2+1=3;(2)∵AB=AC+BC,BD=BC+CD,∴AB+BD=AC+BC+BC+CD,∵AD=23AC,E为BC的中点,∴AC=3CD,BC=2CE,∴AB+BD=3CD+2CE+2CE+CD=4CD+4CE=4(CD+CE)=4DE.29.【答案】见试题解答内容【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.30.【答案】见试题解答内容【解答】解:(1)小于平角的角有:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB共有9个.故答案是:9;(2)∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=12×48°=24°,∴∠BOD=180°﹣∠AOD=180°﹣24°=156°;(3)∵∠COE=∠DOE﹣∠COD=90°﹣24°=66°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣24°﹣90°=66°,∴∠COE=∠BOE,∴OE平分∠BOC.31.【答案】见试题解答内容【解答】解:(1)∵∠DOE:∠BOE=5:3,∴∠BOE=38∠BOD=38∠AOC=38×48°=18°,∠DOE=58∠BOD=58∠AOC=58×48°=30°,(2)∠AOE=180°﹣∠BOE=180°﹣18°=162°,∵OF平分∠AOE.∴∠AOF=∠EOF=12∠AOE=81°,∴∠DOF=∠EOF﹣∠DOE=81°﹣30°=51°.32.【答案】见试题解答内容【解答】解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=35∠AOC=35×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=32 x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+32x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=32x°+x°+12°=77°33.【答案】见试题解答内容【解答】解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=12∠AOC=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=12×60°=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45°;(2)∵∠COM=12∠AOC,∠CON=12∠BOC,∴∠MON=12(∠AOC﹣∠BOC)=12∠AOB=40°,∵∠MON:∠AOC=2:7,∴∠AOC=140°,∵OM平分∠AOC,∴∠AOM=12∠AOC=70°,∴∠AON=∠AOM+∠MON=70°+40°=110°34.【答案】见试题解答内容【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=1 2×180°﹣20°=70°;(3)∵∠AOM=12(10°+2t+20°),∠DON=12(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.35.【答案】见试题解答内容【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.36.【答案】见试题解答内容【解答】解:(1)如图1,补全图形;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=40°,得∠BOC=140°;①由OE平分∠BOC,得∠COE=70°;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=70°,得∠DOE=20°.(2)①由∠AOC+∠BOC=180°,∠AOC=α,得∠BOC=180°﹣α;①由OE平分∠BOC,得∠COE=90°−12α;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=90°−12α,得∠DOE=n 2.(3)∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).37.【答案】见试题解答内容【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.。

2022-2023学年第一学期南通市海门区初一数学期末试题及解析

2022-2023学年第一学期南通市海门区初一数学期末试题及解析
【解答】解:A.∵ 和 是直角三角形,
∴ ,
∴ ,
即 ,故选项错误,不符合题意;
B.∵两块三角板可以 同一平面内自由转动,
∴ 的值不固定,故选项错误,不符合题意;
C.∵ 和 是直角三角形,
∴ ,
∴ ,
即 ,故选项正确,符合题意;
D. 与 的大小不确定,故选项错误,不符合题意;
故选:C
【点评】本题考查的是余角和补角的概念、角的计算,掌握余角和补角的概念、正确根据图形进行角的计算是解题的关键.
将x=3代入运算程序中,得到输出结果为6,
依此类推,得到第2013次输出结果为6.
故答案为:6.
【点评】此题考查了代数式求值,弄清题中 运算程序是解本题的关键.
18.定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程 和 为“兄弟方程”.若关于x的方程 和 是“兄弟方程”,求 的值是__________.
【答案】D
【解析】
【分析】直接利用等式的基本性质进而判断得出即可.
【解答】解:A、若 ,则 ,正确,不合题意;
B、若 ,则 ,正确,不合题意;
C、若 ,则 ,正确,不合题意;
D、若 , ,则 ,故此选项错误,符合题意;
故选:D.
【点评】此题主要考查了等式的性质,解题的关键是熟练掌握等式的性质,注意等式的性质2中是除以同一个不为0的数或式子,等式不变.等式的性质:①等式两边加同一个数(或整式)结果仍得等式;②等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
三.解答题(共7小题,满分49分)
19.计算:
(1) ;
(2) .
【答案】(1)
(2)
【解析】
【分析】(1)根据乘法分配律计算即可;

江苏省南通市部分学校2019-2020学年度第一学期七年级数学期中考试测试(含答案)

江苏省南通市部分学校2019-2020学年度第一学期七年级数学期中考试测试(含答案)

2019~2020(上)七年级数学期中试卷(时间:120 分钟满分:100 分)一、选择题(本大题共10 小题,每小题2 分,共20 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答.题.卡.相.应.位.置.上.)1.2019 的相反数是()A.﹣2019 B.2019 C.1D.- 2019120192.今年我们祖国迎来了70 华诞,据报道国庆阅兵为近几次阅兵中规模最大,人数约15 000 人,将15 000 用科学记数法表示正确的是()A.0.15×105 B.1.5×105 C.15×103 D.1.5×1043.A 为数轴上表示﹣3 的点,将A 点沿着数轴向右移动5 个单位长度后到B,B 表示的数为()A.2 B.﹣2 C.8 D.﹣84.小明观察自己家的冰箱时发现,冷藏室的温度为2℃,冷冻室的温度为﹣20℃,请你帮小明算一算冷藏室的温度比冷冻室的温度高()A.18℃B.﹣18℃C.22℃D.﹣22℃5.在﹣2.5 和3.4 之间的所有整数的和为()A.﹣3 B.0 C.3 D.66.下列运算正确的是()A.x3+x2=x5 B.x4+x4=2x4 C.x3+x3=2x6 D.x4+x4=x87.已知|a|=6,|b|=2,且a>0,b<0,则a+b 的值为()A.8 B.﹣8 C.4 D.﹣48.下列关于多项式2a2b+ab﹣1 的说法中,正确的是()A.次数是5B.二次项系数是0C.常数项是1D.最高次项是2a2b9.下列说法中:①如果a、b 互为相反数,则a+b=0;②如果a=b,则|a|=|b|;③两个负数比较,绝对值大的反而小;④如果甲数的绝对值比乙数大,那么甲数一定比乙数小,其中正确的说法有()A.1 个B.2 个C.3 个D.4 个10.按如图所示的运算程序,能使输出 y 值为 1 的是()A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题(本大题共 8 小题,11~15 每题 2 分,16~18 每题 3 分,共 19 分.不需要写出解答过程,请把最终结果直接填写在答.题.卡.相.应.位.置.上.) 11.如果水位升高 3m 记作+3m ,那么水位下降 6m 记作 ▲ m .12.单项式﹣6x 3y 2的次数是▲ .13.小薇的体重是 45.85kg ,用四舍五入法将 45.85 精确到 0.1 的近似值为 ▲.14.如图,数轴上 A 、B 两点所表示的数分别是﹣4 和 2, 点 C 是线段 A B 的中点,则点 C 所表示的数是 ▲ .15.若 m 2﹣3m =1,则 3m 2﹣9m +2016 的值为▲ .16.一个多项式减去 2x 2﹣4x ﹣3 得﹣x 2+3x ,则这个多项式为▲ .17.世界上大部分国家都使用摄氏(℃)温度,但美、英等国的天气预报仍然使用华氏(F ) 温度.两种计量之间有如下对应:a =1.8b +32(a 表示华氏温度,b 表示摄氏温度),那么摄氏 2.5 度相当于▲ 华氏度.18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”,如图,一位妇女在从右到左依次排列的绳子上打结,满四进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 ▲ 个.三、解答题(本大题共8 小题,共61 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出完整的求解过程或步骤)19.(本小题满分8分)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣120×3+(﹣2)3÷(﹣4)20.(本小题满分8分)化简:(1)﹣5a+(3a﹣2)﹣(3a﹣7);(2)3x2﹣[7 x﹣(4 x﹣3)﹣2x2]21.(本小题满分6分)把下列各数在数轴上表示出来,并用“<”连接各数.0,+3,﹣1,﹣(﹣5), 2 1222.(本小题满分6分)先化简,再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy,其中x =﹣1,y=1.23.(本小题满分8分)在质量检测中,从每盒标准质量为125 克的酸奶中,抽取6 盒,结果如下:(1)补全表格中相关数据;(2)请你计算这 6 盒酸奶的质量和.24.(本小题满分8分)定义一种新运算,观察下列各式:(1)1⊙3=1×4+3=7;(2)3⊙(﹣1)=3×4+(﹣1)=11;(3)5⊙4=5×4+4=24;(4)4⊙(﹣3)=4×4+(﹣3)=13.①请你算一算:6⊙2=;2⊙6=;;②猜想:若a≠b,那么a⊙b=b⊙a(填“=”或“≠”)③先化简,再求值:(a﹣b)⊙(2a+b),其中a=1,b=2.25.(本小题满分6分)观察下列三行数:2,﹣4,8,﹣16,32 …①﹣1,2,﹣4,8,﹣16 …②3,﹣3,9,﹣15,33 …③(1)第①行数的第n个数为(用含有n的式子表示).(2)第②③行数与第①行数分别有什么关系?(3)取每行的第9 个数,求这三个数的和.26.(本小题满分11 分)福建省教育厅日前发布文件,从2019 年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150 元,跳绳每条定价30 元.现有A、B 两家网店均提供包邮服务,并提出了各自的优惠方案.A 网店:买一个足球送一条跳绳;B 网店:足球和跳绳都按定价的90%付款.已知要购买足球40 个,跳绳x 条(x>40).(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示)(2)若x=100 时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100 时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?。

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通一中2019-2020上学期期末考试数学卷
一、选择题
1、-5的相反数是(
)A、51B 、5±C 、5D 51-2、单项式y x 234-
的次数是()A、34
-B 、1
C 、2
D 、33、下列单项式中,与b a 2是同类项的是(
)A、2ab B 、2b a 2C 、22b a D 、ab
34、若x =3是方程3x -a =0的解,则a 的值是(
)A 、9B 、6C 、-9D 、-6
5、下列运用等式的性质,变形不正确的是(
)A、若x =y ,则x +5=y +5
B 、若a =b ,则ac =bc B、若x =y ,则a y a x =D 、若c
b c a =,则a =b 6、据江苏省统计局统计,2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学统计法表示为(
)A、310172896⨯.亿元
B 、210172896⨯.亿元B、5.10172896⨯亿元D 、4.10172896⨯亿元
7、一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h .若设甲、乙两码头的距离为xkm ,则下列方程正确的是( )
A、(20+4)x +(20-4)x =15B 、20x +4x =5
C 、54
20=+x x D 、5420420=-++x x
8、下列图形中,∠1和∠2互为余角的是()
A .
B .
C .
D .
9、如图是一个正方体的展开图,则“数”字的对面的字是()
A .核
B .心
C .素
D .养
10、如图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE =24°,则图2中∠AEF 的度数为()
A 、120°
B 、108°
C 、112°
D 、114°
二、填空题11、计算:53--=______.
12、有下列三个生活、生产现象:
①用两个钉子就可以把木条固定在干墙上;
②把弯曲的公路改直能缩短路程;
③植树时只要定出两棵树的位置,就能确定同一行所在的直线。

其中可用“两点之间,线段最短”来解释的现象有___(填序号).
13、一个角的余角为30°15’,则这个角的补角的度数为_______.
14、若关于x 的方程5x −1=2x +a 的解与方程4x +3=7的解互为相反数,则a =___.
15、如图,线段AB =a ,CD =b ,则AD +BC =___.(用含a ,b 的式子表示)
16、如图,已知AB //DE ,∠BAC =m °,∠CDE =n °,则∠ACD =______.
17、如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为___.(用方位角来表示)
18、定义一种对正整数n 的“F ”运算:
①当n 为奇数时,()13+=n n F ;②当n 为偶数时,()k n n F 2=
(其中k 是使()n F 为奇数的正整数)……,两种运算交替重复进行,例如,取13=n ,则:
若24=n ,则第101次“F ”运算的结果是____________.
三、解答题
19、计算:
(1)325.632
21---+;(2)()[]
2432315.01-----×÷.20、化简:
(1)a a a 372+-;(2)()()
222237m mn m mn +---.21、解下列方程:
(1)x x 31667-=+;(2)436
521y y ---=.22、先化简,再求值:若1,2-==y x ,求()()332122222-----xy y x xy y x 的值.23、如图,直线CD AB 、相交于点O ,°=∠⊥50AOC CD OE ,.求BOE ∠的度数.
24、某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?
25、已知1,123222+=+=xy x B x xy x A ----,且B A 63+的值与x 的取值无关,求y 的值.
26、如图,已知在三角形ABC 中,AC BD ⊥于点D ,点E 是BC 上一点,AC EF ⊥于点F ,点G M ,在AB 上,且AGF AMD ∠=∠,当21∠∠,满足怎样的数量关系时,BC DM ∥?并说明理由.
27、我们知道,任意一个正整数n 都可以进行这样的分解:q p n ×=(q p ,是正整数,且q p ≤),在n 的所有这种分解中,如果q p ,两因数之差的绝对值最小,我们就称q p ×是n
的完美分解.并规定:()q p n F =.例如18可以分解成92,181××或63×,因为3629118->->-,所以63×是18的完美分解,所以()2
16318==F .(1)()()________;
24_______,13==F F (2)如果一个两位正整数t ,其个位数字是a ,十位数字为1-b ,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数“;
(3)在(2)所得“和谐数”中,求()t F 的最大值.
28、将一副直角三角板按如图 1 摆放在直线 AD 上(直角三角板OBC 和直角三角板 MON ,°=∠°=∠°=∠°=∠30904590MNO MON BOC OBC ,,,),保持三角板OBC 不动,将三角板MON 绕点O 以每秒°4的速度顺时针方向旋转t 秒
)<<(2450t .(1)如图2,=∠NOD __________度(用含t 的式子表示);
(2)在旋转的过程中,是否存在t 的值,使COM NOD ∠=∠4?若存在,请求出t 的值;若不存在,请说明理由.
(3)直线AD 位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC 也绕点O 以每秒°1的速度顺时针旋转.
①当_______=t 秒时,°=∠15COM ;
②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t ).
扫码关注公众号
获得更多真题卷
参考答案
5
1~CDBAC 10
~6ADDDC
11、-2
12、②13、,
15120︒14、-4
15、b
a +16、180
-n m +17、北偏东︒30
18、1
19、(1)-5.5
(2)6120、(1)a -2(2)279m -mn 21、(1)1
=x (2)13
=y 22、3
23、︒4024、生产甲种零件的工人10名,生产乙种零件的工人12名25、2
26、2
1∠=∠理由略27、(1)131,32(2)15,26,37,48,59
(3)4328、(1)t -490(2)215或227(3)①10或20
②︒=∠+∠27034NOD BOM。

相关文档
最新文档